You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clatrs.f 33 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026
  1. *> \brief \b CLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLATRS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clatrs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clatrs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clatrs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
  22. * CNORM, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORMIN, TRANS, UPLO
  26. * INTEGER INFO, LDA, N
  27. * REAL SCALE
  28. * ..
  29. * .. Array Arguments ..
  30. * REAL CNORM( * )
  31. * COMPLEX A( LDA, * ), X( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CLATRS solves one of the triangular systems
  41. *>
  42. *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b,
  43. *>
  44. *> with scaling to prevent overflow. Here A is an upper or lower
  45. *> triangular matrix, A**T denotes the transpose of A, A**H denotes the
  46. *> conjugate transpose of A, x and b are n-element vectors, and s is a
  47. *> scaling factor, usually less than or equal to 1, chosen so that the
  48. *> components of x will be less than the overflow threshold. If the
  49. *> unscaled problem will not cause overflow, the Level 2 BLAS routine
  50. *> CTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
  51. *> then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] UPLO
  58. *> \verbatim
  59. *> UPLO is CHARACTER*1
  60. *> Specifies whether the matrix A is upper or lower triangular.
  61. *> = 'U': Upper triangular
  62. *> = 'L': Lower triangular
  63. *> \endverbatim
  64. *>
  65. *> \param[in] TRANS
  66. *> \verbatim
  67. *> TRANS is CHARACTER*1
  68. *> Specifies the operation applied to A.
  69. *> = 'N': Solve A * x = s*b (No transpose)
  70. *> = 'T': Solve A**T * x = s*b (Transpose)
  71. *> = 'C': Solve A**H * x = s*b (Conjugate transpose)
  72. *> \endverbatim
  73. *>
  74. *> \param[in] DIAG
  75. *> \verbatim
  76. *> DIAG is CHARACTER*1
  77. *> Specifies whether or not the matrix A is unit triangular.
  78. *> = 'N': Non-unit triangular
  79. *> = 'U': Unit triangular
  80. *> \endverbatim
  81. *>
  82. *> \param[in] NORMIN
  83. *> \verbatim
  84. *> NORMIN is CHARACTER*1
  85. *> Specifies whether CNORM has been set or not.
  86. *> = 'Y': CNORM contains the column norms on entry
  87. *> = 'N': CNORM is not set on entry. On exit, the norms will
  88. *> be computed and stored in CNORM.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] N
  92. *> \verbatim
  93. *> N is INTEGER
  94. *> The order of the matrix A. N >= 0.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] A
  98. *> \verbatim
  99. *> A is COMPLEX array, dimension (LDA,N)
  100. *> The triangular matrix A. If UPLO = 'U', the leading n by n
  101. *> upper triangular part of the array A contains the upper
  102. *> triangular matrix, and the strictly lower triangular part of
  103. *> A is not referenced. If UPLO = 'L', the leading n by n lower
  104. *> triangular part of the array A contains the lower triangular
  105. *> matrix, and the strictly upper triangular part of A is not
  106. *> referenced. If DIAG = 'U', the diagonal elements of A are
  107. *> also not referenced and are assumed to be 1.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] LDA
  111. *> \verbatim
  112. *> LDA is INTEGER
  113. *> The leading dimension of the array A. LDA >= max (1,N).
  114. *> \endverbatim
  115. *>
  116. *> \param[in,out] X
  117. *> \verbatim
  118. *> X is COMPLEX array, dimension (N)
  119. *> On entry, the right hand side b of the triangular system.
  120. *> On exit, X is overwritten by the solution vector x.
  121. *> \endverbatim
  122. *>
  123. *> \param[out] SCALE
  124. *> \verbatim
  125. *> SCALE is REAL
  126. *> The scaling factor s for the triangular system
  127. *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b.
  128. *> If SCALE = 0, the matrix A is singular or badly scaled, and
  129. *> the vector x is an exact or approximate solution to A*x = 0.
  130. *> \endverbatim
  131. *>
  132. *> \param[in,out] CNORM
  133. *> \verbatim
  134. *> CNORM is REAL array, dimension (N)
  135. *>
  136. *> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  137. *> contains the norm of the off-diagonal part of the j-th column
  138. *> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
  139. *> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  140. *> must be greater than or equal to the 1-norm.
