You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clavhp.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559
  1. *> \brief \b CLAVHP
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CLAVHP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
  12. * INFO )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER DIAG, TRANS, UPLO
  16. * INTEGER INFO, LDB, N, NRHS
  17. * ..
  18. * .. Array Arguments ..
  19. * INTEGER IPIV( * )
  20. * COMPLEX A( * ), B( LDB, * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> CLAVHP performs one of the matrix-vector operations
  30. *> x := A*x or x := A^H*x,
  31. *> where x is an N element vector and A is one of the factors
  32. *> from the symmetric factorization computed by CHPTRF.
  33. *> CHPTRF produces a factorization of the form
  34. *> U * D * U^H or L * D * L^H,
  35. *> where U (or L) is a product of permutation and unit upper (lower)
  36. *> triangular matrices, U^H (or L^H) is the conjugate transpose of
  37. *> U (or L), and D is Hermitian and block diagonal with 1 x 1 and
  38. *> 2 x 2 diagonal blocks. The multipliers for the transformations
  39. *> and the upper or lower triangular parts of the diagonal blocks
  40. *> are stored columnwise in packed format in the linear array A.
  41. *>
  42. *> If TRANS = 'N' or 'n', CLAVHP multiplies either by U or U * D
  43. *> (or L or L * D).
  44. *> If TRANS = 'C' or 'c', CLAVHP multiplies either by U^H or D * U^H
  45. *> (or L^H or D * L^H ).
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \verbatim
  52. *> UPLO - CHARACTER*1
  53. *> On entry, UPLO specifies whether the triangular matrix
  54. *> stored in A is upper or lower triangular.
  55. *> UPLO = 'U' or 'u' The matrix is upper triangular.
  56. *> UPLO = 'L' or 'l' The matrix is lower triangular.
  57. *> Unchanged on exit.
  58. *>
  59. *> TRANS - CHARACTER*1
  60. *> On entry, TRANS specifies the operation to be performed as
  61. *> follows:
  62. *> TRANS = 'N' or 'n' x := A*x.
  63. *> TRANS = 'C' or 'c' x := A^H*x.
  64. *> Unchanged on exit.
  65. *>
  66. *> DIAG - CHARACTER*1
  67. *> On entry, DIAG specifies whether the diagonal blocks are
  68. *> assumed to be unit matrices, as follows:
  69. *> DIAG = 'U' or 'u' Diagonal blocks are unit matrices.
  70. *> DIAG = 'N' or 'n' Diagonal blocks are non-unit.
  71. *> Unchanged on exit.
  72. *>
  73. *> N - INTEGER
  74. *> On entry, N specifies the order of the matrix A.
  75. *> N must be at least zero.
  76. *> Unchanged on exit.
  77. *>
  78. *> NRHS - INTEGER
  79. *> On entry, NRHS specifies the number of right hand sides,
  80. *> i.e., the number of vectors x to be multiplied by A.
  81. *> NRHS must be at least zero.
  82. *> Unchanged on exit.
  83. *>
  84. *> A - COMPLEX array, dimension( N*(N+1)/2 )
  85. *> On entry, A contains a block diagonal matrix and the
  86. *> multipliers of the transformations used to obtain it,
  87. *> stored as a packed triangular matrix.
  88. *> Unchanged on exit.
  89. *>
  90. *> IPIV - INTEGER array, dimension( N )
  91. *> On entry, IPIV contains the vector of pivot indices as
  92. *> determined by CSPTRF or CHPTRF.
  93. *> If IPIV( K ) = K, no interchange was done.
  94. *> If IPIV( K ) <> K but IPIV( K ) > 0, then row K was inter-
  95. *> changed with row IPIV( K ) and a 1 x 1 pivot block was used.
  96. *> If IPIV( K ) < 0 and UPLO = 'U', then row K-1 was exchanged
  97. *> with row | IPIV( K ) | and a 2 x 2 pivot block was used.
