|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582 |
- *> \brief \b DCHKTB
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DCHKTB( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
- * NMAX, AB, AINV, B, X, XACT, WORK, RWORK, IWORK,
- * NOUT )
- *
- * .. Scalar Arguments ..
- * LOGICAL TSTERR
- * INTEGER NMAX, NN, NNS, NOUT
- * DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER IWORK( * ), NSVAL( * ), NVAL( * )
- * DOUBLE PRECISION AB( * ), AINV( * ), B( * ), RWORK( * ),
- * $ WORK( * ), X( * ), XACT( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DCHKTB tests DTBTRS, -RFS, and -CON, and DLATBS.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> The matrix types to be used for testing. Matrices of type j
- *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
- *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER
- *> The number of values of N contained in the vector NVAL.
- *> \endverbatim
- *>
- *> \param[in] NVAL
- *> \verbatim
- *> NVAL is INTEGER array, dimension (NN)
- *> The values of the matrix column dimension N.
- *> \endverbatim
- *>
- *> \param[in] NNS
- *> \verbatim
- *> NNS is INTEGER
- *> The number of values of NRHS contained in the vector NSVAL.
- *> \endverbatim
- *>
- *> \param[in] NSVAL
- *> \verbatim
- *> NSVAL is INTEGER array, dimension (NNS)
- *> The values of the number of right hand sides NRHS.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is DOUBLE PRECISION
- *> The threshold value for the test ratios. A result is
- *> included in the output file if RESULT >= THRESH. To have
- *> every test ratio printed, use THRESH = 0.
- *> \endverbatim
- *>
- *> \param[in] TSTERR
- *> \verbatim
- *> TSTERR is LOGICAL
- *> Flag that indicates whether error exits are to be tested.
- *> \endverbatim
- *>
- *> \param[in] NMAX
- *> \verbatim
- *> NMAX is INTEGER
- *> The leading dimension of the work arrays.
- *> NMAX >= the maximum value of N in NVAL.
- *> \endverbatim
- *>
- *> \param[out] AB
- *> \verbatim
- *> AB is DOUBLE PRECISION array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] AINV
- *> \verbatim
- *> AINV is DOUBLE PRECISION array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
- *> where NSMAX is the largest entry in NSVAL.
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
- *> \endverbatim
- *>
- *> \param[out] XACT
- *> \verbatim
- *> XACT is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension
- *> (NMAX*max(3,NSMAX))
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension
- *> (max(NMAX,2*NSMAX))
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (NMAX)
- *> \endverbatim
- *>
- *> \param[in] NOUT
- *> \verbatim
- *> NOUT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup double_lin
- *
- * =====================================================================
- SUBROUTINE DCHKTB( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
- $ NMAX, AB, AINV, B, X, XACT, WORK, RWORK, IWORK,
- $ NOUT )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- LOGICAL TSTERR
- INTEGER NMAX, NN, NNS, NOUT
- DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER IWORK( * ), NSVAL( * ), NVAL( * )
- DOUBLE PRECISION AB( * ), AINV( * ), B( * ), RWORK( * ),
- $ WORK( * ), X( * ), XACT( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- INTEGER NTYPE1, NTYPES
- PARAMETER ( NTYPE1 = 9, NTYPES = 17 )
- INTEGER NTESTS
- PARAMETER ( NTESTS = 8 )
- INTEGER NTRAN
- PARAMETER ( NTRAN = 3 )
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- CHARACTER DIAG, NORM, TRANS, UPLO, XTYPE
- CHARACTER*3 PATH
- INTEGER I, IDIAG, IK, IMAT, IN, INFO, IRHS, ITRAN,
- $ IUPLO, J, K, KD, LDA, LDAB, N, NERRS, NFAIL,
- $ NIMAT, NIMAT2, NK, NRHS, NRUN
- DOUBLE PRECISION AINVNM, ANORM, RCOND, RCONDC, RCONDI, RCONDO,
- $ SCALE
- * ..
- * .. Local Arrays ..
- CHARACTER TRANSS( NTRAN ), UPLOS( 2 )
- INTEGER ISEED( 4 ), ISEEDY( 4 )
- DOUBLE PRECISION RESULT( NTESTS )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLANTB, DLANTR
- EXTERNAL LSAME, DLANTB, DLANTR
- * ..
- * .. External Subroutines ..
