You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zdrvpt.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581
  1. *> \brief \b ZDRVPT
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, D,
  12. * E, B, X, XACT, WORK, RWORK, NOUT )
  13. *
  14. * .. Scalar Arguments ..
  15. * LOGICAL TSTERR
  16. * INTEGER NN, NOUT, NRHS
  17. * DOUBLE PRECISION THRESH
  18. * ..
  19. * .. Array Arguments ..
  20. * LOGICAL DOTYPE( * )
  21. * INTEGER NVAL( * )
  22. * DOUBLE PRECISION D( * ), RWORK( * )
  23. * COMPLEX*16 A( * ), B( * ), E( * ), WORK( * ), X( * ),
  24. * $ XACT( * )
  25. * ..
  26. *
  27. *
  28. *> \par Purpose:
  29. * =============
  30. *>
  31. *> \verbatim
  32. *>
  33. *> ZDRVPT tests ZPTSV and -SVX.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] DOTYPE
  40. *> \verbatim
  41. *> DOTYPE is LOGICAL array, dimension (NTYPES)
  42. *> The matrix types to be used for testing. Matrices of type j
  43. *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
  44. *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
  45. *> \endverbatim
  46. *>
  47. *> \param[in] NN
  48. *> \verbatim
  49. *> NN is INTEGER
  50. *> The number of values of N contained in the vector NVAL.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] NVAL
  54. *> \verbatim
  55. *> NVAL is INTEGER array, dimension (NN)
  56. *> The values of the matrix dimension N.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] NRHS
  60. *> \verbatim
  61. *> NRHS is INTEGER
  62. *> The number of right hand side vectors to be generated for
  63. *> each linear system.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] THRESH
  67. *> \verbatim
  68. *> THRESH is DOUBLE PRECISION
  69. *> The threshold value for the test ratios. A result is
  70. *> included in the output file if RESULT >= THRESH. To have
  71. *> every test ratio printed, use THRESH = 0.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] TSTERR
  75. *> \verbatim
  76. *> TSTERR is LOGICAL
  77. *> Flag that indicates whether error exits are to be tested.
  78. *> \endverbatim
  79. *>
  80. *> \param[out] A
  81. *> \verbatim
  82. *> A is COMPLEX*16 array, dimension (NMAX*2)
  83. *> \endverbatim
  84. *>
  85. *> \param[out] D
  86. *> \verbatim
  87. *> D is DOUBLE PRECISION array, dimension (NMAX*2)
  88. *> \endverbatim
  89. *>
  90. *> \param[out] E
  91. *> \verbatim
  92. *> E is COMPLEX*16 array, dimension (NMAX*2)
  93. *> \endverbatim
  94. *>
  95. *> \param[out] B
  96. *> \verbatim
  97. *> B is COMPLEX*16 array, dimension (NMAX*NRHS)
  98. *> \endverbatim
  99. *>
  100. *> \param[out] X
  101. *> \verbatim
  102. *> X is COMPLEX*16 array, dimension (NMAX*NRHS)
  103. *> \endverbatim
  104. *>
  105. *> \param[out] XACT
  106. *> \verbatim
  107. *> XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
  108. *> \endverbatim
  109. *>
  110. *> \param[out] WORK
  111. *> \verbatim
  112. *> WORK is COMPLEX*16 array, dimension
  113. *> (NMAX*max(3,NRHS))
  114. *> \endverbatim
  115. *>
  116. *> \param[out] RWORK
  117. *> \verbatim
  118. *> RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
  119. *> \endverbatim
  120. *>
  121. *> \param[in] NOUT
  122. *> \verbatim
  123. *> NOUT is INTEGER
  124. *> The unit number for output.
  125. *> \endverbatim
  126. *
  127. * Authors:
  128. * ========
  129. *
  130. *> \author Univ. of Tennessee
  131. *> \author Univ. of California Berkeley
  132. *> \author Univ. of Colorado Denver
  133. *> \author NAG Ltd.
  134. *
  135. *> \date November 2011
  136. *
  137. *> \ingroup complex16_lin
  138. *
  139. * =====================================================================
  140. SUBROUTINE ZDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, D,
  141. $ E, B, X, XACT, WORK, RWORK, NOUT )
  142. *
  143. * -- LAPACK test routine (version 3.4.0) --
  144. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  145. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146. * November 2011
  147. *
  148. * .. Scalar Arguments ..