  141. *>
  142. *> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  143. *> returns the 1-norm of the offdiagonal part of the j-th column
  144. *> of A.
  145. *> \endverbatim
  146. *>
  147. *> \param[out] INFO
  148. *> \verbatim
  149. *> INFO is INTEGER
  150. *> = 0: successful exit
  151. *> < 0: if INFO = -k, the k-th argument had an illegal value
  152. *> \endverbatim
  153. *
  154. * Authors:
  155. * ========
  156. *
  157. *> \author Univ. of Tennessee
  158. *> \author Univ. of California Berkeley
  159. *> \author Univ. of Colorado Denver
  160. *> \author NAG Ltd.
  161. *
  162. *> \ingroup complexOTHERauxiliary
  163. *
  164. *> \par Further Details:
  165. * =====================
  166. *>
  167. *> \verbatim
  168. *>
  169. *> A rough bound on x is computed; if that is less than overflow, CTRSV
  170. *> is called, otherwise, specific code is used which checks for possible
  171. *> overflow or divide-by-zero at every operation.
  172. *>
  173. *> A columnwise scheme is used for solving A*x = b. The basic algorithm
  174. *> if A is lower triangular is
  175. *>
  176. *> x[1:n] := b[1:n]
  177. *> for j = 1, ..., n
  178. *> x(j) := x(j) / A(j,j)
  179. *> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  180. *> end
  181. *>
  182. *> Define bounds on the components of x after j iterations of the loop:
  183. *> M(j) = bound on x[1:j]
  184. *> G(j) = bound on x[j+1:n]
  185. *> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  186. *>
  187. *> Then for iteration j+1 we have
  188. *> M(j+1) <= G(j) / | A(j+1,j+1) |
  189. *> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  190. *> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  191. *>
  192. *> where CNORM(j+1) is greater than or equal to the infinity-norm of
  193. *> column j+1 of A, not counting the diagonal. Hence
  194. *>
  195. *> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  196. *> 1<=i<=j
  197. *> and
  198. *>
  199. *> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  200. *> 1<=i< j
  201. *>
  202. *> Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTRSV if the
  203. *> reciprocal of the largest M(j), j=1,..,n, is larger than
  204. *> max(underflow, 1/overflow).
  205. *>
  206. *> The bound on x(j) is also used to determine when a step in the
  207. *> columnwise method can be performed without fear of overflow. If
  208. *> the computed bound is greater than a large constant, x is scaled to
  209. *> prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  210. *> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  211. *>
  212. *> Similarly, a row-wise scheme is used to solve A**T *x = b or
  213. *> A**H *x = b. The basic algorithm for A upper triangular is
  214. *>
  215. *> for j = 1, ..., n
  216. *> x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
  217. *> end
  218. *>
  219. *> We simultaneously compute two bounds
  220. *> G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
  221. *> M(j) = bound on x(i), 1<=i<=j
  222. *>
  223. *> The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  224. *> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  225. *> Then the bound on x(j) is
  226. *>
  227. *> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  228. *>
  229. *> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  230. *> 1<=i<=j
  231. *>
  232. *> and we can safely call CTRSV if 1/M(n) and 1/G(n) are both greater
  233. *> than max(underflow, 1/overflow).
  234. *> \endverbatim
  235. *>
  236. * =====================================================================
  237. SUBROUTINE CLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
  238. $ CNORM, INFO )
  239. *
  240. * -- LAPACK auxiliary routine --
  241. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  242. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  243. *
  244. * .. Scalar Arguments ..
  245. CHARACTER DIAG, NORMIN, TRANS, UPLO
  246. INTEGER INFO, LDA, N
  247. REAL SCALE
  248. * ..
  249. * .. Array Arguments ..
  250. REAL CNORM( * )
  251. COMPLEX A( LDA, * ), X( * )
  252. * ..
  253. *
  254. * =====================================================================
  255. *
  256. * .. Parameters ..
  257. REAL ZERO, HALF, ONE, TWO
  258. PARAMETER ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0,
  259. $ TWO = 2.0E+0 )
  260. * ..
  261. * .. Local Scalars ..
  262. LOGICAL NOTRAN, NOUNIT, UPPER
  263. INTEGER I, IMAX, J, JFIRST, JINC, JLAST
  264. REAL BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
  265. $ XBND, XJ, XMAX
  266. COMPLEX CSUMJ, TJJS, USCAL, ZDUM
  267. * ..
