You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgesvd.f 135 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494
  1. *> \brief <b> SGESVD computes the singular value decomposition (SVD) for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SGESVD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgesvd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgesvd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgesvd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT,
  22. * WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBU, JOBVT
  26. * INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL A( LDA, * ), S( * ), U( LDU, * ),
  30. * $ VT( LDVT, * ), WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> SGESVD computes the singular value decomposition (SVD) of a real
  40. *> M-by-N matrix A, optionally computing the left and/or right singular
  41. *> vectors. The SVD is written
  42. *>
  43. *> A = U * SIGMA * transpose(V)
  44. *>
  45. *> where SIGMA is an M-by-N matrix which is zero except for its
  46. *> min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
  47. *> V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
  48. *> are the singular values of A; they are real and non-negative, and
  49. *> are returned in descending order. The first min(m,n) columns of
  50. *> U and V are the left and right singular vectors of A.
  51. *>
  52. *> Note that the routine returns V**T, not V.
  53. *> \endverbatim
  54. *
  55. * Arguments:
  56. * ==========
  57. *
  58. *> \param[in] JOBU
  59. *> \verbatim
  60. *> JOBU is CHARACTER*1
  61. *> Specifies options for computing all or part of the matrix U:
  62. *> = 'A': all M columns of U are returned in array U:
  63. *> = 'S': the first min(m,n) columns of U (the left singular
  64. *> vectors) are returned in the array U;
  65. *> = 'O': the first min(m,n) columns of U (the left singular
  66. *> vectors) are overwritten on the array A;
  67. *> = 'N': no columns of U (no left singular vectors) are
  68. *> computed.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] JOBVT
  72. *> \verbatim
  73. *> JOBVT is CHARACTER*1
  74. *> Specifies options for computing all or part of the matrix
  75. *> V**T:
  76. *> = 'A': all N rows of V**T are returned in the array VT;
  77. *> = 'S': the first min(m,n) rows of V**T (the right singular
  78. *> vectors) are returned in the array VT;
  79. *> = 'O': the first min(m,n) rows of V**T (the right singular
  80. *> vectors) are overwritten on the array A;
  81. *> = 'N': no rows of V**T (no right singular vectors) are
  82. *> computed.
  83. *>
  84. *> JOBVT and JOBU cannot both be 'O'.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] M
  88. *> \verbatim
  89. *> M is INTEGER
  90. *> The number of rows of the input matrix A. M >= 0.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] N
  94. *> \verbatim
  95. *> N is INTEGER
  96. *> The number of columns of the input matrix A. N >= 0.
  97. *> \endverbatim
  98. *>
  99. *> \param[in,out] A
  100. *> \verbatim
  101. *> A is REAL array, dimension (LDA,N)
  102. *> On entry, the M-by-N matrix A.
  103. *> On exit,
  104. *> if JOBU = 'O', A is overwritten with the first min(m,n)
  105. *> columns of U (the left singular vectors,
  106. *> stored columnwise);
  107. *> if JOBVT = 'O', A is overwritten with the first min(m,n)
  108. *> rows of V**T (the right singular vectors,
  109. *> stored rowwise);
  110. *> if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A
  111. *> are destroyed.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] LDA
  115. *> \verbatim
  116. *> LDA is INTEGER
  117. *> The leading dimension of the array A. LDA >= max(1,M).
  118. *> \endverbatim
  119. *>
  120. *> \param[out] S
  121. *> \verbatim
  122. *> S is REAL array, dimension (min(M,N))
  123. *> The singular values of A, sorted so that S(i) >= S(i+1).
  124. *> \endverbatim
  125. *>
  126. *> \param[out] U
  127. *> \verbatim
  128. *> U is REAL array, dimension (LDU,UCOL)
  129. *> (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'.
  130. *> If JOBU = 'A', U contains the M-by-M orthogonal matrix U;
  131. *> if JOBU = 'S', U contains the first min(m,n) columns of U
  132. *> (the left singular vectors, stored columnwise);
  133. *> if JOBU = 'N' or 'O', U is not referenced.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] LDU
  137. *> \verbatim
  138. *> LDU is INTEGER
  139. *> The leading dimension of the array U. LDU >= 1; if
  140. *> JOBU = 'S' or 'A', LDU >= M.
