You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

stpt05.f 9.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324
  1. *> \brief \b STPT05
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE STPT05( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX,
  12. * XACT, LDXACT, FERR, BERR, RESLTS )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER DIAG, TRANS, UPLO
  16. * INTEGER LDB, LDX, LDXACT, N, NRHS
  17. * ..
  18. * .. Array Arguments ..
  19. * REAL AP( * ), B( LDB, * ), BERR( * ), FERR( * ),
  20. * $ RESLTS( * ), X( LDX, * ), XACT( LDXACT, * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> STPT05 tests the error bounds from iterative refinement for the
  30. *> computed solution to a system of equations A*X = B, where A is a
  31. *> triangular matrix in packed storage format.
  32. *>
  33. *> RESLTS(1) = test of the error bound
  34. *> = norm(X - XACT) / ( norm(X) * FERR )
  35. *>
  36. *> A large value is returned if this ratio is not less than one.
  37. *>
  38. *> RESLTS(2) = residual from the iterative refinement routine
  39. *> = the maximum of BERR / ( (n+1)*EPS + (*) ), where
  40. *> (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> Specifies whether the matrix A is upper or lower triangular.
  50. *> = 'U': Upper triangular
  51. *> = 'L': Lower triangular
  52. *> \endverbatim
  53. *>
  54. *> \param[in] TRANS
  55. *> \verbatim
  56. *> TRANS is CHARACTER*1
  57. *> Specifies the form of the system of equations.
  58. *> = 'N': A * X = B (No transpose)
  59. *> = 'T': A'* X = B (Transpose)
  60. *> = 'C': A'* X = B (Conjugate transpose = Transpose)
  61. *> \endverbatim
  62. *>
  63. *> \param[in] DIAG
  64. *> \verbatim
  65. *> DIAG is CHARACTER*1
  66. *> Specifies whether or not the matrix A is unit triangular.
  67. *> = 'N': Non-unit triangular
  68. *> = 'U': Unit triangular
  69. *> \endverbatim
  70. *>
  71. *> \param[in] N
  72. *> \verbatim
  73. *> N is INTEGER
  74. *> The number of rows of the matrices X, B, and XACT, and the
  75. *> order of the matrix A. N >= 0.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] NRHS
  79. *> \verbatim
  80. *> NRHS is INTEGER
  81. *> The number of columns of the matrices X, B, and XACT.
  82. *> NRHS >= 0.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] AP
  86. *> \verbatim
  87. *> AP is REAL array, dimension (N*(N+1)/2)
  88. *> The upper or lower triangular matrix A, packed columnwise in
  89. *> a linear array. The j-th column of A is stored in the array
  90. *> AP as follows:
  91. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  92. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  93. *> If DIAG = 'U', the diagonal elements of A are not referenced
  94. *> and are assumed to be 1.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] B
  98. *> \verbatim
  99. *> B is REAL array, dimension (LDB,NRHS)
  100. *> The right hand side vectors for the system of linear
  101. *> equations.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] LDB
  105. *> \verbatim
  106. *> LDB is INTEGER
  107. *> The leading dimension of the array B. LDB >= max(1,N).
  108. *> \endverbatim
  109. *>
  110. *> \param[in] X
  111. *> \verbatim
  112. *> X is REAL array, dimension (LDX,NRHS)
  113. *> The computed solution vectors. Each vector is stored as a
  114. *> column of the matrix X.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] LDX
  118. *> \verbatim
  119. *> LDX is INTEGER
  120. *> The leading dimension of the array X. LDX >= max(1,N).
  121. *> \endverbatim
  122. *>
  123. *> \param[in] XACT
  124. *> \verbatim
  125. *> XACT is REAL array, dimension (LDX,NRHS)
  126. *> The exact solution vectors. Each vector is stored as a
  127. *> column of the matrix XACT.
  128. *> \endverbatim
  129. *>
  130. *> \param[in] LDXACT
  131. *> \verbatim
  132. *> LDXACT is INTEGER
  133. *> The leading dimension of the array XACT. LDXACT >= max(1,N).
  134. *> \endverbatim
  135. *>
  136. *> \param[in] FERR
  137. *> \verbatim
  138. *> FERR is REAL array, dimension (NRHS)
  139. *> The estimated forward error bounds for each solution vector
  140. *> X. If XTRUE is the true solution, FERR bounds the magnitude
  141. *> of the largest entry in (X - XTRUE) divided by the magnitude
  142. *> of the largest entry in X.
  143. *> \endverbatim
  144. *>
  145. *> \param[in] BERR
  146. *> \verbatim
  147. *> BERR is REAL array, dimension (NRHS)
  148. *> The componentwise relative backward error of each solution
  149. *> vector (i.e., the smallest relative change in any entry of A
  150. *> or B that makes X an exact solution).
  151. *> \endverbatim
  152. *>
  153. *> \param[out] RESLTS
  154. *> \verbatim
  155. *> RESLTS is REAL array, dimension (2)
  156. *> The maximum over the NRHS solution vectors of the ratios:
  157. *> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
  158. *> RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
  159. *> \endverbatim
  160. *
  161. * Authors:
  162. * ========
  163. *
  164. *> \author Univ. of Tennessee
  165. *> \author Univ. of California Berkeley
  166. *> \author Univ. of Colorado Denver
  167. *> \author NAG Ltd.
  168. *
  169. *> \date November 2011
  170. *
  171. *> \ingroup single_lin
  172. *
  173. * =====================================================================
  174. SUBROUTINE STPT05( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX,
  175. $ XACT, LDXACT, FERR, BERR, RESLTS )
  176. *
  177. * -- LAPACK test routine (version 3.4.0) --
  178. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  179. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  180. * November 2011
  181. *
  182. * .. Scalar Arguments ..