- EXTERNAL ALAERH, ALAHD, ALASUM, DCOPY, DERRTR, DGET04,
- $ DLACPY, DLARHS, DLASET, DLATBS, DLATTB, DTBCON,
- $ DTBRFS, DTBSV, DTBT02, DTBT03, DTBT05, DTBT06,
- $ DTBTRS
- * ..
- * .. Scalars in Common ..
- LOGICAL LERR, OK
- CHARACTER*32 SRNAMT
- INTEGER INFOT, IOUNIT
- * ..
- * .. Common blocks ..
- COMMON / INFOC / INFOT, IOUNIT, OK, LERR
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Data statements ..
- DATA ISEEDY / 1988, 1989, 1990, 1991 /
- DATA UPLOS / 'U', 'L' / , TRANSS / 'N', 'T', 'C' /
- * ..
- * .. Executable Statements ..
- *
- * Initialize constants and the random number seed.
- *
- PATH( 1: 1 ) = 'Double precision'
- PATH( 2: 3 ) = 'TB'
- NRUN = 0
- NFAIL = 0
- NERRS = 0
- DO 10 I = 1, 4
- ISEED( I ) = ISEEDY( I )
- 10 CONTINUE
- *
- * Test the error exits
- *
- IF( TSTERR )
- $ CALL DERRTR( PATH, NOUT )
- INFOT = 0
- *
- DO 140 IN = 1, NN
- *
- * Do for each value of N in NVAL
- *
- N = NVAL( IN )
- LDA = MAX( 1, N )
- XTYPE = 'N'
- NIMAT = NTYPE1
- NIMAT2 = NTYPES
- IF( N.LE.0 ) THEN
- NIMAT = 1
- NIMAT2 = NTYPE1 + 1
- END IF
- *
- NK = MIN( N+1, 4 )
- DO 130 IK = 1, NK
- *
- * Do for KD = 0, N, (3N-1)/4, and (N+1)/4. This order makes
- * it easier to skip redundant values for small values of N.
- *
- IF( IK.EQ.1 ) THEN
- KD = 0
- ELSE IF( IK.EQ.2 ) THEN
- KD = MAX( N, 0 )
- ELSE IF( IK.EQ.3 ) THEN
- KD = ( 3*N-1 ) / 4
- ELSE IF( IK.EQ.4 ) THEN
- KD = ( N+1 ) / 4
- END IF
- LDAB = KD + 1
- *
- DO 90 IMAT = 1, NIMAT
- *
- * Do the tests only if DOTYPE( IMAT ) is true.
- *
- IF( .NOT.DOTYPE( IMAT ) )
- $ GO TO 90
- *
- DO 80 IUPLO = 1, 2
- *
- * Do first for UPLO = 'U', then for UPLO = 'L'
- *
- UPLO = UPLOS( IUPLO )
- *
- * Call DLATTB to generate a triangular test matrix.
- *
- SRNAMT = 'DLATTB'
- CALL DLATTB( IMAT, UPLO, 'No transpose', DIAG, ISEED,
- $ N, KD, AB, LDAB, X, WORK, INFO )
- *
- * Set IDIAG = 1 for non-unit matrices, 2 for unit.
- *
- IF( LSAME( DIAG, 'N' ) ) THEN
- IDIAG = 1
- ELSE
- IDIAG = 2
- END IF
- *
- * Form the inverse of A so we can get a good estimate
- * of RCONDC = 1/(norm(A) * norm(inv(A))).
- *
- CALL DLASET( 'Full', N, N, ZERO, ONE, AINV, LDA )
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO 20 J = 1, N
- CALL DTBSV( UPLO, 'No transpose', DIAG, J, KD,
- $ AB, LDAB, AINV( ( J-1 )*LDA+1 ), 1 )
- 20 CONTINUE
- ELSE
- DO 30 J = 1, N
- CALL DTBSV( UPLO, 'No transpose', DIAG, N-J+1,
- $ KD, AB( ( J-1 )*LDAB+1 ), LDAB,
- $ AINV( ( J-1 )*LDA+J ), 1 )
- 30 CONTINUE
- END IF
- *
- * Compute the 1-norm condition number of A.
- *
- ANORM = DLANTB( '1', UPLO, DIAG, N, KD, AB, LDAB,
- $ RWORK )
- AINVNM = DLANTR( '1', UPLO, DIAG, N, N, AINV, LDA,
- $ RWORK )
- IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCONDO = ONE
- ELSE
- RCONDO = ( ONE / ANORM ) / AINVNM
- END IF
- *
- * Compute the infinity-norm condition number of A.