  141. *> \endverbatim
  142. *>
  143. *> \param[out] VT
  144. *> \verbatim
  145. *> VT is REAL array, dimension (LDVT,N)
  146. *> If JOBVT = 'A', VT contains the N-by-N orthogonal matrix
  147. *> V**T;
  148. *> if JOBVT = 'S', VT contains the first min(m,n) rows of
  149. *> V**T (the right singular vectors, stored rowwise);
  150. *> if JOBVT = 'N' or 'O', VT is not referenced.
  151. *> \endverbatim
  152. *>
  153. *> \param[in] LDVT
  154. *> \verbatim
  155. *> LDVT is INTEGER
  156. *> The leading dimension of the array VT. LDVT >= 1; if
  157. *> JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).
  158. *> \endverbatim
  159. *>
  160. *> \param[out] WORK
  161. *> \verbatim
  162. *> WORK is REAL array, dimension (MAX(1,LWORK))
  163. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
  164. *> if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged
  165. *> superdiagonal elements of an upper bidiagonal matrix B
  166. *> whose diagonal is in S (not necessarily sorted). B
  167. *> satisfies A = U * B * VT, so it has the same singular values
  168. *> as A, and singular vectors related by U and VT.
  169. *> \endverbatim
  170. *>
  171. *> \param[in] LWORK
  172. *> \verbatim
  173. *> LWORK is INTEGER
  174. *> The dimension of the array WORK.
  175. *> LWORK >= MAX(1,5*MIN(M,N)) for the paths (see comments inside code):
  176. *> - PATH 1 (M much larger than N, JOBU='N')
  177. *> - PATH 1t (N much larger than M, JOBVT='N')
  178. *> LWORK >= MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N)) for the other paths
  179. *> For good performance, LWORK should generally be larger.
  180. *>
  181. *> If LWORK = -1, then a workspace query is assumed; the routine
  182. *> only calculates the optimal size of the WORK array, returns
  183. *> this value as the first entry of the WORK array, and no error
  184. *> message related to LWORK is issued by XERBLA.
  185. *> \endverbatim
  186. *>
  187. *> \param[out] INFO
  188. *> \verbatim
  189. *> INFO is INTEGER
  190. *> = 0: successful exit.
  191. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  192. *> > 0: if SBDSQR did not converge, INFO specifies how many
  193. *> superdiagonals of an intermediate bidiagonal form B
  194. *> did not converge to zero. See the description of WORK
  195. *> above for details.
  196. *> \endverbatim
  197. *
  198. * Authors:
  199. * ========
  200. *
  201. *> \author Univ. of Tennessee
  202. *> \author Univ. of California Berkeley
  203. *> \author Univ. of Colorado Denver
  204. *> \author NAG Ltd.
  205. *
  206. *> \date April 2012
  207. *
  208. *> \ingroup realGEsing
  209. *
  210. * =====================================================================
  211. SUBROUTINE SGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT,
  212. $ WORK, LWORK, INFO )
  213. *
  214. * -- LAPACK driver routine (version 3.4.1) --
  215. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  216. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  217. * April 2012
  218. *
  219. * .. Scalar Arguments ..
  220. CHARACTER JOBU, JOBVT
  221. INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
  222. * ..
  223. * .. Array Arguments ..
  224. REAL A( LDA, * ), S( * ), U( LDU, * ),
  225. $ VT( LDVT, * ), WORK( * )
  226. * ..
  227. *
  228. * =====================================================================
  229. *
  230. * .. Parameters ..
  231. REAL ZERO, ONE
  232. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
  233. * ..
  234. * .. Local Scalars ..
