You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

getrf_parallel.c 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include "common.h"
  40. static FLOAT dm1 = -1.;
  41. double sqrt(double);
  42. #ifndef CACHE_LINE_SIZE
  43. #define CACHE_LINE_SIZE 8
  44. #endif
  45. #ifndef DIVIDE_RATE
  46. #define DIVIDE_RATE 2
  47. #endif
  48. #define GEMM_PQ MAX(GEMM_P, GEMM_Q)
  49. #define REAL_GEMM_R (GEMM_R - GEMM_PQ)
  50. #ifndef GETRF_FACTOR
  51. #define GETRF_FACTOR 0.75
  52. #endif
  53. #undef GETRF_FACTOR
  54. #define GETRF_FACTOR 1.00
  55. static inline long FORMULA1(long M, long N, long IS, long BK, long T) {
  56. double m = (double)(M - IS - BK);
  57. double n = (double)(N - IS - BK);
  58. double b = (double)BK;
  59. double a = (double)T;
  60. return (long)((n + GETRF_FACTOR * m * b * (1. - a) / (b + m)) / a);
  61. }
  62. #define FORMULA2(M, N, IS, BK, T) (BLASLONG)((double)(N - IS + BK) * (1. - sqrt(1. - 1. / (double)(T))))
  63. static void inner_basic_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  64. BLASLONG is, min_i;
  65. BLASLONG js, min_j;
  66. BLASLONG jjs, min_jj;
  67. BLASLONG m = args -> m;
  68. BLASLONG n = args -> n;
  69. BLASLONG k = args -> k;
  70. BLASLONG lda = args -> lda;
  71. BLASLONG off = args -> ldb;
  72. FLOAT *b = (FLOAT *)args -> b + (k ) * COMPSIZE;
  73. FLOAT *c = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  74. FLOAT *d = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  75. FLOAT *sbb = sb;
  76. volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
  77. blasint *ipiv = (blasint *)args -> c;
  78. if (range_n) {
  79. n = range_n[1] - range_n[0];
  80. c += range_n[0] * lda * COMPSIZE;
  81. d += range_n[0] * lda * COMPSIZE;
  82. }
  83. if (args -> a == NULL) {
  84. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  85. sbb = (FLOAT *)((((long)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  86. } else {
  87. sb = (FLOAT *)args -> a;
  88. }
  89. for (js = 0; js < n; js += REAL_GEMM_R) {
  90. min_j = n - js;
  91. if (min_j > REAL_GEMM_R) min_j = REAL_GEMM_R;
  92. for (jjs = js; jjs < js + min_j; jjs += GEMM_UNROLL_N){
  93. min_jj = js + min_j - jjs;
  94. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  95. if (0 && GEMM_UNROLL_N <= 8) {
  96. LASWP_NCOPY(min_jj, off + 1, off + k,
  97. c + (- off + jjs * lda) * COMPSIZE, lda,
  98. ipiv, sbb + k * (jjs - js) * COMPSIZE);
  99. } else {
  100. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  101. #ifdef COMPLEX
  102. ZERO,
  103. #endif
  104. c + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  105. GEMM_ONCOPY (k, min_jj, c + jjs * lda * COMPSIZE, lda, sbb + (jjs - js) * k * COMPSIZE);
  106. }
  107. for (is = 0; is < k; is += GEMM_P) {
  108. min_i = k - is;
  109. if (min_i > GEMM_P) min_i = GEMM_P;
  110. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  111. #ifdef COMPLEX
  112. ZERO,
  113. #endif
  114. sb + k * is * COMPSIZE,
  115. sbb + (jjs - js) * k * COMPSIZE,
  116. c + (is + jjs * lda) * COMPSIZE, lda, is);
  117. }
  118. }
  119. if ((js + REAL_GEMM_R >= n) && (mypos >= 0)) flag[mypos * CACHE_LINE_SIZE] = 0;
  120. for (is = 0; is < m; is += GEMM_P){
  121. min_i = m - is;
  122. if (min_i > GEMM_P) min_i = GEMM_P;
  123. GEMM_ITCOPY (k, min_i, b + is * COMPSIZE, lda, sa);
  124. GEMM_KERNEL_N(min_i, min_j, k, dm1,
  125. #ifdef COMPLEX
  126. ZERO,
  127. #endif
  128. sa, sbb, d + (is + js * lda) * COMPSIZE, lda);
  129. }
  130. }
  131. }
  132. /* Non blocking implementation */
  133. typedef struct {
  134. volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
  135. } job_t;
  136. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  137. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  138. #ifndef COMPLEX
  139. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  140. GEMM_KERNEL_N(M, N, K, dm1, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  141. #else
  142. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  143. GEMM_KERNEL_N(M, N, K, dm1, ZERO, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  144. #endif
  145. static int inner_advanced_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  146. job_t *job = (job_t *)args -> common;