- *
- ANORM = DLANTB( 'I', UPLO, DIAG, N, KD, AB, LDAB,
- $ RWORK )
- AINVNM = DLANTR( 'I', UPLO, DIAG, N, N, AINV, LDA,
- $ RWORK )
- IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCONDI = ONE
- ELSE
- RCONDI = ( ONE / ANORM ) / AINVNM
- END IF
- *
- DO 60 IRHS = 1, NNS
- NRHS = NSVAL( IRHS )
- XTYPE = 'N'
- *
- DO 50 ITRAN = 1, NTRAN
- *
- * Do for op(A) = A, A**T, or A**H.
- *
- TRANS = TRANSS( ITRAN )
- IF( ITRAN.EQ.1 ) THEN
- NORM = 'O'
- RCONDC = RCONDO
- ELSE
- NORM = 'I'
- RCONDC = RCONDI
- END IF
- *
- *+ TEST 1
- * Solve and compute residual for op(A)*x = b.
- *
- SRNAMT = 'DLARHS'
- CALL DLARHS( PATH, XTYPE, UPLO, TRANS, N, N, KD,
- $ IDIAG, NRHS, AB, LDAB, XACT, LDA,
- $ B, LDA, ISEED, INFO )
- XTYPE = 'C'
- CALL DLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
- *
- SRNAMT = 'DTBTRS'
- CALL DTBTRS( UPLO, TRANS, DIAG, N, KD, NRHS, AB,
- $ LDAB, X, LDA, INFO )
- *
- * Check error code from DTBTRS.
- *
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'DTBTRS', INFO, 0,
- $ UPLO // TRANS // DIAG, N, N, KD,
- $ KD, NRHS, IMAT, NFAIL, NERRS,
- $ NOUT )
- *
- CALL DTBT02( UPLO, TRANS, DIAG, N, KD, NRHS, AB,
- $ LDAB, X, LDA, B, LDA, WORK,
- $ RESULT( 1 ) )
- *
- *+ TEST 2
- * Check solution from generated exact solution.
- *
- CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 2 ) )
- *
- *+ TESTS 3, 4, and 5
- * Use iterative refinement to improve the solution
- * and compute error bounds.
- *
- SRNAMT = 'DTBRFS'
- CALL DTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB,
- $ LDAB, B, LDA, X, LDA, RWORK,
- $ RWORK( NRHS+1 ), WORK, IWORK,
- $ INFO )
- *
- * Check error code from DTBRFS.
- *
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'DTBRFS', INFO, 0,
- $ UPLO // TRANS // DIAG, N, N, KD,
- $ KD, NRHS, IMAT, NFAIL, NERRS,
- $ NOUT )
- *
- CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 3 ) )
- CALL DTBT05( UPLO, TRANS, DIAG, N, KD, NRHS, AB,
- $ LDAB, B, LDA, X, LDA, XACT, LDA,
- $ RWORK, RWORK( NRHS+1 ),
- $ RESULT( 4 ) )
- *
- * Print information about the tests that did not
- * pass the threshold.
- *
- DO 40 K = 1, 5
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9999 )UPLO, TRANS,
- $ DIAG, N, KD, NRHS, IMAT, K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 40 CONTINUE
- NRUN = NRUN + 5
- 50 CONTINUE
- 60 CONTINUE
- *
- *+ TEST 6
- * Get an estimate of RCOND = 1/CNDNUM.
- *
- DO 70 ITRAN = 1, 2
- IF( ITRAN.EQ.1 ) THEN
- NORM = 'O'
- RCONDC = RCONDO
- ELSE
- NORM = 'I'
- RCONDC = RCONDI
- END IF
- SRNAMT = 'DTBCON'
- CALL DTBCON( NORM, UPLO, DIAG, N, KD, AB, LDAB,
- $ RCOND, WORK, IWORK, INFO )
- *
- * Check error code from DTBCON.
- *
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'DTBCON', INFO, 0,
- $ NORM // UPLO // DIAG, N, N, KD, KD,
- $ -1, IMAT, NFAIL, NERRS, NOUT )
- *
- CALL DTBT06( RCOND, RCONDC, UPLO, DIAG, N, KD, AB,
- $ LDAB, RWORK, RESULT( 6 ) )
- *
- * Print information about the tests that did not pass
- * the threshold.