  235. LOGICAL LQUERY, WNTUA, WNTUAS, WNTUN, WNTUO, WNTUS,
  236. $ WNTVA, WNTVAS, WNTVN, WNTVO, WNTVS
  237. INTEGER BDSPAC, BLK, CHUNK, I, IE, IERR, IR, ISCL,
  238. $ ITAU, ITAUP, ITAUQ, IU, IWORK, LDWRKR, LDWRKU,
  239. $ MAXWRK, MINMN, MINWRK, MNTHR, NCU, NCVT, NRU,
  240. $ NRVT, WRKBL
  241. INTEGER LWORK_SGEQRF, LWORK_SORGQR_N, LWORK_SORGQR_M,
  242. $ LWORK_SGEBRD, LWORK_SORGBR_P, LWORK_SORGBR_Q,
  243. $ LWORK_SGELQF, LWORK_SORGLQ_N, LWORK_SORGLQ_M
  244. REAL ANRM, BIGNUM, EPS, SMLNUM
  245. * ..
  246. * .. Local Arrays ..
  247. REAL DUM( 1 )
  248. * ..
  249. * .. External Subroutines ..
  250. EXTERNAL SBDSQR, SGEBRD, SGELQF, SGEMM, SGEQRF, SLACPY,
  251. $ SLASCL, SLASET, SORGBR, SORGLQ, SORGQR, SORMBR,
  252. $ XERBLA
  253. * ..
  254. * .. External Functions ..
  255. LOGICAL LSAME
  256. INTEGER ILAENV
  257. REAL SLAMCH, SLANGE
  258. EXTERNAL LSAME, ILAENV, SLAMCH, SLANGE
  259. * ..
  260. * .. Intrinsic Functions ..
  261. INTRINSIC MAX, MIN, SQRT
  262. * ..
  263. * .. Executable Statements ..
  264. *
  265. * Test the input arguments
  266. *
  267. INFO = 0
  268. MINMN = MIN( M, N )
  269. WNTUA = LSAME( JOBU, 'A' )
  270. WNTUS = LSAME( JOBU, 'S' )
  271. WNTUAS = WNTUA .OR. WNTUS
  272. WNTUO = LSAME( JOBU, 'O' )
  273. WNTUN = LSAME( JOBU, 'N' )
  274. WNTVA = LSAME( JOBVT, 'A' )
  275. WNTVS = LSAME( JOBVT, 'S' )
  276. WNTVAS = WNTVA .OR. WNTVS
  277. WNTVO = LSAME( JOBVT, 'O' )
  278. WNTVN = LSAME( JOBVT, 'N' )
  279. LQUERY = ( LWORK.EQ.-1 )
  280. *
  281. IF( .NOT.( WNTUA .OR. WNTUS .OR. WNTUO .OR. WNTUN ) ) THEN
  282. INFO = -1
  283. ELSE IF( .NOT.( WNTVA .OR. WNTVS .OR. WNTVO .OR. WNTVN ) .OR.
  284. $ ( WNTVO .AND. WNTUO ) ) THEN
  285. INFO = -2
  286. ELSE IF( M.LT.0 ) THEN
  287. INFO = -3
  288. ELSE IF( N.LT.0 ) THEN
  289. INFO = -4
  290. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  291. INFO = -6
  292. ELSE IF( LDU.LT.1 .OR. ( WNTUAS .AND. LDU.LT.M ) ) THEN
  293. INFO = -9
  294. ELSE IF( LDVT.LT.1 .OR. ( WNTVA .AND. LDVT.LT.N ) .OR.
  295. $ ( WNTVS .AND. LDVT.LT.MINMN ) ) THEN
  296. INFO = -11
  297. END IF
  298. *
  299. * Compute workspace
  300. * (Note: Comments in the code beginning "Workspace:" describe the
  301. * minimal amount of workspace needed at that point in the code,
  302. * as well as the preferred amount for good performance.
  303. * NB refers to the optimal block size for the immediately
  304. * following subroutine, as returned by ILAENV.)
