You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chfrk.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550
  1. *> \brief \b CHFRK performs a Hermitian rank-k operation for matrix in RFP format.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHFRK + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chfrk.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chfrk.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chfrk.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
  22. * C )
  23. *
  24. * .. Scalar Arguments ..
  25. * REAL ALPHA, BETA
  26. * INTEGER K, LDA, N
  27. * CHARACTER TRANS, TRANSR, UPLO
  28. * ..
  29. * .. Array Arguments ..
  30. * COMPLEX A( LDA, * ), C( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> Level 3 BLAS like routine for C in RFP Format.
  40. *>
  41. *> CHFRK performs one of the Hermitian rank--k operations
  42. *>
  43. *> C := alpha*A*A**H + beta*C,
  44. *>
  45. *> or
  46. *>
  47. *> C := alpha*A**H*A + beta*C,
  48. *>
  49. *> where alpha and beta are real scalars, C is an n--by--n Hermitian
  50. *> matrix and A is an n--by--k matrix in the first case and a k--by--n
  51. *> matrix in the second case.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] TRANSR
  58. *> \verbatim
  59. *> TRANSR is CHARACTER*1
  60. *> = 'N': The Normal Form of RFP A is stored;
  61. *> = 'C': The Conjugate-transpose Form of RFP A is stored.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] UPLO
  65. *> \verbatim
  66. *> UPLO is CHARACTER*1
  67. *> On entry, UPLO specifies whether the upper or lower
  68. *> triangular part of the array C is to be referenced as
  69. *> follows:
  70. *>
  71. *> UPLO = 'U' or 'u' Only the upper triangular part of C
  72. *> is to be referenced.
  73. *>
  74. *> UPLO = 'L' or 'l' Only the lower triangular part of C
  75. *> is to be referenced.
  76. *>
  77. *> Unchanged on exit.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] TRANS
  81. *> \verbatim
  82. *> TRANS is CHARACTER*1
  83. *> On entry, TRANS specifies the operation to be performed as
  84. *> follows:
  85. *>
  86. *> TRANS = 'N' or 'n' C := alpha*A*A**H + beta*C.
  87. *>
  88. *> TRANS = 'C' or 'c' C := alpha*A**H*A + beta*C.
  89. *>
  90. *> Unchanged on exit.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] N
  94. *> \verbatim
  95. *> N is INTEGER
  96. *> On entry, N specifies the order of the matrix C. N must be
  97. *> at least zero.
  98. *> Unchanged on exit.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] K
  102. *> \verbatim
  103. *> K is INTEGER
  104. *> On entry with TRANS = 'N' or 'n', K specifies the number
  105. *> of columns of the matrix A, and on entry with
  106. *> TRANS = 'C' or 'c', K specifies the number of rows of the
  107. *> matrix A. K must be at least zero.
  108. *> Unchanged on exit.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] ALPHA
  112. *> \verbatim
  113. *> ALPHA is REAL
  114. *> On entry, ALPHA specifies the scalar alpha.
  115. *> Unchanged on exit.
  116. *> \endverbatim
  117. *>
  118. *> \param[in] A
  119. *> \verbatim
  120. *> A is COMPLEX array, dimension (LDA,ka)
  121. *> where KA
  122. *> is K when TRANS = 'N' or 'n', and is N otherwise. Before
  123. *> entry with TRANS = 'N' or 'n', the leading N--by--K part of
  124. *> the array A must contain the matrix A, otherwise the leading
  125. *> K--by--N part of the array A must contain the matrix A.
  126. *> Unchanged on exit.
  127. *> \endverbatim
  128. *>
  129. *> \param[in] LDA
  130. *> \verbatim
  131. *> LDA is INTEGER
  132. *> On entry, LDA specifies the first dimension of A as declared
  133. *> in the calling (sub) program. When TRANS = 'N' or 'n'
  134. *> then LDA must be at least max( 1, n ), otherwise LDA must
  135. *> be at least max( 1, k ).
  136. *> Unchanged on exit.
  137. *> \endverbatim
  138. *>
  139. *> \param[in] BETA
  140. *> \verbatim
  141. *> BETA is REAL
  142. *> On entry, BETA specifies the scalar beta.