- *
- IF( RESULT( 6 ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9998 ) 'DTBCON', NORM, UPLO,
- $ DIAG, N, KD, IMAT, 6, RESULT( 6 )
- NFAIL = NFAIL + 1
- END IF
- NRUN = NRUN + 1
- 70 CONTINUE
- 80 CONTINUE
- 90 CONTINUE
- *
- * Use pathological test matrices to test DLATBS.
- *
- DO 120 IMAT = NTYPE1 + 1, NIMAT2
- *
- * Do the tests only if DOTYPE( IMAT ) is true.
- *
- IF( .NOT.DOTYPE( IMAT ) )
- $ GO TO 120
- *
- DO 110 IUPLO = 1, 2
- *
- * Do first for UPLO = 'U', then for UPLO = 'L'
- *
- UPLO = UPLOS( IUPLO )
- DO 100 ITRAN = 1, NTRAN
- *
- * Do for op(A) = A, A**T, and A**H.
- *
- TRANS = TRANSS( ITRAN )
- *
- * Call DLATTB to generate a triangular test matrix.
- *
- SRNAMT = 'DLATTB'
- CALL DLATTB( IMAT, UPLO, TRANS, DIAG, ISEED, N, KD,
- $ AB, LDAB, X, WORK, INFO )
- *
- *+ TEST 7
- * Solve the system op(A)*x = b
- *
- SRNAMT = 'DLATBS'
- CALL DCOPY( N, X, 1, B, 1 )
- CALL DLATBS( UPLO, TRANS, DIAG, 'N', N, KD, AB,
- $ LDAB, B, SCALE, RWORK, INFO )
- *
- * Check error code from DLATBS.
- *
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'DLATBS', INFO, 0,
- $ UPLO // TRANS // DIAG // 'N', N, N,
- $ KD, KD, -1, IMAT, NFAIL, NERRS,
- $ NOUT )
- *
- CALL DTBT03( UPLO, TRANS, DIAG, N, KD, 1, AB, LDAB,
- $ SCALE, RWORK, ONE, B, LDA, X, LDA,
- $ WORK, RESULT( 7 ) )
- *
- *+ TEST 8
- * Solve op(A)*x = b again with NORMIN = 'Y'.
- *
- CALL DCOPY( N, X, 1, B, 1 )
- CALL DLATBS( UPLO, TRANS, DIAG, 'Y', N, KD, AB,
- $ LDAB, B, SCALE, RWORK, INFO )
- *
- * Check error code from DLATBS.
- *
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'DLATBS', INFO, 0,
- $ UPLO // TRANS // DIAG // 'Y', N, N,
- $ KD, KD, -1, IMAT, NFAIL, NERRS,
- $ NOUT )
- *
- CALL DTBT03( UPLO, TRANS, DIAG, N, KD, 1, AB, LDAB,
- $ SCALE, RWORK, ONE, B, LDA, X, LDA,
- $ WORK, RESULT( 8 ) )
- *
- * Print information about the tests that did not pass
- * the threshold.
- *
- IF( RESULT( 7 ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9997 )'DLATBS', UPLO, TRANS,
- $ DIAG, 'N', N, KD, IMAT, 7, RESULT( 7 )
- NFAIL = NFAIL + 1
- END IF
- IF( RESULT( 8 ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9997 )'DLATBS', UPLO, TRANS,
- $ DIAG, 'Y', N, KD, IMAT, 8, RESULT( 8 )
- NFAIL = NFAIL + 1
- END IF
- NRUN = NRUN + 2
- 100 CONTINUE
- 110 CONTINUE
- 120 CONTINUE
- 130 CONTINUE
- 140 CONTINUE
- *
- * Print a summary of the results.
- *
- CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
- *
- 9999 FORMAT( ' UPLO=''', A1, ''', TRANS=''', A1, ''',
- $ DIAG=''', A1, ''', N=', I5, ', KD=', I5, ', NRHS=', I5,
- $ ', type ', I2, ', test(', I2, ')=', G12.5 )
- 9998 FORMAT( 1X, A, '( ''', A1, ''', ''', A1, ''', ''', A1, ''',',
- $ I5, ',', I5, ', ... ), type ', I2, ', test(', I2, ')=',
- $ G12.5 )
- 9997 FORMAT( 1X, A, '( ''', A1, ''', ''', A1, ''', ''', A1, ''', ''',
- $ A1, ''',', I5, ',', I5, ', ... ), type ', I2, ', test(',
- $ I1, ')=', G12.5 )
- RETURN
- *
- * End of DCHKTB
- *
- END
|