  147. BLASLONG xxx, bufferside;
  148. FLOAT *buffer[DIVIDE_RATE];
  149. BLASLONG jjs, min_jj, div_n;
  150. BLASLONG i, current;
  151. BLASLONG is, min_i;
  152. BLASLONG m, n_from, n_to;
  153. BLASLONG k = args -> k;
  154. BLASLONG lda = args -> lda;
  155. BLASLONG off = args -> ldb;
  156. FLOAT *a = (FLOAT *)args -> b + (k ) * COMPSIZE;
  157. FLOAT *b = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  158. FLOAT *c = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  159. FLOAT *sbb= sb;
  160. blasint *ipiv = (blasint *)args -> c;
  161. volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
  162. if (args -> a == NULL) {
  163. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  164. sbb = (FLOAT *)((((long)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  165. } else {
  166. sb = (FLOAT *)args -> a;
  167. }
  168. m = range_m[1] - range_m[0];
  169. n_from = range_n[mypos + 0];
  170. n_to = range_n[mypos + 1];
  171. a += range_m[0] * COMPSIZE;
  172. c += range_m[0] * COMPSIZE;
  173. div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
  174. buffer[0] = sbb;
  175. for (i = 1; i < DIVIDE_RATE; i++) {
  176. buffer[i] = buffer[i - 1] + GEMM_Q * ((div_n + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1)) * COMPSIZE;
  177. }
  178. for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) {
  179. for (i = 0; i < args -> nthreads; i++)
  180. while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {};
  181. for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){
  182. min_jj = MIN(n_to, xxx + div_n) - jjs;
  183. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  184. if (0 && GEMM_UNROLL_N <= 8) {
  185. printf("helllo\n");
  186. LASWP_NCOPY(min_jj, off + 1, off + k,
  187. b + (- off + jjs * lda) * COMPSIZE, lda,
  188. ipiv, buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  189. } else {
  190. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  191. #ifdef COMPLEX
  192. ZERO,
  193. #endif
  194. b + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  195. GEMM_ONCOPY (k, min_jj, b + jjs * lda * COMPSIZE, lda,
  196. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  197. }
  198. for (is = 0; is < k; is += GEMM_P) {
  199. min_i = k - is;
  200. if (min_i > GEMM_P) min_i = GEMM_P;
  201. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  202. #ifdef COMPLEX
  203. ZERO,
  204. #endif
  205. sb + k * is * COMPSIZE,
  206. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE,
  207. b + (is + jjs * lda) * COMPSIZE, lda, is);
  208. }
  209. }
  210. for (i = 0; i < args -> nthreads; i++)
  211. job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  212. }
  213. flag[mypos * CACHE_LINE_SIZE] = 0;
  214. if (m == 0) {
  215. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  216. job[mypos].working[mypos][CACHE_LINE_SIZE * xxx] = 0;
  217. }
  218. }
  219. for(is = 0; is < m; is += min_i){
  220. min_i = m - is;
  221. if (min_i >= GEMM_P * 2) {
  222. min_i = GEMM_P;
  223. } else
  224. if (min_i > GEMM_P) {
  225. min_i = ((min_i + 1) / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1);
  226. }
  227. ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
  228. current = mypos;
  229. do {
  230. div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
  231. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  232. if ((current != mypos) && (!is)) {
  233. while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {};
  234. }
  235. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k,
  236. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  237. c, lda, is, xxx);
  238. if (is + min_i >= m) {
  239. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] = 0;
  240. }
  241. }
  242. current ++;
  243. if (current >= args -> nthreads) current = 0;
  244. } while (current != mypos);
  245. }
  246. for (i = 0; i < args -> nthreads; i++) {
  247. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  248. while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {};
  249. }
  250. }
  251. return 0;
  252. }
  253. #if 1
  254. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  255. BLASLONG m, n, mn, lda, offset;