  98. *> If IPIV( K ) < 0 and UPLO = 'L', then row K+1 was exchanged
  99. *> with row | IPIV( K ) | and a 2 x 2 pivot block was used.
  100. *>
  101. *> B - COMPLEX array, dimension( LDB, NRHS )
  102. *> On entry, B contains NRHS vectors of length N.
  103. *> On exit, B is overwritten with the product A * B.
  104. *>
  105. *> LDB - INTEGER
  106. *> On entry, LDB contains the leading dimension of B as
  107. *> declared in the calling program. LDB must be at least
  108. *> max( 1, N ).
  109. *> Unchanged on exit.
  110. *>
  111. *> INFO - INTEGER
  112. *> INFO is the error flag.
  113. *> On exit, a value of 0 indicates a successful exit.
  114. *> A negative value, say -K, indicates that the K-th argument
  115. *> has an illegal value.
  116. *> \endverbatim
  117. *
  118. * Authors:
  119. * ========
  120. *
  121. *> \author Univ. of Tennessee
  122. *> \author Univ. of California Berkeley
  123. *> \author Univ. of Colorado Denver
  124. *> \author NAG Ltd.
  125. *
  126. *> \date November 2011
  127. *
  128. *> \ingroup complex_lin
  129. *
  130. * =====================================================================
  131. SUBROUTINE CLAVHP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
  132. $ INFO )
  133. *
  134. * -- LAPACK test routine (version 3.4.0) --
  135. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  136. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  137. * November 2011
  138. *
  139. * .. Scalar Arguments ..
  140. CHARACTER DIAG, TRANS, UPLO
  141. INTEGER INFO, LDB, N, NRHS
  142. * ..
  143. * .. Array Arguments ..
  144. INTEGER IPIV( * )
  145. COMPLEX A( * ), B( LDB, * )
  146. * ..
  147. *
  148. * =====================================================================
  149. *
  150. * .. Parameters ..
  151. COMPLEX ONE
  152. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  153. * ..
  154. * .. Local Scalars ..
  155. LOGICAL NOUNIT
  156. INTEGER J, K, KC, KCNEXT, KP
  157. COMPLEX D11, D12, D21, D22, T1, T2
  158. * ..
  159. * .. External Functions ..
  160. LOGICAL LSAME
  161. EXTERNAL LSAME
  162. * ..
  163. * .. External Subroutines ..
  164. EXTERNAL CGEMV, CGERU, CLACGV, CSCAL, CSWAP, XERBLA
  165. * ..
  166. * .. Intrinsic Functions ..
  167. INTRINSIC ABS, CONJG, MAX
  168. * ..
  169. * .. Executable Statements ..
  170. *
  171. * Test the input parameters.
  172. *
  173. INFO = 0
  174. IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  175. INFO = -1
  176. ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'C' ) )
  177. $ THEN
  178. INFO = -2
  179. ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
  180. $ THEN
  181. INFO = -3
  182. ELSE IF( N.LT.0 ) THEN
  183. INFO = -4
  184. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  185. INFO = -8
  186. END IF
  187. IF( INFO.NE.0 ) THEN
  188. CALL XERBLA( 'CLAVHP ', -INFO )
  189. RETURN
  190. END IF
  191. *
  192. * Quick return if possible.
  193. *
  194. IF( N.EQ.0 )
  195. $ RETURN
  196. *
  197. NOUNIT = LSAME( DIAG, 'N' )
  198. *------------------------------------------
  199. *
  200. * Compute B := A * B (No transpose)
  201. *
  202. *------------------------------------------
  203. IF( LSAME( TRANS, 'N' ) ) THEN
  204. *
  205. * Compute B := U*B
  206. * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
  207. *
  208. IF( LSAME( UPLO, 'U' ) ) THEN
  209. *
  210. * Loop forward applying the transformations.