  143. *> Unchanged on exit.
  144. *> \endverbatim
  145. *>
  146. *> \param[in,out] C
  147. *> \verbatim
  148. *> C is COMPLEX array, dimension (N*(N+1)/2)
  149. *> On entry, the matrix A in RFP Format. RFP Format is
  150. *> described by TRANSR, UPLO and N. Note that the imaginary
  151. *> parts of the diagonal elements need not be set, they are
  152. *> assumed to be zero, and on exit they are set to zero.
  153. *> \endverbatim
  154. *
  155. * Authors:
  156. * ========
  157. *
  158. *> \author Univ. of Tennessee
  159. *> \author Univ. of California Berkeley
  160. *> \author Univ. of Colorado Denver
  161. *> \author NAG Ltd.
  162. *
  163. *> \ingroup complexOTHERcomputational
  164. *
  165. * =====================================================================
  166. SUBROUTINE CHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
  167. $ C )
  168. *
  169. * -- LAPACK computational routine --
  170. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  171. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  172. *
  173. * .. Scalar Arguments ..
  174. REAL ALPHA, BETA
  175. INTEGER K, LDA, N
  176. CHARACTER TRANS, TRANSR, UPLO
  177. * ..
  178. * .. Array Arguments ..
  179. COMPLEX A( LDA, * ), C( * )
  180. * ..
  181. *
  182. * =====================================================================
  183. *
  184. * ..
  185. * .. Parameters ..
  186. REAL ONE, ZERO
  187. COMPLEX CZERO
  188. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  189. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
  190. * ..
  191. * .. Local Scalars ..
  192. LOGICAL LOWER, NORMALTRANSR, NISODD, NOTRANS
  193. INTEGER INFO, NROWA, J, NK, N1, N2
  194. COMPLEX CALPHA, CBETA
  195. * ..
  196. * .. External Functions ..
  197. LOGICAL LSAME
  198. EXTERNAL LSAME
  199. * ..
  200. * .. External Subroutines ..
  201. EXTERNAL CGEMM, CHERK, XERBLA
  202. * ..
  203. * .. Intrinsic Functions ..
  204. INTRINSIC MAX, CMPLX
  205. * ..
  206. * .. Executable Statements ..
  207. *
  208. *
  209. * Test the input parameters.
  210. *
  211. INFO = 0
  212. NORMALTRANSR = LSAME( TRANSR, 'N' )
  213. LOWER = LSAME( UPLO, 'L' )
  214. NOTRANS = LSAME( TRANS, 'N' )
  215. *
  216. IF( NOTRANS ) THEN
  217. NROWA = N
  218. ELSE
  219. NROWA = K
  220. END IF
  221. *
  222. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  223. INFO = -1
  224. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  225. INFO = -2
  226. ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  227. INFO = -3
  228. ELSE IF( N.LT.0 ) THEN
  229. INFO = -4
  230. ELSE IF( K.LT.0 ) THEN
  231. INFO = -5
  232. ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
  233. INFO = -8
  234. END IF
  235. IF( INFO.NE.0 ) THEN
  236. CALL XERBLA( 'CHFRK ', -INFO )
  237. RETURN
  238. END IF
  239. *
  240. * Quick return if possible.
  241. *
  242. * The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not
  243. * done (it is in CHERK for example) and left in the general case.
  244. *
  245. IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND.
  246. $ ( BETA.EQ.ONE ) ) )RETURN
  247. *
  248. IF( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ZERO ) ) THEN
  249. DO J = 1, ( ( N*( N+1 ) ) / 2 )
  250. C( J ) = CZERO
  251. END DO
  252. RETURN
  253. END IF
  254. *
  255. CALPHA = CMPLX( ALPHA, ZERO )
  256. CBETA = CMPLX( BETA, ZERO )
  257. *
  258. * C is N-by-N.
  259. * If N is odd, set NISODD = .TRUE., and N1 and N2.
  260. * If N is even, NISODD = .FALSE., and NK.