  256. BLASLONG init_bk, next_bk, range_n_mine[2], range_n_new[2];
  257. blasint *ipiv, iinfo, info;
  258. int mode;
  259. blas_arg_t newarg;
  260. FLOAT *a, *sbb;
  261. FLOAT dummyalpha[2] = {ZERO, ZERO};
  262. blas_queue_t queue[MAX_CPU_NUMBER];
  263. BLASLONG range_M[MAX_CPU_NUMBER + 1];
  264. BLASLONG range_N[MAX_CPU_NUMBER + 1];
  265. job_t job[MAX_CPU_NUMBER];
  266. BLASLONG width, nn, mm;
  267. BLASLONG i, j, k, is, bk;
  268. BLASLONG num_cpu;
  269. volatile BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  270. #ifndef COMPLEX
  271. #ifdef XDOUBLE
  272. mode = BLAS_XDOUBLE | BLAS_REAL;
  273. #elif defined(DOUBLE)
  274. mode = BLAS_DOUBLE | BLAS_REAL;
  275. #else
  276. mode = BLAS_SINGLE | BLAS_REAL;
  277. #endif
  278. #else
  279. #ifdef XDOUBLE
  280. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  281. #elif defined(DOUBLE)
  282. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  283. #else
  284. mode = BLAS_SINGLE | BLAS_COMPLEX;
  285. #endif
  286. #endif
  287. m = args -> m;
  288. n = args -> n;
  289. a = (FLOAT *)args -> a;
  290. lda = args -> lda;
  291. ipiv = (blasint *)args -> c;
  292. offset = 0;
  293. if (range_n) {
  294. m -= range_n[0];
  295. n = range_n[1] - range_n[0];
  296. offset = range_n[0];
  297. a += range_n[0] * (lda + 1) * COMPSIZE;
  298. }
  299. if (m <= 0 || n <= 0) return 0;
  300. newarg.c = ipiv;
  301. newarg.lda = lda;
  302. newarg.common = (void *)job;
  303. info = 0;
  304. mn = MIN(m, n);
  305. init_bk = (mn / 2 + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  306. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  307. if (init_bk <= GEMM_UNROLL_N) {
  308. info = GETF2(args, NULL, range_n, sa, sb, 0);
  309. return info;
  310. }
  311. next_bk = init_bk;
  312. bk = mn;
  313. if (bk > next_bk) bk = next_bk;
  314. range_n_new[0] = offset;
  315. range_n_new[1] = offset + bk;
  316. iinfo = CNAME(args, NULL, range_n_new, sa, sb, 0);
  317. if (iinfo && !info) info = iinfo;
  318. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  319. sbb = (FLOAT *)((((long)(sb + bk * bk * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  320. is = 0;
  321. num_cpu = 0;
  322. while (is < mn) {
  323. width = (FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  324. if (width > mn - is - bk) width = mn - is - bk;
  325. if (width < bk) {
  326. next_bk = (FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N) & ~(GEMM_UNROLL_N - 1);
  327. if (next_bk > bk) next_bk = bk;
  328. width = next_bk;
  329. if (width > mn - is - bk) width = mn - is - bk;
  330. }
  331. if (num_cpu > 0) exec_blas_async_wait(num_cpu, &queue[0]);
  332. mm = m - bk - is;
  333. nn = n - bk - is;
  334. newarg.a = sb;
  335. newarg.b = a + (is + is * lda) * COMPSIZE;
  336. newarg.d = (void *)flag;
  337. newarg.m = mm;
  338. newarg.n = nn;
  339. newarg.k = bk;
  340. newarg.ldb = is + offset;
  341. nn -= width;
  342. range_n_mine[0] = 0;
  343. range_n_mine[1] = width;
  344. range_N[0] = width;
  345. range_M[0] = 0;
  346. num_cpu = 0;
  347. while (nn > 0){
  348. if (mm >= nn) {
  349. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  350. if (nn < width) width = nn;
  351. nn -= width;
  352. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  353. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  354. if (mm < width) width = mm;
  355. if (nn <= 0) width = mm;
  356. mm -= width;
  357. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  358. } else {
  359. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  360. if (mm < width) width = mm;
  361. mm -= width;
  362. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  363. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  364. if (nn < width) width = nn;
  365. if (mm <= 0) width = nn;
  366. nn -= width;
  367. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  368. }
  369. queue[num_cpu].mode = mode;
  370. queue[num_cpu].routine = inner_advanced_thread;
  371. queue[num_cpu].args = &newarg;
  372. queue[num_cpu].range_m = &range_M[num_cpu];
  373. queue[num_cpu].range_n = &range_N[0];
  374. queue[num_cpu].sa = NULL;