  211. *
  212. K = 1
  213. KC = 1
  214. 10 CONTINUE
  215. IF( K.GT.N )
  216. $ GO TO 30
  217. *
  218. * 1 x 1 pivot block
  219. *
  220. IF( IPIV( K ).GT.0 ) THEN
  221. *
  222. * Multiply by the diagonal element if forming U * D.
  223. *
  224. IF( NOUNIT )
  225. $ CALL CSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
  226. *
  227. * Multiply by P(K) * inv(U(K)) if K > 1.
  228. *
  229. IF( K.GT.1 ) THEN
  230. *
  231. * Apply the transformation.
  232. *
  233. CALL CGERU( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ),
  234. $ LDB, B( 1, 1 ), LDB )
  235. *
  236. * Interchange if P(K) != I.
  237. *
  238. KP = IPIV( K )
  239. IF( KP.NE.K )
  240. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  241. END IF
  242. KC = KC + K
  243. K = K + 1
  244. ELSE
  245. *
  246. * 2 x 2 pivot block
  247. *
  248. KCNEXT = KC + K
  249. *
  250. * Multiply by the diagonal block if forming U * D.
  251. *
  252. IF( NOUNIT ) THEN
  253. D11 = A( KCNEXT-1 )
  254. D22 = A( KCNEXT+K )
  255. D12 = A( KCNEXT+K-1 )
  256. D21 = CONJG( D12 )
  257. DO 20 J = 1, NRHS
  258. T1 = B( K, J )
  259. T2 = B( K+1, J )
  260. B( K, J ) = D11*T1 + D12*T2
  261. B( K+1, J ) = D21*T1 + D22*T2
  262. 20 CONTINUE
  263. END IF
  264. *
  265. * Multiply by P(K) * inv(U(K)) if K > 1.
  266. *
  267. IF( K.GT.1 ) THEN
  268. *
  269. * Apply the transformations.
  270. *
  271. CALL CGERU( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ),
  272. $ LDB, B( 1, 1 ), LDB )
  273. CALL CGERU( K-1, NRHS, ONE, A( KCNEXT ), 1,
  274. $ B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
  275. *
  276. * Interchange if P(K) != I.
  277. *
  278. KP = ABS( IPIV( K ) )
  279. IF( KP.NE.K )
  280. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  281. END IF
  282. KC = KCNEXT + K + 1
  283. K = K + 2
  284. END IF
  285. GO TO 10
  286. 30 CONTINUE
  287. *
  288. * Compute B := L*B
  289. * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
  290. *
  291. ELSE
  292. *
  293. * Loop backward applying the transformations to B.
  294. *
  295. K = N
  296. KC = N*( N+1 ) / 2 + 1
  297. 40 CONTINUE
  298. IF( K.LT.1 )
  299. $ GO TO 60
  300. KC = KC - ( N-K+1 )
  301. *
  302. * Test the pivot index. If greater than zero, a 1 x 1
  303. * pivot was used, otherwise a 2 x 2 pivot was used.
  304. *
  305. IF( IPIV( K ).GT.0 ) THEN
  306. *
  307. * 1 x 1 pivot block:
  308. *
  309. * Multiply by the diagonal element if forming L * D.
  310. *
  311. IF( NOUNIT )
  312. $ CALL CSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
  313. *
  314. * Multiply by P(K) * inv(L(K)) if K < N.
  315. *
  316. IF( K.NE.N ) THEN
  317. KP = IPIV( K )
  318. *
  319. * Apply the transformation.
  320. *
  321. CALL CGERU( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
  322. $ LDB, B( K+1, 1 ), LDB )
  323. *
  324. * Interchange if a permutation was applied at the
  325. * K-th step of the factorization.
  326. *
  327. IF( KP.NE.K )
  328. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  329. END IF
  330. K = K - 1
  331. *
  332. ELSE
  333. *
  334. * 2 x 2 pivot block:
  335. *
  336. KCNEXT = KC - ( N-K+2 )
  337. *
  338. * Multiply by the diagonal block if forming L * D.