  149. LOGICAL TSTERR
  150. INTEGER NN, NOUT, NRHS
  151. DOUBLE PRECISION THRESH
  152. * ..
  153. * .. Array Arguments ..
  154. LOGICAL DOTYPE( * )
  155. INTEGER NVAL( * )
  156. DOUBLE PRECISION D( * ), RWORK( * )
  157. COMPLEX*16 A( * ), B( * ), E( * ), WORK( * ), X( * ),
  158. $ XACT( * )
  159. * ..
  160. *
  161. * =====================================================================
  162. *
  163. * .. Parameters ..
  164. DOUBLE PRECISION ONE, ZERO
  165. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  166. INTEGER NTYPES
  167. PARAMETER ( NTYPES = 12 )
  168. INTEGER NTESTS
  169. PARAMETER ( NTESTS = 6 )
  170. * ..
  171. * .. Local Scalars ..
  172. LOGICAL ZEROT
  173. CHARACTER DIST, FACT, TYPE
  174. CHARACTER*3 PATH
  175. INTEGER I, IA, IFACT, IMAT, IN, INFO, IX, IZERO, J, K,
  176. $ K1, KL, KU, LDA, MODE, N, NERRS, NFAIL, NIMAT,
  177. $ NRUN, NT
  178. DOUBLE PRECISION AINVNM, ANORM, COND, DMAX, RCOND, RCONDC
  179. * ..
  180. * .. Local Arrays ..
  181. INTEGER ISEED( 4 ), ISEEDY( 4 )
  182. DOUBLE PRECISION RESULT( NTESTS ), Z( 3 )
  183. * ..
  184. * .. External Functions ..
  185. INTEGER IDAMAX
  186. DOUBLE PRECISION DGET06, DZASUM, ZLANHT
  187. EXTERNAL IDAMAX, DGET06, DZASUM, ZLANHT
  188. * ..
  189. * .. External Subroutines ..
  190. EXTERNAL ALADHD, ALAERH, ALASVM, DCOPY, DLARNV, DSCAL,
  191. $ ZCOPY, ZDSCAL, ZERRVX, ZGET04, ZLACPY, ZLAPTM,
  192. $ ZLARNV, ZLASET, ZLATB4, ZLATMS, ZPTSV, ZPTSVX,
  193. $ ZPTT01, ZPTT02, ZPTT05, ZPTTRF, ZPTTRS
  194. * ..
  195. * .. Intrinsic Functions ..
  196. INTRINSIC ABS, DCMPLX, MAX
  197. * ..
  198. * .. Scalars in Common ..
  199. LOGICAL LERR, OK
  200. CHARACTER*32 SRNAMT
  201. INTEGER INFOT, NUNIT
  202. * ..
  203. * .. Common blocks ..
  204. COMMON / INFOC / INFOT, NUNIT, OK, LERR
  205. COMMON / SRNAMC / SRNAMT
  206. * ..
  207. * .. Data statements ..
  208. DATA ISEEDY / 0, 0, 0, 1 /
  209. * ..
  210. * .. Executable Statements ..
  211. *
  212. PATH( 1: 1 ) = 'Zomplex precision'
  213. PATH( 2: 3 ) = 'PT'
  214. NRUN = 0
  215. NFAIL = 0
  216. NERRS = 0
  217. DO 10 I = 1, 4
  218. ISEED( I ) = ISEEDY( I )
  219. 10 CONTINUE
  220. *
  221. * Test the error exits
  222. *
  223. IF( TSTERR )
  224. $ CALL ZERRVX( PATH, NOUT )
  225. INFOT = 0
  226. *
  227. DO 120 IN = 1, NN
  228. *
  229. * Do for each value of N in NVAL.
  230. *
  231. N = NVAL( IN )
  232. LDA = MAX( 1, N )
  233. NIMAT = NTYPES
  234. IF( N.LE.0 )
  235. $ NIMAT = 1
  236. *
  237. DO 110 IMAT = 1, NIMAT
  238. *
  239. * Do the tests only if DOTYPE( IMAT ) is true.
  240. *
  241. IF( N.GT.0 .AND. .NOT.DOTYPE( IMAT ) )
  242. $ GO TO 110
  243. *
  244. * Set up parameters with ZLATB4.