  261. *
  262. IF( MOD( N, 2 ).EQ.0 ) THEN
  263. NISODD = .FALSE.
  264. NK = N / 2
  265. ELSE
  266. NISODD = .TRUE.
  267. IF( LOWER ) THEN
  268. N2 = N / 2
  269. N1 = N - N2
  270. ELSE
  271. N1 = N / 2
  272. N2 = N - N1
  273. END IF
  274. END IF
  275. *
  276. IF( NISODD ) THEN
  277. *
  278. * N is odd
  279. *
  280. IF( NORMALTRANSR ) THEN
  281. *
  282. * N is odd and TRANSR = 'N'
  283. *
  284. IF( LOWER ) THEN
  285. *
  286. * N is odd, TRANSR = 'N', and UPLO = 'L'
  287. *
  288. IF( NOTRANS ) THEN
  289. *
  290. * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  291. *
  292. CALL CHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  293. $ BETA, C( 1 ), N )
  294. CALL CHERK( 'U', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  295. $ BETA, C( N+1 ), N )
  296. CALL CGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
  297. $ LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
  298. *
  299. ELSE
  300. *
  301. * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
  302. *
  303. CALL CHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  304. $ BETA, C( 1 ), N )
  305. CALL CHERK( 'U', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  306. $ BETA, C( N+1 ), N )
  307. CALL CGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
  308. $ LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
  309. *
  310. END IF
  311. *
  312. ELSE
  313. *
  314. * N is odd, TRANSR = 'N', and UPLO = 'U'
  315. *
  316. IF( NOTRANS ) THEN
  317. *
  318. * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  319. *
  320. CALL CHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  321. $ BETA, C( N2+1 ), N )
  322. CALL CHERK( 'U', 'N', N2, K, ALPHA, A( N2, 1 ), LDA,
  323. $ BETA, C( N1+1 ), N )
  324. CALL CGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
  325. $ LDA, A( N2, 1 ), LDA, CBETA, C( 1 ), N )
  326. *
  327. ELSE
  328. *
  329. * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
  330. *
  331. CALL CHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  332. $ BETA, C( N2+1 ), N )
  333. CALL CHERK( 'U', 'C', N2, K, ALPHA, A( 1, N2 ), LDA,
  334. $ BETA, C( N1+1 ), N )
  335. CALL CGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
  336. $ LDA, A( 1, N2 ), LDA, CBETA, C( 1 ), N )
  337. *
  338. END IF
  339. *
  340. END IF
  341. *
  342. ELSE
  343. *
  344. * N is odd, and TRANSR = 'C'
  345. *
  346. IF( LOWER ) THEN
  347. *
  348. * N is odd, TRANSR = 'C', and UPLO = 'L'
  349. *
  350. IF( NOTRANS ) THEN
  351. *
  352. * N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
  353. *
  354. CALL CHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  355. $ BETA, C( 1 ), N1 )
  356. CALL CHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  357. $ BETA, C( 2 ), N1 )
  358. CALL CGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
  359. $ LDA, A( N1+1, 1 ), LDA, CBETA,
  360. $ C( N1*N1+1 ), N1 )
  361. *
  362. ELSE
  363. *
  364. * N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
  365. *
  366. CALL CHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  367. $ BETA, C( 1 ), N1 )
  368. CALL CHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  369. $ BETA, C( 2 ), N1 )
  370. CALL CGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
  371. $ LDA, A( 1, N1+1 ), LDA, CBETA,
  372. $ C( N1*N1+1 ), N1 )
  373. *
  374. END IF
  375. *
  376. ELSE
  377. *
  378. * N is odd, TRANSR = 'C', and UPLO = 'U'
  379. *
  380. IF( NOTRANS ) THEN
  381. *
  382. * N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
  383. *
  384. CALL CHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  385. $ BETA, C( N2*N2+1 ), N2 )
  386. CALL CHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  387. $ BETA, C( N1*N2+1 ), N2 )
  388. CALL CGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
  389. $ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
  390. *
  391. ELSE
  392. *
  393. * N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
  394. *
  395. CALL CHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  396. $ BETA, C( N2*N2+1 ), N2 )
  397. CALL CHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  398. $ BETA, C( N1*N2+1 ), N2 )
  399. CALL CGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
  400. $ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
  401. *
  402. END IF
  403. *