  268. * .. External Functions ..
  269. LOGICAL LSAME
  270. INTEGER ICAMAX, ISAMAX
  271. REAL SCASUM, SLAMCH
  272. COMPLEX CDOTC, CDOTU, CLADIV
  273. EXTERNAL LSAME, ICAMAX, ISAMAX, SCASUM, SLAMCH, CDOTC,
  274. $ CDOTU, CLADIV
  275. * ..
  276. * .. External Subroutines ..
  277. EXTERNAL CAXPY, CSSCAL, CTRSV, SSCAL, XERBLA
  278. * ..
  279. * .. Intrinsic Functions ..
  280. INTRINSIC ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL
  281. * ..
  282. * .. Statement Functions ..
  283. REAL CABS1, CABS2
  284. * ..
  285. * .. Statement Function definitions ..
  286. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
  287. CABS2( ZDUM ) = ABS( REAL( ZDUM ) / 2. ) +
  288. $ ABS( AIMAG( ZDUM ) / 2. )
  289. * ..
  290. * .. Executable Statements ..
  291. *
  292. INFO = 0
  293. UPPER = LSAME( UPLO, 'U' )
  294. NOTRAN = LSAME( TRANS, 'N' )
  295. NOUNIT = LSAME( DIAG, 'N' )
  296. *
  297. * Test the input parameters.
  298. *
  299. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  300. INFO = -1
  301. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  302. $ LSAME( TRANS, 'C' ) ) THEN
  303. INFO = -2
  304. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  305. INFO = -3
  306. ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  307. $ LSAME( NORMIN, 'N' ) ) THEN
  308. INFO = -4
  309. ELSE IF( N.LT.0 ) THEN
  310. INFO = -5
  311. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  312. INFO = -7
  313. END IF
  314. IF( INFO.NE.0 ) THEN
  315. CALL XERBLA( 'CLATRS', -INFO )
  316. RETURN
  317. END IF
  318. *
  319. * Quick return if possible
  320. *
  321. SCALE = ONE
  322. IF( N.EQ.0 )
  323. $ RETURN
  324. *
  325. * Determine machine dependent parameters to control overflow.
  326. *
  327. SMLNUM = SLAMCH( 'Safe minimum' ) / SLAMCH( 'Precision' )
  328. BIGNUM = ONE / SMLNUM
  329. *
  330. IF( LSAME( NORMIN, 'N' ) ) THEN
  331. *
  332. * Compute the 1-norm of each column, not including the diagonal.
  333. *
  334. IF( UPPER ) THEN
  335. *
  336. * A is upper triangular.
  337. *
  338. DO 10 J = 1, N
  339. CNORM( J ) = SCASUM( J-1, A( 1, J ), 1 )
  340. 10 CONTINUE
  341. ELSE
  342. *
  343. * A is lower triangular.
  344. *
  345. DO 20 J = 1, N - 1
  346. CNORM( J ) = SCASUM( N-J, A( J+1, J ), 1 )
  347. 20 CONTINUE
  348. CNORM( N ) = ZERO
  349. END IF
  350. END IF
  351. *
  352. * Scale the column norms by TSCAL if the maximum element in CNORM is
  353. * greater than BIGNUM/2.
  354. *
  355. IMAX = ISAMAX( N, CNORM, 1 )
  356. TMAX = CNORM( IMAX )
  357. IF( TMAX.LE.BIGNUM*HALF ) THEN
  358. TSCAL = ONE
  359. ELSE
  360. *
  361. * Avoid NaN generation if entries in CNORM exceed the
  362. * overflow threshold
  363. *
  364. IF ( TMAX.LE.SLAMCH('Overflow') ) THEN
  365. * Case 1: All entries in CNORM are valid floating-point numbers
  366. TSCAL = HALF / ( SMLNUM*TMAX )
  367. CALL SSCAL( N, TSCAL, CNORM, 1 )
  368. ELSE
  369. * Case 2: At least one column norm of A cannot be
  370. * represented as a floating-point number. Find the
  371. * maximum offdiagonal absolute value
  372. * max( |Re(A(I,J))|, |Im(A(I,J)| ). If this entry is
  373. * not +/- Infinity, use this value as TSCAL.