  245. *
  246. CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
  247. $ COND, DIST )
  248. *
  249. ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
  250. IF( IMAT.LE.6 ) THEN
  251. *
  252. * Type 1-6: generate a symmetric tridiagonal matrix of
  253. * known condition number in lower triangular band storage.
  254. *
  255. SRNAMT = 'ZLATMS'
  256. CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
  257. $ ANORM, KL, KU, 'B', A, 2, WORK, INFO )
  258. *
  259. * Check the error code from ZLATMS.
  260. *
  261. IF( INFO.NE.0 ) THEN
  262. CALL ALAERH( PATH, 'ZLATMS', INFO, 0, ' ', N, N, KL,
  263. $ KU, -1, IMAT, NFAIL, NERRS, NOUT )
  264. GO TO 110
  265. END IF
  266. IZERO = 0
  267. *
  268. * Copy the matrix to D and E.
  269. *
  270. IA = 1
  271. DO 20 I = 1, N - 1
  272. D( I ) = A( IA )
  273. E( I ) = A( IA+1 )
  274. IA = IA + 2
  275. 20 CONTINUE
  276. IF( N.GT.0 )
  277. $ D( N ) = A( IA )
  278. ELSE
  279. *
  280. * Type 7-12: generate a diagonally dominant matrix with
  281. * unknown condition number in the vectors D and E.
  282. *
  283. IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
  284. *
  285. * Let D and E have values from [-1,1].
  286. *
  287. CALL DLARNV( 2, ISEED, N, D )
  288. CALL ZLARNV( 2, ISEED, N-1, E )
  289. *
  290. * Make the tridiagonal matrix diagonally dominant.
  291. *
  292. IF( N.EQ.1 ) THEN
  293. D( 1 ) = ABS( D( 1 ) )
  294. ELSE
  295. D( 1 ) = ABS( D( 1 ) ) + ABS( E( 1 ) )
  296. D( N ) = ABS( D( N ) ) + ABS( E( N-1 ) )
  297. DO 30 I = 2, N - 1
  298. D( I ) = ABS( D( I ) ) + ABS( E( I ) ) +
  299. $ ABS( E( I-1 ) )
  300. 30 CONTINUE
  301. END IF
  302. *
  303. * Scale D and E so the maximum element is ANORM.
  304. *
  305. IX = IDAMAX( N, D, 1 )
  306. DMAX = D( IX )
  307. CALL DSCAL( N, ANORM / DMAX, D, 1 )
  308. IF( N.GT.1 )
  309. $ CALL ZDSCAL( N-1, ANORM / DMAX, E, 1 )
  310. *
  311. ELSE IF( IZERO.GT.0 ) THEN
  312. *
  313. * Reuse the last matrix by copying back the zeroed out
  314. * elements.
  315. *
  316. IF( IZERO.EQ.1 ) THEN
  317. D( 1 ) = Z( 2 )
  318. IF( N.GT.1 )
  319. $ E( 1 ) = Z( 3 )
  320. ELSE IF( IZERO.EQ.N ) THEN
  321. E( N-1 ) = Z( 1 )
  322. D( N ) = Z( 2 )
  323. ELSE
  324. E( IZERO-1 ) = Z( 1 )
  325. D( IZERO ) = Z( 2 )
  326. E( IZERO ) = Z( 3 )
  327. END IF
  328. END IF
  329. *
  330. * For types 8-10, set one row and column of the matrix to
  331. * zero.
  332. *
  333. IZERO = 0
  334. IF( IMAT.EQ.8 ) THEN
  335. IZERO = 1
  336. Z( 2 ) = D( 1 )
  337. D( 1 ) = ZERO
  338. IF( N.GT.1 ) THEN
  339. Z( 3 ) = E( 1 )
  340. E( 1 ) = ZERO
  341. END IF
  342. ELSE IF( IMAT.EQ.9 ) THEN
  343. IZERO = N
  344. IF( N.GT.1 ) THEN
  345. Z( 1 ) = E( N-1 )
  346. E( N-1 ) = ZERO
  347. END IF
  348. Z( 2 ) = D( N )
  349. D( N ) = ZERO
  350. ELSE IF( IMAT.EQ.10 ) THEN
  351. IZERO = ( N+1 ) / 2
  352. IF( IZERO.GT.1 ) THEN
  353. Z( 1 ) = E( IZERO-1 )
  354. E( IZERO-1 ) = ZERO
  355. Z( 3 ) = E( IZERO )
  356. E( IZERO ) = ZERO
  357. END IF
  358. Z( 2 ) = D( IZERO )
  359. D( IZERO ) = ZERO
  360. END IF
  361. END IF
  362. *
  363. * Generate NRHS random solution vectors.