  375. queue[num_cpu].sb = NULL;
  376. queue[num_cpu].next = &queue[num_cpu + 1];
  377. flag[num_cpu * CACHE_LINE_SIZE] = 1;
  378. num_cpu ++;
  379. }
  380. newarg.nthreads = num_cpu;
  381. if (num_cpu > 0) {
  382. for (j = 0; j < num_cpu; j++) {
  383. for (i = 0; i < num_cpu; i++) {
  384. for (k = 0; k < DIVIDE_RATE; k++) {
  385. job[j].working[i][CACHE_LINE_SIZE * k] = 0;
  386. }
  387. }
  388. }
  389. }
  390. is += bk;
  391. bk = mn - is;
  392. if (bk > next_bk) bk = next_bk;
  393. range_n_new[0] = offset + is;
  394. range_n_new[1] = offset + is + bk;
  395. if (num_cpu > 0) {
  396. queue[num_cpu - 1].next = NULL;
  397. exec_blas_async(0, &queue[0]);
  398. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  399. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  400. if (iinfo && !info) info = iinfo + is;
  401. for (i = 0; i < num_cpu; i ++) while (flag[i * CACHE_LINE_SIZE]) {};
  402. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  403. } else {
  404. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  405. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  406. if (iinfo && !info) info = iinfo + is;
  407. }
  408. }
  409. next_bk = init_bk;
  410. is = 0;
  411. while (is < mn) {
  412. bk = mn - is;
  413. if (bk > next_bk) bk = next_bk;
  414. width = (FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  415. if (width > mn - is - bk) width = mn - is - bk;
  416. if (width < bk) {
  417. next_bk = (FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N) & ~(GEMM_UNROLL_N - 1);
  418. if (next_bk > bk) next_bk = bk;
  419. }
  420. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  421. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  422. ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
  423. is += bk;
  424. }
  425. return info;
  426. }
  427. #else
  428. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  429. BLASLONG m, n, mn, lda, offset;
  430. BLASLONG i, is, bk, init_bk, next_bk, range_n_new[2];
  431. blasint *ipiv, iinfo, info;
  432. int mode;
  433. blas_arg_t newarg;
  434. FLOAT *a, *sbb;
  435. FLOAT dummyalpha[2] = {ZERO, ZERO};
  436. blas_queue_t queue[MAX_CPU_NUMBER];
  437. BLASLONG range[MAX_CPU_NUMBER + 1];
  438. BLASLONG width, nn, num_cpu;
  439. volatile BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  440. #ifndef COMPLEX
  441. #ifdef XDOUBLE
  442. mode = BLAS_XDOUBLE | BLAS_REAL;
  443. #elif defined(DOUBLE)
  444. mode = BLAS_DOUBLE | BLAS_REAL;
  445. #else
  446. mode = BLAS_SINGLE | BLAS_REAL;
  447. #endif
  448. #else
  449. #ifdef XDOUBLE
  450. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  451. #elif defined(DOUBLE)
  452. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  453. #else
  454. mode = BLAS_SINGLE | BLAS_COMPLEX;
  455. #endif
  456. #endif
  457. m = args -> m;
  458. n = args -> n;
  459. a = (FLOAT *)args -> a;
  460. lda = args -> lda;
  461. ipiv = (blasint *)args -> c;
  462. offset = 0;
  463. if (range_n) {
  464. m -= range_n[0];
  465. n = range_n[1] - range_n[0];
  466. offset = range_n[0];
  467. a += range_n[0] * (lda + 1) * COMPSIZE;
  468. }
  469. if (m <= 0 || n <= 0) return 0;
  470. newarg.c = ipiv;
  471. newarg.lda = lda;
  472. newarg.common = NULL;
  473. newarg.nthreads = args -> nthreads;
  474. mn = MIN(m, n);
  475. init_bk = (mn / 2 + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  476. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  477. if (init_bk <= GEMM_UNROLL_N) {
  478. info = GETF2(args, NULL, range_n, sa, sb, 0);
  479. return info;
  480. }
  481. width = FORMULA1(m, n, 0, init_bk, args -> nthreads);
  482. width = (width + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  483. if (width > n - init_bk) width = n - init_bk;
  484. if (width < init_bk) {
  485. long temp;
  486. temp = FORMULA2(m, n, 0, init_bk, args -> nthreads);
  487. temp = (temp + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  488. if (temp < GEMM_UNROLL_N) temp = GEMM_UNROLL_N;
  489. if (temp < init_bk) init_bk = temp;
  490. }
  491. next_bk = init_bk;
  492. bk = init_bk;
  493. range_n_new[0] = offset;
  494. range_n_new[1] = offset + bk;
  495. info = CNAME(args, NULL, range_n_new, sa, sb, 0);