  183. CHARACTER DIAG, TRANS, UPLO
  184. INTEGER LDB, LDX, LDXACT, N, NRHS
  185. * ..
  186. * .. Array Arguments ..
  187. REAL AP( * ), B( LDB, * ), BERR( * ), FERR( * ),
  188. $ RESLTS( * ), X( LDX, * ), XACT( LDXACT, * )
  189. * ..
  190. *
  191. * =====================================================================
  192. *
  193. * .. Parameters ..
  194. REAL ZERO, ONE
  195. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  196. * ..
  197. * .. Local Scalars ..
  198. LOGICAL NOTRAN, UNIT, UPPER
  199. INTEGER I, IFU, IMAX, J, JC, K
  200. REAL AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
  201. * ..
  202. * .. External Functions ..
  203. LOGICAL LSAME
  204. INTEGER ISAMAX
  205. REAL SLAMCH
  206. EXTERNAL LSAME, ISAMAX, SLAMCH
  207. * ..
  208. * .. Intrinsic Functions ..
  209. INTRINSIC ABS, MAX, MIN
  210. * ..
  211. * .. Executable Statements ..
  212. *
  213. * Quick exit if N = 0 or NRHS = 0.
  214. *
  215. IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
  216. RESLTS( 1 ) = ZERO
  217. RESLTS( 2 ) = ZERO
  218. RETURN
  219. END IF
  220. *
  221. EPS = SLAMCH( 'Epsilon' )
  222. UNFL = SLAMCH( 'Safe minimum' )
  223. OVFL = ONE / UNFL
  224. UPPER = LSAME( UPLO, 'U' )
  225. NOTRAN = LSAME( TRANS, 'N' )
  226. UNIT = LSAME( DIAG, 'U' )
  227. *
  228. * Test 1: Compute the maximum of
  229. * norm(X - XACT) / ( norm(X) * FERR )
  230. * over all the vectors X and XACT using the infinity-norm.
  231. *
  232. ERRBND = ZERO
  233. DO 30 J = 1, NRHS
  234. IMAX = ISAMAX( N, X( 1, J ), 1 )
  235. XNORM = MAX( ABS( X( IMAX, J ) ), UNFL )
  236. DIFF = ZERO
  237. DO 10 I = 1, N
  238. DIFF = MAX( DIFF, ABS( X( I, J )-XACT( I, J ) ) )
  239. 10 CONTINUE
  240. *
  241. IF( XNORM.GT.ONE ) THEN
  242. GO TO 20
  243. ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
  244. GO TO 20
  245. ELSE
  246. ERRBND = ONE / EPS
  247. GO TO 30
  248. END IF
  249. *
  250. 20 CONTINUE
  251. IF( DIFF / XNORM.LE.FERR( J ) ) THEN
  252. ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
  253. ELSE
  254. ERRBND = ONE / EPS
  255. END IF
  256. 30 CONTINUE
  257. RESLTS( 1 ) = ERRBND
  258. *
  259. * Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
  260. * (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
  261. *
  262. IFU = 0
  263. IF( UNIT )
  264. $ IFU = 1
  265. DO 90 K = 1, NRHS
  266. DO 80 I = 1, N
  267. TMP = ABS( B( I, K ) )
  268. IF( UPPER ) THEN
  269. JC = ( ( I-1 )*I ) / 2
  270. IF( .NOT.NOTRAN ) THEN
  271. DO 40 J = 1, I - IFU
  272. TMP = TMP + ABS( AP( JC+J ) )*ABS( X( J, K ) )
  273. 40 CONTINUE
  274. IF( UNIT )
  275. $ TMP = TMP + ABS( X( I, K ) )
  276. ELSE
  277. JC = JC + I
  278. IF( UNIT ) THEN
  279. TMP = TMP + ABS( X( I, K ) )
  280. JC = JC + I
  281. END IF
  282. DO 50 J = I + IFU, N
  283. TMP = TMP + ABS( AP( JC ) )*ABS( X( J, K ) )
  284. JC = JC + J
  285. 50 CONTINUE
  286. END IF
  287. ELSE
  288. IF( NOTRAN ) THEN
  289. JC = I
  290. DO 60 J = 1, I - IFU
  291. TMP = TMP + ABS( AP( JC ) )*ABS( X( J, K ) )
  292. JC = JC + N - J
  293. 60 CONTINUE
  294. IF( UNIT )
  295. $ TMP = TMP + ABS( X( I, K ) )
  296. ELSE
  297. JC = ( I-1 )*( N-I ) + ( I*( I+1 ) ) / 2
  298. IF( UNIT )
  299. $ TMP = TMP + ABS( X( I, K ) )
  300. DO 70 J = I + IFU, N
  301. TMP = TMP + ABS( AP( JC+J-I ) )*ABS( X( J, K ) )
  302. 70 CONTINUE
  303. END IF
  304. END IF
  305. IF( I.EQ.1 ) THEN
  306. AXBI = TMP
  307. ELSE
  308. AXBI = MIN( AXBI, TMP )
  309. END IF
  310. 80 CONTINUE
  311. TMP = BERR( K ) / ( ( N+1 )*EPS+( N+1 )*UNFL /
  312. $ MAX( AXBI, ( N+1 )*UNFL ) )
  313. IF( K.EQ.1 ) THEN
  314. RESLTS( 2 ) = TMP
  315. ELSE
  316. RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
  317. END IF
  318. 90 CONTINUE
  319. *
  320. RETURN
  321. *
  322. * End of STPT05
  323. *
  324. END