  364. *
  365. IX = 1
  366. DO 40 J = 1, NRHS
  367. CALL ZLARNV( 2, ISEED, N, XACT( IX ) )
  368. IX = IX + LDA
  369. 40 CONTINUE
  370. *
  371. * Set the right hand side.
  372. *
  373. CALL ZLAPTM( 'Lower', N, NRHS, ONE, D, E, XACT, LDA, ZERO,
  374. $ B, LDA )
  375. *
  376. DO 100 IFACT = 1, 2
  377. IF( IFACT.EQ.1 ) THEN
  378. FACT = 'F'
  379. ELSE
  380. FACT = 'N'
  381. END IF
  382. *
  383. * Compute the condition number for comparison with
  384. * the value returned by ZPTSVX.
  385. *
  386. IF( ZEROT ) THEN
  387. IF( IFACT.EQ.1 )
  388. $ GO TO 100
  389. RCONDC = ZERO
  390. *
  391. ELSE IF( IFACT.EQ.1 ) THEN
  392. *
  393. * Compute the 1-norm of A.
  394. *
  395. ANORM = ZLANHT( '1', N, D, E )
  396. *
  397. CALL DCOPY( N, D, 1, D( N+1 ), 1 )
  398. IF( N.GT.1 )
  399. $ CALL ZCOPY( N-1, E, 1, E( N+1 ), 1 )
  400. *
  401. * Factor the matrix A.
  402. *
  403. CALL ZPTTRF( N, D( N+1 ), E( N+1 ), INFO )
  404. *
  405. * Use ZPTTRS to solve for one column at a time of
  406. * inv(A), computing the maximum column sum as we go.
  407. *
  408. AINVNM = ZERO
  409. DO 60 I = 1, N
  410. DO 50 J = 1, N
  411. X( J ) = ZERO
  412. 50 CONTINUE
  413. X( I ) = ONE
  414. CALL ZPTTRS( 'Lower', N, 1, D( N+1 ), E( N+1 ), X,
  415. $ LDA, INFO )
  416. AINVNM = MAX( AINVNM, DZASUM( N, X, 1 ) )
  417. 60 CONTINUE
  418. *
  419. * Compute the 1-norm condition number of A.
  420. *
  421. IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
  422. RCONDC = ONE
  423. ELSE
  424. RCONDC = ( ONE / ANORM ) / AINVNM
  425. END IF
  426. END IF
  427. *
  428. IF( IFACT.EQ.2 ) THEN
  429. *
  430. * --- Test ZPTSV --
  431. *
  432. CALL DCOPY( N, D, 1, D( N+1 ), 1 )
  433. IF( N.GT.1 )
  434. $ CALL ZCOPY( N-1, E, 1, E( N+1 ), 1 )
  435. CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
  436. *
  437. * Factor A as L*D*L' and solve the system A*X = B.
  438. *
  439. SRNAMT = 'ZPTSV '
  440. CALL ZPTSV( N, NRHS, D( N+1 ), E( N+1 ), X, LDA,
  441. $ INFO )
  442. *
  443. * Check error code from ZPTSV .
  444. *
  445. IF( INFO.NE.IZERO )
  446. $ CALL ALAERH( PATH, 'ZPTSV ', INFO, IZERO, ' ', N,
  447. $ N, 1, 1, NRHS, IMAT, NFAIL, NERRS,
  448. $ NOUT )
  449. NT = 0
  450. IF( IZERO.EQ.0 ) THEN
  451. *
  452. * Check the factorization by computing the ratio
  453. * norm(L*D*L' - A) / (n * norm(A) * EPS )
  454. *
  455. CALL ZPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
  456. $ RESULT( 1 ) )
  457. *
  458. * Compute the residual in the solution.
  459. *
  460. CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
  461. CALL ZPTT02( 'Lower', N, NRHS, D, E, X, LDA, WORK,
  462. $ LDA, RESULT( 2 ) )
  463. *
  464. * Check solution from generated exact solution.