  305. *
  306. IF( INFO.EQ.0 ) THEN
  307. MINWRK = 1
  308. MAXWRK = 1
  309. IF( M.GE.N .AND. MINMN.GT.0 ) THEN
  310. *
  311. * Compute space needed for SBDSQR
  312. *
  313. MNTHR = ILAENV( 6, 'SGESVD', JOBU // JOBVT, M, N, 0, 0 )
  314. BDSPAC = 5*N
  315. * Compute space needed for SGEQRF
  316. CALL SGEQRF( M, N, A, LDA, DUM(1), DUM(1), -1, IERR )
  317. LWORK_SGEQRF=DUM(1)
  318. * Compute space needed for SORGQR
  319. CALL SORGQR( M, N, N, A, LDA, DUM(1), DUM(1), -1, IERR )
  320. LWORK_SORGQR_N=DUM(1)
  321. CALL SORGQR( M, M, N, A, LDA, DUM(1), DUM(1), -1, IERR )
  322. LWORK_SORGQR_M=DUM(1)
  323. * Compute space needed for SGEBRD
  324. CALL SGEBRD( N, N, A, LDA, S, DUM(1), DUM(1),
  325. $ DUM(1), DUM(1), -1, IERR )
  326. LWORK_SGEBRD=DUM(1)
  327. * Compute space needed for SORGBR P
  328. CALL SORGBR( 'P', N, N, N, A, LDA, DUM(1),
  329. $ DUM(1), -1, IERR )
  330. LWORK_SORGBR_P=DUM(1)
  331. * Compute space needed for SORGBR Q
  332. CALL SORGBR( 'Q', N, N, N, A, LDA, DUM(1),
  333. $ DUM(1), -1, IERR )
  334. LWORK_SORGBR_Q=DUM(1)
  335. *
  336. IF( M.GE.MNTHR ) THEN
  337. IF( WNTUN ) THEN
  338. *
  339. * Path 1 (M much larger than N, JOBU='N')
  340. *
  341. MAXWRK = N + LWORK_SGEQRF
  342. MAXWRK = MAX( MAXWRK, 3*N+LWORK_SGEBRD )
  343. IF( WNTVO .OR. WNTVAS )
  344. $ MAXWRK = MAX( MAXWRK, 3*N+LWORK_SORGBR_P )
  345. MAXWRK = MAX( MAXWRK, BDSPAC )
  346. MINWRK = MAX( 4*N, BDSPAC )
  347. ELSE IF( WNTUO .AND. WNTVN ) THEN
  348. *
  349. * Path 2 (M much larger than N, JOBU='O', JOBVT='N')
  350. *
  351. WRKBL = N + LWORK_SGEQRF
  352. WRKBL = MAX( WRKBL, N+LWORK_SORGQR_N )
  353. WRKBL = MAX( WRKBL, 3*N+LWORK_SGEBRD )
  354. WRKBL = MAX( WRKBL, 3*N+LWORK_SORGBR_Q )
  355. WRKBL = MAX( WRKBL, BDSPAC )
  356. MAXWRK = MAX( N*N+WRKBL, N*N+M*N+N )
  357. MINWRK = MAX( 3*N+M, BDSPAC )
  358. ELSE IF( WNTUO .AND. WNTVAS ) THEN
  359. *
  360. * Path 3 (M much larger than N, JOBU='O', JOBVT='S' or
  361. * 'A')
  362. *
  363. WRKBL = N + LWORK_SGEQRF
  364. WRKBL = MAX( WRKBL, N+LWORK_SORGQR_N )
  365. WRKBL = MAX( WRKBL, 3*N+LWORK_SGEBRD )
  366. WRKBL = MAX( WRKBL, 3*N+LWORK_SORGBR_Q )
  367. WRKBL = MAX( WRKBL, 3*N+LWORK_SORGBR_P )
  368. WRKBL = MAX( WRKBL, BDSPAC )
  369. MAXWRK = MAX( N*N+WRKBL, N*N+M*N+N )
  370. MINWRK = MAX( 3*N+M, BDSPAC )