  339. *
  340. IF( NOUNIT ) THEN
  341. D11 = A( KCNEXT )
  342. D22 = A( KC )
  343. D21 = A( KCNEXT+1 )
  344. D12 = CONJG( D21 )
  345. DO 50 J = 1, NRHS
  346. T1 = B( K-1, J )
  347. T2 = B( K, J )
  348. B( K-1, J ) = D11*T1 + D12*T2
  349. B( K, J ) = D21*T1 + D22*T2
  350. 50 CONTINUE
  351. END IF
  352. *
  353. * Multiply by P(K) * inv(L(K)) if K < N.
  354. *
  355. IF( K.NE.N ) THEN
  356. *
  357. * Apply the transformation.
  358. *
  359. CALL CGERU( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
  360. $ LDB, B( K+1, 1 ), LDB )
  361. CALL CGERU( N-K, NRHS, ONE, A( KCNEXT+2 ), 1,
  362. $ B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
  363. *
  364. * Interchange if a permutation was applied at the
  365. * K-th step of the factorization.
  366. *
  367. KP = ABS( IPIV( K ) )
  368. IF( KP.NE.K )
  369. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  370. END IF
  371. KC = KCNEXT
  372. K = K - 2
  373. END IF
  374. GO TO 40
  375. 60 CONTINUE
  376. END IF
  377. *-------------------------------------------------
  378. *
  379. * Compute B := A^H * B (conjugate transpose)
  380. *
  381. *-------------------------------------------------
  382. ELSE
  383. *
  384. * Form B := U^H*B
  385. * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
  386. * and U^H = inv(U^H(1))*P(1)* ... *inv(U^H(m))*P(m)
  387. *
  388. IF( LSAME( UPLO, 'U' ) ) THEN
  389. *
  390. * Loop backward applying the transformations.
  391. *
  392. K = N
  393. KC = N*( N+1 ) / 2 + 1
  394. 70 IF( K.LT.1 )
  395. $ GO TO 90
  396. KC = KC - K
  397. *
  398. * 1 x 1 pivot block.
  399. *
  400. IF( IPIV( K ).GT.0 ) THEN
  401. IF( K.GT.1 ) THEN
  402. *
  403. * Interchange if P(K) != I.
  404. *
  405. KP = IPIV( K )
  406. IF( KP.NE.K )
  407. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  408. *
  409. * Apply the transformation:
  410. * y := y - B' * conjg(x)
  411. * where x is a column of A and y is a row of B.
  412. *
  413. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  414. CALL CGEMV( 'Conjugate', K-1, NRHS, ONE, B, LDB,
  415. $ A( KC ), 1, ONE, B( K, 1 ), LDB )
  416. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  417. END IF
  418. IF( NOUNIT )
  419. $ CALL CSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
  420. K = K - 1
  421. *
  422. * 2 x 2 pivot block.
  423. *
  424. ELSE
  425. KCNEXT = KC - ( K-1 )
  426. IF( K.GT.2 ) THEN
  427. *
  428. * Interchange if P(K) != I.
  429. *
  430. KP = ABS( IPIV( K ) )
  431. IF( KP.NE.K-1 )
  432. $ CALL CSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
  433. $ LDB )
  434. *
  435. * Apply the transformations.
  436. *
  437. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  438. CALL CGEMV( 'Conjugate', K-2, NRHS, ONE, B, LDB,
  439. $ A( KC ), 1, ONE, B( K, 1 ), LDB )
  440. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  441. *
  442. CALL CLACGV( NRHS, B( K-1, 1 ), LDB )
  443. CALL CGEMV( 'Conjugate', K-2, NRHS, ONE, B, LDB,
  444. $ A( KCNEXT ), 1, ONE, B( K-1, 1 ), LDB )
  445. CALL CLACGV( NRHS, B( K-1, 1 ), LDB )
  446. END IF
  447. *
  448. * Multiply by the diagonal block if non-unit.