  374. TMAX = ZERO
  375. IF( UPPER ) THEN
  376. *
  377. * A is upper triangular.
  378. *
  379. DO J = 2, N
  380. DO I = 1, J - 1
  381. TMAX = MAX( TMAX, ABS( REAL( A( I, J ) ) ),
  382. $ ABS( AIMAG(A ( I, J ) ) ) )
  383. END DO
  384. END DO
  385. ELSE
  386. *
  387. * A is lower triangular.
  388. *
  389. DO J = 1, N - 1
  390. DO I = J + 1, N
  391. TMAX = MAX( TMAX, ABS( REAL( A( I, J ) ) ),
  392. $ ABS( AIMAG(A ( I, J ) ) ) )
  393. END DO
  394. END DO
  395. END IF
  396. *
  397. IF( TMAX.LE.SLAMCH('Overflow') ) THEN
  398. TSCAL = ONE / ( SMLNUM*TMAX )
  399. DO J = 1, N
  400. IF( CNORM( J ).LE.SLAMCH('Overflow') ) THEN
  401. CNORM( J ) = CNORM( J )*TSCAL
  402. ELSE
  403. * Recompute the 1-norm of each column without
  404. * introducing Infinity in the summation.
  405. TSCAL = TWO * TSCAL
  406. CNORM( J ) = ZERO
  407. IF( UPPER ) THEN
  408. DO I = 1, J - 1
  409. CNORM( J ) = CNORM( J ) +
  410. $ TSCAL * CABS2( A( I, J ) )
  411. END DO
  412. ELSE
  413. DO I = J + 1, N
  414. CNORM( J ) = CNORM( J ) +
  415. $ TSCAL * CABS2( A( I, J ) )
  416. END DO
  417. END IF
  418. TSCAL = TSCAL * HALF
  419. END IF
  420. END DO
  421. ELSE
  422. * At least one entry of A is not a valid floating-point
  423. * entry. Rely on TRSV to propagate Inf and NaN.
  424. CALL CTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
  425. RETURN
  426. END IF
  427. END IF
  428. END IF
  429. *
  430. * Compute a bound on the computed solution vector to see if the
  431. * Level 2 BLAS routine CTRSV can be used.
  432. *
  433. XMAX = ZERO
  434. DO 30 J = 1, N
  435. XMAX = MAX( XMAX, CABS2( X( J ) ) )
  436. 30 CONTINUE
  437. XBND = XMAX
  438. *
  439. IF( NOTRAN ) THEN
  440. *
  441. * Compute the growth in A * x = b.
  442. *
  443. IF( UPPER ) THEN
  444. JFIRST = N
  445. JLAST = 1
  446. JINC = -1
  447. ELSE
  448. JFIRST = 1
  449. JLAST = N
  450. JINC = 1
  451. END IF
  452. *
  453. IF( TSCAL.NE.ONE ) THEN
  454. GROW = ZERO
  455. GO TO 60
  456. END IF
  457. *
  458. IF( NOUNIT ) THEN
  459. *
  460. * A is non-unit triangular.
  461. *
  462. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  463. * Initially, G(0) = max{x(i), i=1,...,n}.
  464. *
  465. GROW = HALF / MAX( XBND, SMLNUM )
  466. XBND = GROW
  467. DO 40 J = JFIRST, JLAST, JINC
  468. *
  469. * Exit the loop if the growth factor is too small.
  470. *
  471. IF( GROW.LE.SMLNUM )
  472. $ GO TO 60
  473. *
  474. TJJS = A( J, J )
  475. TJJ = CABS1( TJJS )
  476. *
  477. IF( TJJ.GE.SMLNUM ) THEN
  478. *
  479. * M(j) = G(j-1) / abs(A(j,j))
  480. *
  481. XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  482. ELSE
  483. *
  484. * M(j) could overflow, set XBND to 0.
  485. *
  486. XBND = ZERO
  487. END IF
  488. *
  489. IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  490. *
  491. * G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  492. *
  493. GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  494. ELSE
  495. *
  496. * G(j) could overflow, set GROW to 0.
  497. *
  498. GROW = ZERO
  499. END IF
  500. 40 CONTINUE
  501. GROW = XBND
  502. ELSE
  503. *
  504. * A is unit triangular.
  505. *
  506. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  507. *
  508. GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  509. DO 50 J = JFIRST, JLAST, JINC
  510. *
  511. * Exit the loop if the growth factor is too small.