  371. ELSE IF( WNTUS .AND. WNTVN ) THEN
  372. *
  373. * Path 4 (M much larger than N, JOBU='S', JOBVT='N')
  374. *
  375. WRKBL = N + LWORK_SGEQRF
  376. WRKBL = MAX( WRKBL, N+LWORK_SORGQR_N )
  377. WRKBL = MAX( WRKBL, 3*N+LWORK_SGEBRD )
  378. WRKBL = MAX( WRKBL, 3*N+LWORK_SORGBR_Q )
  379. WRKBL = MAX( WRKBL, BDSPAC )
  380. MAXWRK = N*N + WRKBL
  381. MINWRK = MAX( 3*N+M, BDSPAC )
  382. ELSE IF( WNTUS .AND. WNTVO ) THEN
  383. *
  384. * Path 5 (M much larger than N, JOBU='S', JOBVT='O')
  385. *
  386. WRKBL = N + LWORK_SGEQRF
  387. WRKBL = MAX( WRKBL, N+LWORK_SORGQR_N )
  388. WRKBL = MAX( WRKBL, 3*N+LWORK_SGEBRD )
  389. WRKBL = MAX( WRKBL, 3*N+LWORK_SORGBR_Q )
  390. WRKBL = MAX( WRKBL, 3*N+LWORK_SORGBR_P )
  391. WRKBL = MAX( WRKBL, BDSPAC )
  392. MAXWRK = 2*N*N + WRKBL
  393. MINWRK = MAX( 3*N+M, BDSPAC )
  394. ELSE IF( WNTUS .AND. WNTVAS ) THEN
  395. *
  396. * Path 6 (M much larger than N, JOBU='S', JOBVT='S' or
  397. * 'A')
  398. *
  399. WRKBL = N + LWORK_SGEQRF
  400. WRKBL = MAX( WRKBL, N+LWORK_SORGQR_N )
  401. WRKBL = MAX( WRKBL, 3*N+LWORK_SGEBRD )
  402. WRKBL = MAX( WRKBL, 3*N+LWORK_SORGBR_Q )
  403. WRKBL = MAX( WRKBL, 3*N+LWORK_SORGBR_P )
  404. WRKBL = MAX( WRKBL, BDSPAC )
  405. MAXWRK = N*N + WRKBL
  406. MINWRK = MAX( 3*N+M, BDSPAC )
  407. ELSE IF( WNTUA .AND. WNTVN ) THEN
  408. *
  409. * Path 7 (M much larger than N, JOBU='A', JOBVT='N')
  410. *
  411. WRKBL = N + LWORK_SGEQRF
  412. WRKBL = MAX( WRKBL, N+LWORK_SORGQR_M )
  413. WRKBL = MAX( WRKBL, 3*N+LWORK_SGEBRD )
  414. WRKBL = MAX( WRKBL, 3*N+LWORK_SORGBR_Q )
  415. WRKBL = MAX( WRKBL, BDSPAC )
  416. MAXWRK = N*N + WRKBL
  417. MINWRK = MAX( 3*N+M, BDSPAC )
  418. ELSE IF( WNTUA .AND. WNTVO ) THEN
  419. *
  420. * Path 8 (M much larger than N, JOBU='A', JOBVT='O')
  421. *
  422. WRKBL = N + LWORK_SGEQRF
  423. WRKBL = MAX( WRKBL, N+LWORK_SORGQR_M )
  424. WRKBL = MAX( WRKBL, 3*N+LWORK_SGEBRD )
  425. WRKBL = MAX( WRKBL, 3*N+LWORK_SORGBR_Q )
  426. WRKBL = MAX( WRKBL, 3*N+LWORK_SORGBR_P )
  427. WRKBL = MAX( WRKBL, BDSPAC )
  428. MAXWRK = 2*N*N + WRKBL
  429. MINWRK = MAX( 3*N+M, BDSPAC )
  430. ELSE IF( WNTUA .AND. WNTVAS ) THEN
  431. *
  432. * Path 9 (M much larger than N, JOBU='A', JOBVT='S' or
  433. * 'A')
  434. *
  435. WRKBL = N + LWORK_SGEQRF
  436. WRKBL = MAX( WRKBL, N+LWORK_SORGQR_M )
