You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dbdt02.f 4.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190
  1. *> \brief \b DBDT02
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DBDT02( M, N, B, LDB, C, LDC, U, LDU, WORK, RESID )
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER LDB, LDC, LDU, M, N
  15. * DOUBLE PRECISION RESID
  16. * ..
  17. * .. Array Arguments ..
  18. * DOUBLE PRECISION B( LDB, * ), C( LDC, * ), U( LDU, * ),
  19. * $ WORK( * )
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> DBDT02 tests the change of basis C = U' * B by computing the residual
  29. *>
  30. *> RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
  31. *>
  32. *> where B and C are M by N matrices, U is an M by M orthogonal matrix,
  33. *> and EPS is the machine precision.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] M
  40. *> \verbatim
  41. *> M is INTEGER
  42. *> The number of rows of the matrices B and C and the order of
  43. *> the matrix Q.
  44. *> \endverbatim
  45. *>
  46. *> \param[in] N
  47. *> \verbatim
  48. *> N is INTEGER
  49. *> The number of columns of the matrices B and C.
  50. *> \endverbatim
  51. *>
  52. *> \param[in] B
  53. *> \verbatim
  54. *> B is DOUBLE PRECISION array, dimension (LDB,N)
  55. *> The m by n matrix B.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] LDB
  59. *> \verbatim
  60. *> LDB is INTEGER
  61. *> The leading dimension of the array B. LDB >= max(1,M).
  62. *> \endverbatim
  63. *>
  64. *> \param[in] C
  65. *> \verbatim
  66. *> C is DOUBLE PRECISION array, dimension (LDC,N)
  67. *> The m by n matrix C, assumed to contain U' * B.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] LDC
  71. *> \verbatim
  72. *> LDC is INTEGER
  73. *> The leading dimension of the array C. LDC >= max(1,M).
  74. *> \endverbatim
  75. *>
  76. *> \param[in] U
  77. *> \verbatim
  78. *> U is DOUBLE PRECISION array, dimension (LDU,M)
  79. *> The m by m orthogonal matrix U.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] LDU
  83. *> \verbatim
  84. *> LDU is INTEGER
  85. *> The leading dimension of the array U. LDU >= max(1,M).
  86. *> \endverbatim
  87. *>
  88. *> \param[out] WORK
  89. *> \verbatim
  90. *> WORK is DOUBLE PRECISION array, dimension (M)
  91. *> \endverbatim
  92. *>
  93. *> \param[out] RESID
  94. *> \verbatim
  95. *> RESID is DOUBLE PRECISION
  96. *> RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
  97. *> \endverbatim
  98. *
  99. * Authors:
  100. * ========
  101. *
  102. *> \author Univ. of Tennessee
  103. *> \author Univ. of California Berkeley
  104. *> \author Univ. of Colorado Denver
  105. *> \author NAG Ltd.
  106. *
  107. *> \date December 2016
  108. *
  109. *> \ingroup double_eig
  110. *
  111. * =====================================================================
  112. SUBROUTINE DBDT02( M, N, B, LDB, C, LDC, U, LDU, WORK, RESID )
  113. *
  114. * -- LAPACK test routine (version 3.7.0) --
  115. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  116. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  117. * December 2016
  118. *
  119. * .. Scalar Arguments ..
  120. INTEGER LDB, LDC, LDU, M, N
  121. DOUBLE PRECISION RESID
  122. * ..
  123. * .. Array Arguments ..
  124. DOUBLE PRECISION B( LDB, * ), C( LDC, * ), U( LDU, * ),
  125. $ WORK( * )
  126. * ..
  127. *
  128. * ======================================================================
  129. *
  130. * .. Parameters ..
  131. DOUBLE PRECISION ZERO, ONE
  132. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  133. * ..
  134. * .. Local Scalars ..
  135. INTEGER J
  136. DOUBLE PRECISION BNORM, EPS, REALMN
  137. * ..
  138. * .. External Functions ..
  139. DOUBLE PRECISION DASUM, DLAMCH, DLANGE
  140. EXTERNAL DASUM, DLAMCH, DLANGE
  141. * ..
  142. * .. External Subroutines ..
  143. EXTERNAL DCOPY, DGEMV
  144. * ..
  145. * .. Intrinsic Functions ..
  146. INTRINSIC DBLE, MAX, MIN
  147. * ..
  148. * .. Executable Statements ..
  149. *
  150. * Quick return if possible
  151. *
  152. RESID = ZERO
  153. IF( M.LE.0 .OR. N.LE.0 )
  154. $ RETURN
  155. REALMN = DBLE( MAX( M, N ) )
  156. EPS = DLAMCH( 'Precision' )
  157. *
  158. * Compute norm( B - U * C )
  159. *
  160. DO 10 J = 1, N
  161. CALL DCOPY( M, B( 1, J ), 1, WORK, 1 )
  162. CALL DGEMV( 'No transpose', M, M, -ONE, U, LDU, C( 1, J ), 1,
  163. $ ONE, WORK, 1 )
  164. RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
  165. 10 CONTINUE
  166. *
  167. * Compute norm of B.
  168. *
  169. BNORM = DLANGE( '1', M, N, B, LDB, WORK )
  170. *
  171. IF( BNORM.LE.ZERO ) THEN
  172. IF( RESID.NE.ZERO )
  173. $ RESID = ONE / EPS
  174. ELSE
  175. IF( BNORM.GE.RESID ) THEN
  176. RESID = ( RESID / BNORM ) / ( REALMN*EPS )
  177. ELSE
  178. IF( BNORM.LT.ONE ) THEN
  179. RESID = ( MIN( RESID, REALMN*BNORM ) / BNORM ) /
  180. $ ( REALMN*EPS )
  181. ELSE
  182. RESID = MIN( RESID / BNORM, REALMN ) / ( REALMN*EPS )
  183. END IF
  184. END IF
  185. END IF
  186. RETURN
  187. *
  188. * End of DBDT02
  189. *
  190. END