  512. *
  513. IF( GROW.LE.SMLNUM )
  514. $ GO TO 60
  515. *
  516. * G(j) = G(j-1)*( 1 + CNORM(j) )
  517. *
  518. GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  519. 50 CONTINUE
  520. END IF
  521. 60 CONTINUE
  522. *
  523. ELSE
  524. *
  525. * Compute the growth in A**T * x = b or A**H * x = b.
  526. *
  527. IF( UPPER ) THEN
  528. JFIRST = 1
  529. JLAST = N
  530. JINC = 1
  531. ELSE
  532. JFIRST = N
  533. JLAST = 1
  534. JINC = -1
  535. END IF
  536. *
  537. IF( TSCAL.NE.ONE ) THEN
  538. GROW = ZERO
  539. GO TO 90
  540. END IF
  541. *
  542. IF( NOUNIT ) THEN
  543. *
  544. * A is non-unit triangular.
  545. *
  546. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  547. * Initially, M(0) = max{x(i), i=1,...,n}.
  548. *
  549. GROW = HALF / MAX( XBND, SMLNUM )
  550. XBND = GROW
  551. DO 70 J = JFIRST, JLAST, JINC
  552. *
  553. * Exit the loop if the growth factor is too small.
  554. *
  555. IF( GROW.LE.SMLNUM )
  556. $ GO TO 90
  557. *
  558. * G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  559. *
  560. XJ = ONE + CNORM( J )
  561. GROW = MIN( GROW, XBND / XJ )
  562. *
  563. TJJS = A( J, J )
  564. TJJ = CABS1( TJJS )
  565. *
  566. IF( TJJ.GE.SMLNUM ) THEN
  567. *
  568. * M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  569. *
  570. IF( XJ.GT.TJJ )
  571. $ XBND = XBND*( TJJ / XJ )
  572. ELSE
  573. *
  574. * M(j) could overflow, set XBND to 0.
  575. *
  576. XBND = ZERO
  577. END IF
  578. 70 CONTINUE
  579. GROW = MIN( GROW, XBND )
  580. ELSE
  581. *
  582. * A is unit triangular.
  583. *
  584. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  585. *
  586. GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  587. DO 80 J = JFIRST, JLAST, JINC
  588. *
  589. * Exit the loop if the growth factor is too small.
  590. *
  591. IF( GROW.LE.SMLNUM )
  592. $ GO TO 90
  593. *
  594. * G(j) = ( 1 + CNORM(j) )*G(j-1)
  595. *
  596. XJ = ONE + CNORM( J )
  597. GROW = GROW / XJ
  598. 80 CONTINUE
  599. END IF
  600. 90 CONTINUE
  601. END IF
  602. *
  603. IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  604. *
  605. * Use the Level 2 BLAS solve if the reciprocal of the bound on
  606. * elements of X is not too small.
  607. *
  608. CALL CTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
  609. ELSE
  610. *
  611. * Use a Level 1 BLAS solve, scaling intermediate results.
  612. *
  613. IF( XMAX.GT.BIGNUM*HALF ) THEN
  614. *
  615. * Scale X so that its components are less than or equal to
  616. * BIGNUM in absolute value.
  617. *
  618. SCALE = ( BIGNUM*HALF ) / XMAX
  619. CALL CSSCAL( N, SCALE, X, 1 )
  620. XMAX = BIGNUM
  621. ELSE
  622. XMAX = XMAX*TWO
  623. END IF
  624. *
  625. IF( NOTRAN ) THEN
  626. *
  627. * Solve A * x = b
  628. *
  629. DO 110 J = JFIRST, JLAST, JINC
  630. *
  631. * Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  632. *
  633. XJ = CABS1( X( J ) )
  634. IF( NOUNIT ) THEN
  635. TJJS = A( J, J )*TSCAL
  636. ELSE
  637. TJJS = TSCAL
  638. IF( TSCAL.EQ.ONE )
  639. $ GO TO 105
  640. END IF
  641. TJJ = CABS1( TJJS )
  642. IF( TJJ.GT.SMLNUM ) THEN
  643. *
  644. * abs(A(j,j)) > SMLNUM:
  645. *
  646. IF( TJJ.LT.ONE ) THEN
  647. IF( XJ.GT.TJJ*BIGNUM ) THEN
  648. *
  649. * Scale x by 1/b(j).