  449. *
  450. IF( NOUNIT ) THEN
  451. D11 = A( KC-1 )
  452. D22 = A( KC+K-1 )
  453. D12 = A( KC+K-2 )
  454. D21 = CONJG( D12 )
  455. DO 80 J = 1, NRHS
  456. T1 = B( K-1, J )
  457. T2 = B( K, J )
  458. B( K-1, J ) = D11*T1 + D12*T2
  459. B( K, J ) = D21*T1 + D22*T2
  460. 80 CONTINUE
  461. END IF
  462. KC = KCNEXT
  463. K = K - 2
  464. END IF
  465. GO TO 70
  466. 90 CONTINUE
  467. *
  468. * Form B := L^H*B
  469. * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
  470. * and L^H = inv(L(m))*P(m)* ... *inv(L(1))*P(1)
  471. *
  472. ELSE
  473. *
  474. * Loop forward applying the L-transformations.
  475. *
  476. K = 1
  477. KC = 1
  478. 100 CONTINUE
  479. IF( K.GT.N )
  480. $ GO TO 120
  481. *
  482. * 1 x 1 pivot block
  483. *
  484. IF( IPIV( K ).GT.0 ) THEN
  485. IF( K.LT.N ) THEN
  486. *
  487. * Interchange if P(K) != I.
  488. *
  489. KP = IPIV( K )
  490. IF( KP.NE.K )
  491. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  492. *
  493. * Apply the transformation
  494. *
  495. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  496. CALL CGEMV( 'Conjugate', N-K, NRHS, ONE, B( K+1, 1 ),
  497. $ LDB, A( KC+1 ), 1, ONE, B( K, 1 ), LDB )
  498. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  499. END IF
  500. IF( NOUNIT )
  501. $ CALL CSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
  502. KC = KC + N - K + 1
  503. K = K + 1
  504. *
  505. * 2 x 2 pivot block.
  506. *
  507. ELSE
  508. KCNEXT = KC + N - K + 1
  509. IF( K.LT.N-1 ) THEN
  510. *
  511. * Interchange if P(K) != I.
  512. *
  513. KP = ABS( IPIV( K ) )
  514. IF( KP.NE.K+1 )
  515. $ CALL CSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
  516. $ LDB )
  517. *
  518. * Apply the transformation
  519. *
  520. CALL CLACGV( NRHS, B( K+1, 1 ), LDB )
  521. CALL CGEMV( 'Conjugate', N-K-1, NRHS, ONE,
  522. $ B( K+2, 1 ), LDB, A( KCNEXT+1 ), 1, ONE,
  523. $ B( K+1, 1 ), LDB )
  524. CALL CLACGV( NRHS, B( K+1, 1 ), LDB )
  525. *
  526. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  527. CALL CGEMV( 'Conjugate', N-K-1, NRHS, ONE,
  528. $ B( K+2, 1 ), LDB, A( KC+2 ), 1, ONE,
  529. $ B( K, 1 ), LDB )
  530. CALL CLACGV( NRHS, B( K, 1 ), LDB )
  531. END IF
  532. *
  533. * Multiply by the diagonal block if non-unit.
  534. *
  535. IF( NOUNIT ) THEN
  536. D11 = A( KC )
  537. D22 = A( KCNEXT )
  538. D21 = A( KC+1 )
  539. D12 = CONJG( D21 )
  540. DO 110 J = 1, NRHS
  541. T1 = B( K, J )
  542. T2 = B( K+1, J )
  543. B( K, J ) = D11*T1 + D12*T2
  544. B( K+1, J ) = D21*T1 + D22*T2
  545. 110 CONTINUE
  546. END IF
  547. KC = KCNEXT + ( N-K )
  548. K = K + 2
  549. END IF
  550. GO TO 100
  551. 120 CONTINUE
  552. END IF
  553. *
  554. END IF
  555. RETURN
  556. *
  557. * End of CLAVHP
  558. *
  559. END