  465. *
  466. CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
  467. $ RESULT( 3 ) )
  468. NT = 3
  469. END IF
  470. *
  471. * Print information about the tests that did not pass
  472. * the threshold.
  473. *
  474. DO 70 K = 1, NT
  475. IF( RESULT( K ).GE.THRESH ) THEN
  476. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  477. $ CALL ALADHD( NOUT, PATH )
  478. WRITE( NOUT, FMT = 9999 )'ZPTSV ', N, IMAT, K,
  479. $ RESULT( K )
  480. NFAIL = NFAIL + 1
  481. END IF
  482. 70 CONTINUE
  483. NRUN = NRUN + NT
  484. END IF
  485. *
  486. * --- Test ZPTSVX ---
  487. *
  488. IF( IFACT.GT.1 ) THEN
  489. *
  490. * Initialize D( N+1:2*N ) and E( N+1:2*N ) to zero.
  491. *
  492. DO 80 I = 1, N - 1
  493. D( N+I ) = ZERO
  494. E( N+I ) = ZERO
  495. 80 CONTINUE
  496. IF( N.GT.0 )
  497. $ D( N+N ) = ZERO
  498. END IF
  499. *
  500. CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ),
  501. $ DCMPLX( ZERO ), X, LDA )
  502. *
  503. * Solve the system and compute the condition number and
  504. * error bounds using ZPTSVX.
  505. *
  506. SRNAMT = 'ZPTSVX'
  507. CALL ZPTSVX( FACT, N, NRHS, D, E, D( N+1 ), E( N+1 ), B,
  508. $ LDA, X, LDA, RCOND, RWORK, RWORK( NRHS+1 ),
  509. $ WORK, RWORK( 2*NRHS+1 ), INFO )
  510. *
  511. * Check the error code from ZPTSVX.
  512. *
  513. IF( INFO.NE.IZERO )
  514. $ CALL ALAERH( PATH, 'ZPTSVX', INFO, IZERO, FACT, N, N,
  515. $ 1, 1, NRHS, IMAT, NFAIL, NERRS, NOUT )
  516. IF( IZERO.EQ.0 ) THEN
  517. IF( IFACT.EQ.2 ) THEN
  518. *
  519. * Check the factorization by computing the ratio
  520. * norm(L*D*L' - A) / (n * norm(A) * EPS )
  521. *
  522. K1 = 1
  523. CALL ZPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
  524. $ RESULT( 1 ) )
  525. ELSE
  526. K1 = 2
  527. END IF
  528. *
  529. * Compute the residual in the solution.
  530. *
  531. CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
  532. CALL ZPTT02( 'Lower', N, NRHS, D, E, X, LDA, WORK,
  533. $ LDA, RESULT( 2 ) )
  534. *
  535. * Check solution from generated exact solution.
  536. *
  537. CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
  538. $ RESULT( 3 ) )
  539. *
  540. * Check error bounds from iterative refinement.
  541. *
  542. CALL ZPTT05( N, NRHS, D, E, B, LDA, X, LDA, XACT, LDA,
  543. $ RWORK, RWORK( NRHS+1 ), RESULT( 4 ) )
  544. ELSE
  545. K1 = 6
  546. END IF
  547. *
  548. * Check the reciprocal of the condition number.
  549. *
  550. RESULT( 6 ) = DGET06( RCOND, RCONDC )
  551. *
  552. * Print information about the tests that did not pass
  553. * the threshold.
  554. *
  555. DO 90 K = K1, 6
  556. IF( RESULT( K ).GE.THRESH ) THEN
  557. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  558. $ CALL ALADHD( NOUT, PATH )
  559. WRITE( NOUT, FMT = 9998 )'ZPTSVX', FACT, N, IMAT,
  560. $ K, RESULT( K )
  561. NFAIL = NFAIL + 1
  562. END IF
  563. 90 CONTINUE
  564. NRUN = NRUN + 7 - K1
  565. 100 CONTINUE
  566. 110 CONTINUE
  567. 120 CONTINUE
  568. *
  569. * Print a summary of the results.
  570. *
  571. CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
  572. *
  573. 9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test ', I2,
  574. $ ', ratio = ', G12.5 )
  575. 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', N =', I5, ', type ', I2,
  576. $ ', test ', I2, ', ratio = ', G12.5 )
  577. RETURN
  578. *
  579. * End of ZDRVPT
  580. *
  581. END