  650. *
  651. REC = ONE / XJ
  652. CALL CSSCAL( N, REC, X, 1 )
  653. SCALE = SCALE*REC
  654. XMAX = XMAX*REC
  655. END IF
  656. END IF
  657. X( J ) = CLADIV( X( J ), TJJS )
  658. XJ = CABS1( X( J ) )
  659. ELSE IF( TJJ.GT.ZERO ) THEN
  660. *
  661. * 0 < abs(A(j,j)) <= SMLNUM:
  662. *
  663. IF( XJ.GT.TJJ*BIGNUM ) THEN
  664. *
  665. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  666. * to avoid overflow when dividing by A(j,j).
  667. *
  668. REC = ( TJJ*BIGNUM ) / XJ
  669. IF( CNORM( J ).GT.ONE ) THEN
  670. *
  671. * Scale by 1/CNORM(j) to avoid overflow when
  672. * multiplying x(j) times column j.
  673. *
  674. REC = REC / CNORM( J )
  675. END IF
  676. CALL CSSCAL( N, REC, X, 1 )
  677. SCALE = SCALE*REC
  678. XMAX = XMAX*REC
  679. END IF
  680. X( J ) = CLADIV( X( J ), TJJS )
  681. XJ = CABS1( X( J ) )
  682. ELSE
  683. *
  684. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  685. * scale = 0, and compute a solution to A*x = 0.
  686. *
  687. DO 100 I = 1, N
  688. X( I ) = ZERO
  689. 100 CONTINUE
  690. X( J ) = ONE
  691. XJ = ONE
  692. SCALE = ZERO
  693. XMAX = ZERO
  694. END IF
  695. 105 CONTINUE
  696. *
  697. * Scale x if necessary to avoid overflow when adding a
  698. * multiple of column j of A.
  699. *
  700. IF( XJ.GT.ONE ) THEN
  701. REC = ONE / XJ
  702. IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  703. *
  704. * Scale x by 1/(2*abs(x(j))).
  705. *
  706. REC = REC*HALF
  707. CALL CSSCAL( N, REC, X, 1 )
  708. SCALE = SCALE*REC
  709. END IF
  710. ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  711. *
  712. * Scale x by 1/2.
  713. *
  714. CALL CSSCAL( N, HALF, X, 1 )
  715. SCALE = SCALE*HALF
  716. END IF
  717. *
  718. IF( UPPER ) THEN
  719. IF( J.GT.1 ) THEN
  720. *
  721. * Compute the update
  722. * x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
  723. *
  724. CALL CAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
  725. $ 1 )
  726. I = ICAMAX( J-1, X, 1 )
  727. XMAX = CABS1( X( I ) )
  728. END IF
  729. ELSE
  730. IF( J.LT.N ) THEN
  731. *
  732. * Compute the update
  733. * x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
  734. *
  735. CALL CAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
  736. $ X( J+1 ), 1 )
  737. I = J + ICAMAX( N-J, X( J+1 ), 1 )
  738. XMAX = CABS1( X( I ) )
  739. END IF
  740. END IF
  741. 110 CONTINUE
  742. *
  743. ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  744. *
  745. * Solve A**T * x = b
  746. *
  747. DO 150 J = JFIRST, JLAST, JINC
  748. *
  749. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  750. * k<>j
  751. *
  752. XJ = CABS1( X( J ) )
  753. USCAL = TSCAL
  754. REC = ONE / MAX( XMAX, ONE )
  755. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  756. *
  757. * If x(j) could overflow, scale x by 1/(2*XMAX).
  758. *
  759. REC = REC*HALF
  760. IF( NOUNIT ) THEN
  761. TJJS = A( J, J )*TSCAL
  762. ELSE
  763. TJJS = TSCAL
  764. END IF
  765. TJJ = CABS1( TJJS )
  766. IF( TJJ.GT.ONE ) THEN
  767. *
  768. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  769. *
  770. REC = MIN( ONE, REC*TJJ )
  771. USCAL = CLADIV( USCAL, TJJS )
  772. END IF
  773. IF( REC.LT.ONE ) THEN
  774. CALL CSSCAL( N, REC, X, 1 )
  775. SCALE = SCALE*REC
  776. XMAX = XMAX*REC
  777. END IF
  778. END IF
  779. *
  780. CSUMJ = ZERO
  781. IF( USCAL.EQ.CMPLX( ONE ) ) THEN
  782. *
  783. * If the scaling needed for A in the dot product is 1,
  784. * call CDOTU to perform the dot product.