  404. END IF
  405. *
  406. END IF
  407. *
  408. ELSE
  409. *
  410. * N is even
  411. *
  412. IF( NORMALTRANSR ) THEN
  413. *
  414. * N is even and TRANSR = 'N'
  415. *
  416. IF( LOWER ) THEN
  417. *
  418. * N is even, TRANSR = 'N', and UPLO = 'L'
  419. *
  420. IF( NOTRANS ) THEN
  421. *
  422. * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  423. *
  424. CALL CHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  425. $ BETA, C( 2 ), N+1 )
  426. CALL CHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  427. $ BETA, C( 1 ), N+1 )
  428. CALL CGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
  429. $ LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
  430. $ N+1 )
  431. *
  432. ELSE
  433. *
  434. * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
  435. *
  436. CALL CHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  437. $ BETA, C( 2 ), N+1 )
  438. CALL CHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  439. $ BETA, C( 1 ), N+1 )
  440. CALL CGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
  441. $ LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
  442. $ N+1 )
  443. *
  444. END IF
  445. *
  446. ELSE
  447. *
  448. * N is even, TRANSR = 'N', and UPLO = 'U'
  449. *
  450. IF( NOTRANS ) THEN
  451. *
  452. * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  453. *
  454. CALL CHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  455. $ BETA, C( NK+2 ), N+1 )
  456. CALL CHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  457. $ BETA, C( NK+1 ), N+1 )
  458. CALL CGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
  459. $ LDA, A( NK+1, 1 ), LDA, CBETA, C( 1 ),
  460. $ N+1 )
  461. *
  462. ELSE
  463. *
  464. * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
  465. *
  466. CALL CHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  467. $ BETA, C( NK+2 ), N+1 )
  468. CALL CHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  469. $ BETA, C( NK+1 ), N+1 )
  470. CALL CGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
  471. $ LDA, A( 1, NK+1 ), LDA, CBETA, C( 1 ),
  472. $ N+1 )
  473. *
  474. END IF
  475. *
  476. END IF
  477. *
  478. ELSE
  479. *
  480. * N is even, and TRANSR = 'C'
  481. *
  482. IF( LOWER ) THEN
  483. *
  484. * N is even, TRANSR = 'C', and UPLO = 'L'
  485. *
  486. IF( NOTRANS ) THEN
  487. *
  488. * N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
  489. *
  490. CALL CHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  491. $ BETA, C( NK+1 ), NK )
  492. CALL CHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  493. $ BETA, C( 1 ), NK )
  494. CALL CGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
  495. $ LDA, A( NK+1, 1 ), LDA, CBETA,
  496. $ C( ( ( NK+1 )*NK )+1 ), NK )
  497. *
  498. ELSE
  499. *
  500. * N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
  501. *
  502. CALL CHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  503. $ BETA, C( NK+1 ), NK )
  504. CALL CHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  505. $ BETA, C( 1 ), NK )
  506. CALL CGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
  507. $ LDA, A( 1, NK+1 ), LDA, CBETA,
  508. $ C( ( ( NK+1 )*NK )+1 ), NK )
  509. *
  510. END IF
  511. *
  512. ELSE
  513. *
  514. * N is even, TRANSR = 'C', and UPLO = 'U'
  515. *
  516. IF( NOTRANS ) THEN
  517. *
  518. * N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
  519. *
  520. CALL CHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  521. $ BETA, C( NK*( NK+1 )+1 ), NK )
  522. CALL CHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  523. $ BETA, C( NK*NK+1 ), NK )
  524. CALL CGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
  525. $ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
  526. *
  527. ELSE
  528. *
  529. * N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
  530. *
  531. CALL CHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  532. $ BETA, C( NK*( NK+1 )+1 ), NK )
  533. CALL CHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  534. $ BETA, C( NK*NK+1 ), NK )
  535. CALL CGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
  536. $ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
  537. *
  538. END IF
  539. *
  540. END IF
  541. *
  542. END IF
  543. *
  544. END IF
  545. *
  546. RETURN
  547. *
  548. * End of CHFRK
  549. *
  550. END