|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251 |
- *> \brief \b SQLT01
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SQLT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK,
- * RWORK, RESULT )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), AF( LDA, * ), L( LDA, * ),
- * $ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
- * $ WORK( LWORK )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SQLT01 tests SGEQLF, which computes the QL factorization of an m-by-n
- *> matrix A, and partially tests SORGQL which forms the m-by-m
- *> orthogonal matrix Q.
- *>
- *> SQLT01 compares L with Q'*A, and checks that Q is orthogonal.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> The m-by-n matrix A.
- *> \endverbatim
- *>
- *> \param[out] AF
- *> \verbatim
- *> AF is REAL array, dimension (LDA,N)
- *> Details of the QL factorization of A, as returned by SGEQLF.
- *> See SGEQLF for further details.
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is REAL array, dimension (LDA,M)
- *> The m-by-m orthogonal matrix Q.
- *> \endverbatim
- *>
- *> \param[out] L
- *> \verbatim
- *> L is REAL array, dimension (LDA,max(M,N))
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the arrays A, AF, Q and R.
- *> LDA >= max(M,N).
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is REAL array, dimension (min(M,N))
- *> The scalar factors of the elementary reflectors, as returned
- *> by SGEQLF.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (M)
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is REAL array, dimension (2)
- *> The test ratios:
- *> RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS )
- *> RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup single_lin
- *
- * =====================================================================
- SUBROUTINE SQLT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK,
- $ RWORK, RESULT )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- INTEGER LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), AF( LDA, * ), L( LDA, * ),
- $ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
- $ WORK( LWORK )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- REAL ROGUE
- PARAMETER ( ROGUE = -1.0E+10 )
- * ..
- * .. Local Scalars ..
- INTEGER INFO, MINMN
- REAL ANORM, EPS, RESID
- * ..
- * .. External Functions ..
- REAL SLAMCH, SLANGE, SLANSY
- EXTERNAL SLAMCH, SLANGE, SLANSY
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMM, SGEQLF, SLACPY, SLASET, SORGQL, SSYRK
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, REAL
- * ..
- * .. Scalars in Common ..
- CHARACTER*32 SRNAMT
- * ..
- * .. Common blocks ..
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Executable Statements ..
- *
- MINMN = MIN( M, N )
- EPS = SLAMCH( 'Epsilon' )
- *
- * Copy the matrix A to the array AF.
- *
- CALL SLACPY( 'Full', M, N, A, LDA, AF, LDA )
- *
- * Factorize the matrix A in the array AF.
- *
- SRNAMT = 'SGEQLF'
- CALL SGEQLF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
- *
- * Copy details of Q
- *
- CALL SLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA )
- IF( M.GE.N ) THEN
- IF( N.LT.M .AND. N.GT.0 )
- $ CALL SLACPY( 'Full', M-N, N, AF, LDA, Q( 1, M-N+1 ), LDA )
- IF( N.GT.1 )
- $ CALL SLACPY( 'Upper', N-1, N-1, AF( M-N+1, 2 ), LDA,
- $ Q( M-N+1, M-N+2 ), LDA )
- ELSE
- IF( M.GT.1 )
- $ CALL SLACPY( 'Upper', M-1, M-1, AF( 1, N-M+2 ), LDA,
- $ Q( 1, 2 ), LDA )
- END IF
- *
- * Generate the m-by-m matrix Q
- *
- SRNAMT = 'SORGQL'
- CALL SORGQL( M, M, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
- *
- * Copy L
- *
- CALL SLASET( 'Full', M, N, ZERO, ZERO, L, LDA )
- IF( M.GE.N ) THEN
- IF( N.GT.0 )
- $ CALL SLACPY( 'Lower', N, N, AF( M-N+1, 1 ), LDA,
- $ L( M-N+1, 1 ), LDA )
- ELSE
- IF( N.GT.M .AND. M.GT.0 )
- $ CALL SLACPY( 'Full', M, N-M, AF, LDA, L, LDA )
- IF( M.GT.0 )
- $ CALL SLACPY( 'Lower', M, M, AF( 1, N-M+1 ), LDA,
- $ L( 1, N-M+1 ), LDA )
- END IF
- *
- * Compute L - Q'*A
- *
- CALL SGEMM( 'Transpose', 'No transpose', M, N, M, -ONE, Q, LDA, A,
- $ LDA, ONE, L, LDA )
- *
- * Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) .
- *
- ANORM = SLANGE( '1', M, N, A, LDA, RWORK )
- RESID = SLANGE( '1', M, N, L, LDA, RWORK )
- IF( ANORM.GT.ZERO ) THEN
- RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, M ) ) ) / ANORM ) / EPS
- ELSE
- RESULT( 1 ) = ZERO
- END IF
- *
- * Compute I - Q'*Q
- *
- CALL SLASET( 'Full', M, M, ZERO, ONE, L, LDA )
- CALL SSYRK( 'Upper', 'Transpose', M, M, -ONE, Q, LDA, ONE, L,
- $ LDA )
- *
- * Compute norm( I - Q'*Q ) / ( M * EPS ) .
- *
- RESID = SLANSY( '1', 'Upper', M, L, LDA, RWORK )
- *
- RESULT( 2 ) = ( RESID / REAL( MAX( 1, M ) ) ) / EPS
- *
- RETURN
- *
- * End of SQLT01
- *
- END
|