  785. *
  786. IF( UPPER ) THEN
  787. CSUMJ = CDOTU( J-1, A( 1, J ), 1, X, 1 )
  788. ELSE IF( J.LT.N ) THEN
  789. CSUMJ = CDOTU( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
  790. END IF
  791. ELSE
  792. *
  793. * Otherwise, use in-line code for the dot product.
  794. *
  795. IF( UPPER ) THEN
  796. DO 120 I = 1, J - 1
  797. CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
  798. 120 CONTINUE
  799. ELSE IF( J.LT.N ) THEN
  800. DO 130 I = J + 1, N
  801. CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
  802. 130 CONTINUE
  803. END IF
  804. END IF
  805. *
  806. IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
  807. *
  808. * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  809. * was not used to scale the dotproduct.
  810. *
  811. X( J ) = X( J ) - CSUMJ
  812. XJ = CABS1( X( J ) )
  813. IF( NOUNIT ) THEN
  814. TJJS = A( J, J )*TSCAL
  815. ELSE
  816. TJJS = TSCAL
  817. IF( TSCAL.EQ.ONE )
  818. $ GO TO 145
  819. END IF
  820. *
  821. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  822. *
  823. TJJ = CABS1( TJJS )
  824. IF( TJJ.GT.SMLNUM ) THEN
  825. *
  826. * abs(A(j,j)) > SMLNUM:
  827. *
  828. IF( TJJ.LT.ONE ) THEN
  829. IF( XJ.GT.TJJ*BIGNUM ) THEN
  830. *
  831. * Scale X by 1/abs(x(j)).
  832. *
  833. REC = ONE / XJ
  834. CALL CSSCAL( N, REC, X, 1 )
  835. SCALE = SCALE*REC
  836. XMAX = XMAX*REC
  837. END IF
  838. END IF
  839. X( J ) = CLADIV( X( J ), TJJS )
  840. ELSE IF( TJJ.GT.ZERO ) THEN
  841. *
  842. * 0 < abs(A(j,j)) <= SMLNUM:
  843. *
  844. IF( XJ.GT.TJJ*BIGNUM ) THEN
  845. *
  846. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  847. *
  848. REC = ( TJJ*BIGNUM ) / XJ
  849. CALL CSSCAL( N, REC, X, 1 )
  850. SCALE = SCALE*REC
  851. XMAX = XMAX*REC
  852. END IF
  853. X( J ) = CLADIV( X( J ), TJJS )
  854. ELSE
  855. *
  856. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  857. * scale = 0 and compute a solution to A**T *x = 0.
  858. *
  859. DO 140 I = 1, N
  860. X( I ) = ZERO
  861. 140 CONTINUE
  862. X( J ) = ONE
  863. SCALE = ZERO
  864. XMAX = ZERO
  865. END IF
  866. 145 CONTINUE
  867. ELSE
  868. *
  869. * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  870. * product has already been divided by 1/A(j,j).
  871. *
  872. X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
  873. END IF
  874. XMAX = MAX( XMAX, CABS1( X( J ) ) )
  875. 150 CONTINUE
  876. *
  877. ELSE
  878. *
  879. * Solve A**H * x = b
  880. *
  881. DO 190 J = JFIRST, JLAST, JINC
  882. *
  883. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  884. * k<>j
  885. *
  886. XJ = CABS1( X( J ) )
  887. USCAL = TSCAL
  888. REC = ONE / MAX( XMAX, ONE )
  889. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  890. *
  891. * If x(j) could overflow, scale x by 1/(2*XMAX).