  496. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  497. is = 0;
  498. num_cpu = 0;
  499. sbb = (FLOAT *)((((long)(sb + GEMM_PQ * GEMM_PQ * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  500. while (is < mn) {
  501. width = FORMULA1(m, n, is, bk, args -> nthreads);
  502. width = (width + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  503. if (width < bk) {
  504. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  505. next_bk = (next_bk + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  506. if (next_bk > bk) next_bk = bk;
  507. #if 0
  508. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  509. #else
  510. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  511. #endif
  512. width = next_bk;
  513. }
  514. if (width > mn - is - bk) {
  515. next_bk = mn - is - bk;
  516. width = next_bk;
  517. }
  518. nn = n - bk - is;
  519. if (width > nn) width = nn;
  520. if (num_cpu > 1) exec_blas_async_wait(num_cpu - 1, &queue[1]);
  521. range[0] = 0;
  522. range[1] = width;
  523. num_cpu = 1;
  524. nn -= width;
  525. newarg.a = sb;
  526. newarg.b = a + (is + is * lda) * COMPSIZE;
  527. newarg.d = (void *)flag;
  528. newarg.m = m - bk - is;
  529. newarg.n = n - bk - is;
  530. newarg.k = bk;
  531. newarg.ldb = is + offset;
  532. while (nn > 0){
  533. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu);
  534. nn -= width;
  535. if (nn < 0) width = width + nn;
  536. range[num_cpu + 1] = range[num_cpu] + width;
  537. queue[num_cpu].mode = mode;
  538. //queue[num_cpu].routine = inner_advanced_thread;
  539. queue[num_cpu].routine = (void *)inner_basic_thread;
  540. queue[num_cpu].args = &newarg;
  541. queue[num_cpu].range_m = NULL;
  542. queue[num_cpu].range_n = &range[num_cpu];
  543. queue[num_cpu].sa = NULL;
  544. queue[num_cpu].sb = NULL;
  545. queue[num_cpu].next = &queue[num_cpu + 1];
  546. flag[num_cpu * CACHE_LINE_SIZE] = 1;
  547. num_cpu ++;
  548. }
  549. queue[num_cpu - 1].next = NULL;
  550. is += bk;
  551. bk = n - is;
  552. if (bk > next_bk) bk = next_bk;
  553. range_n_new[0] = offset + is;
  554. range_n_new[1] = offset + is + bk;
  555. if (num_cpu > 1) {
  556. exec_blas_async(1, &queue[1]);
  557. #if 0
  558. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, 0);
  559. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  560. #else
  561. if (range[1] >= bk * 4) {
  562. BLASLONG myrange[2];
  563. myrange[0] = 0;
  564. myrange[1] = bk;
  565. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  566. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  567. myrange[0] = bk;
  568. myrange[1] = range[1];
  569. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  570. } else {
  571. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  572. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  573. }
  574. #endif
  575. for (i = 1; i < num_cpu; i ++) while (flag[i * CACHE_LINE_SIZE]) {};
  576. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  577. } else {
  578. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  579. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  580. }
  581. if (iinfo && !info) info = iinfo + is;
  582. }
  583. next_bk = init_bk;
  584. bk = init_bk;
  585. is = 0;
  586. while (is < mn) {
  587. bk = mn - is;
  588. if (bk > next_bk) bk = next_bk;
  589. width = FORMULA1(m, n, is, bk, args -> nthreads);
  590. width = (width + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  591. if (width < bk) {
  592. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  593. next_bk = (next_bk + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  594. if (next_bk > bk) next_bk = bk;
  595. #if 0
  596. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  597. #else
  598. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  599. #endif
  600. }
  601. if (width > mn - is - bk) {
  602. next_bk = mn - is - bk;
  603. width = next_bk;
  604. }
  605. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  606. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  607. ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
  608. is += bk;
  609. }
  610. return info;
  611. }
  612. #endif