  892. *
  893. REC = REC*HALF
  894. IF( NOUNIT ) THEN
  895. TJJS = CONJG( A( J, J ) )*TSCAL
  896. ELSE
  897. TJJS = TSCAL
  898. END IF
  899. TJJ = CABS1( TJJS )
  900. IF( TJJ.GT.ONE ) THEN
  901. *
  902. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  903. *
  904. REC = MIN( ONE, REC*TJJ )
  905. USCAL = CLADIV( USCAL, TJJS )
  906. END IF
  907. IF( REC.LT.ONE ) THEN
  908. CALL CSSCAL( N, REC, X, 1 )
  909. SCALE = SCALE*REC
  910. XMAX = XMAX*REC
  911. END IF
  912. END IF
  913. *
  914. CSUMJ = ZERO
  915. IF( USCAL.EQ.CMPLX( ONE ) ) THEN
  916. *
  917. * If the scaling needed for A in the dot product is 1,
  918. * call CDOTC to perform the dot product.
  919. *
  920. IF( UPPER ) THEN
  921. CSUMJ = CDOTC( J-1, A( 1, J ), 1, X, 1 )
  922. ELSE IF( J.LT.N ) THEN
  923. CSUMJ = CDOTC( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
  924. END IF
  925. ELSE
  926. *
  927. * Otherwise, use in-line code for the dot product.
  928. *
  929. IF( UPPER ) THEN
  930. DO 160 I = 1, J - 1
  931. CSUMJ = CSUMJ + ( CONJG( A( I, J ) )*USCAL )*
  932. $ X( I )
  933. 160 CONTINUE
  934. ELSE IF( J.LT.N ) THEN
  935. DO 170 I = J + 1, N
  936. CSUMJ = CSUMJ + ( CONJG( A( I, J ) )*USCAL )*
  937. $ X( I )
  938. 170 CONTINUE
  939. END IF
  940. END IF
  941. *
  942. IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
  943. *
  944. * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  945. * was not used to scale the dotproduct.
  946. *
  947. X( J ) = X( J ) - CSUMJ
  948. XJ = CABS1( X( J ) )
  949. IF( NOUNIT ) THEN
  950. TJJS = CONJG( A( J, J ) )*TSCAL
  951. ELSE
  952. TJJS = TSCAL
  953. IF( TSCAL.EQ.ONE )
  954. $ GO TO 185
  955. END IF
  956. *
  957. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  958. *
  959. TJJ = CABS1( TJJS )
  960. IF( TJJ.GT.SMLNUM ) THEN
  961. *
  962. * abs(A(j,j)) > SMLNUM:
  963. *
  964. IF( TJJ.LT.ONE ) THEN
  965. IF( XJ.GT.TJJ*BIGNUM ) THEN
  966. *
  967. * Scale X by 1/abs(x(j)).
  968. *
  969. REC = ONE / XJ
  970. CALL CSSCAL( N, REC, X, 1 )
  971. SCALE = SCALE*REC
  972. XMAX = XMAX*REC
  973. END IF
  974. END IF
  975. X( J ) = CLADIV( X( J ), TJJS )
  976. ELSE IF( TJJ.GT.ZERO ) THEN
  977. *
  978. * 0 < abs(A(j,j)) <= SMLNUM:
  979. *
  980. IF( XJ.GT.TJJ*BIGNUM ) THEN
  981. *
  982. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  983. *
  984. REC = ( TJJ*BIGNUM ) / XJ
  985. CALL CSSCAL( N, REC, X, 1 )
  986. SCALE = SCALE*REC
  987. XMAX = XMAX*REC
  988. END IF
  989. X( J ) = CLADIV( X( J ), TJJS )
  990. ELSE
  991. *
  992. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  993. * scale = 0 and compute a solution to A**H *x = 0.
  994. *
  995. DO 180 I = 1, N
  996. X( I ) = ZERO
  997. 180 CONTINUE
  998. X( J ) = ONE
  999. SCALE = ZERO
  1000. XMAX = ZERO
  1001. END IF
  1002. 185 CONTINUE
  1003. ELSE
  1004. *
  1005. * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  1006. * product has already been divided by 1/A(j,j).
  1007. *
  1008. X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
  1009. END IF
  1010. XMAX = MAX( XMAX, CABS1( X( J ) ) )
  1011. 190 CONTINUE
  1012. END IF
  1013. SCALE = SCALE / TSCAL
  1014. END IF
  1015. *
  1016. * Scale the column norms by 1/TSCAL for return.
  1017. *
  1018. IF( TSCAL.NE.ONE ) THEN
  1019. CALL SSCAL( N, ONE / TSCAL, CNORM, 1 )
  1020. END IF
  1021. *
  1022. RETURN
  1023. *
  1024. * End of CLATRS
  1025. *
  1026. END