  437. WRKBL = MAX( WRKBL, 3*N+LWORK_SGEBRD )
  438. WRKBL = MAX( WRKBL, 3*N+LWORK_SORGBR_Q )
  439. WRKBL = MAX( WRKBL, 3*N+LWORK_SORGBR_P )
  440. WRKBL = MAX( WRKBL, BDSPAC )
  441. MAXWRK = N*N + WRKBL
  442. MINWRK = MAX( 3*N+M, BDSPAC )
  443. END IF
  444. ELSE
  445. *
  446. * Path 10 (M at least N, but not much larger)
  447. *
  448. CALL SGEBRD( M, N, A, LDA, S, DUM(1), DUM(1),
  449. $ DUM(1), DUM(1), -1, IERR )
  450. LWORK_SGEBRD=DUM(1)
  451. MAXWRK = 3*N + LWORK_SGEBRD
  452. IF( WNTUS .OR. WNTUO ) THEN
  453. CALL SORGBR( 'Q', M, N, N, A, LDA, DUM(1),
  454. $ DUM(1), -1, IERR )
  455. LWORK_SORGBR_Q=DUM(1)
  456. MAXWRK = MAX( MAXWRK, 3*N+LWORK_SORGBR_Q )
  457. END IF
  458. IF( WNTUA ) THEN
  459. CALL SORGBR( 'Q', M, M, N, A, LDA, DUM(1),
  460. $ DUM(1), -1, IERR )
  461. LWORK_SORGBR_Q=DUM(1)
  462. MAXWRK = MAX( MAXWRK, 3*N+LWORK_SORGBR_Q )
  463. END IF
  464. IF( .NOT.WNTVN ) THEN
  465. MAXWRK = MAX( MAXWRK, 3*N+LWORK_SORGBR_P )
  466. END IF
  467. MAXWRK = MAX( MAXWRK, BDSPAC )
  468. MINWRK = MAX( 3*N+M, BDSPAC )
  469. END IF
  470. ELSE IF( MINMN.GT.0 ) THEN
  471. *
  472. * Compute space needed for SBDSQR
  473. *
  474. MNTHR = ILAENV( 6, 'SGESVD', JOBU // JOBVT, M, N, 0, 0 )
  475. BDSPAC = 5*M
  476. * Compute space needed for SGELQF
  477. CALL SGELQF( M, N, A, LDA, DUM(1), DUM(1), -1, IERR )
  478. LWORK_SGELQF=DUM(1)
  479. * Compute space needed for SORGLQ
  480. CALL SORGLQ( N, N, M, DUM(1), N, DUM(1), DUM(1), -1, IERR )
  481. LWORK_SORGLQ_N=DUM(1)
  482. CALL SORGLQ( M, N, M, A, LDA, DUM(1), DUM(1), -1, IERR )
  483. LWORK_SORGLQ_M=DUM(1)
  484. * Compute space needed for SGEBRD
  485. CALL SGEBRD( M, M, A, LDA, S, DUM(1), DUM(1),
  486. $ DUM(1), DUM(1), -1, IERR )
  487. LWORK_SGEBRD=DUM(1)
  488. * Compute space needed for SORGBR P
  489. CALL SORGBR( 'P', M, M, M, A, N, DUM(1),
  490. $ DUM(1), -1, IERR )
  491. LWORK_SORGBR_P=DUM(1)
  492. * Compute space needed for SORGBR Q
  493. CALL SORGBR( 'Q', M, M, M, A, N, DUM(1),
  494. $ DUM(1), -1, IERR )
  495. LWORK_SORGBR_Q=DUM(1)
  496. IF( N.GE.MNTHR ) THEN
  497. IF( WNTVN ) THEN
  498. *
  499. * Path 1t(N much larger than M, JOBVT='N')
  500. *
  501. MAXWRK = M + LWORK_SGELQF
  502. MAXWRK = MAX( MAXWRK, 3*M+LWORK_SGEBRD )
  503. IF( WNTUO .OR. WNTUAS )
  504. $ MAXWRK = MAX( MAXWRK, 3*M+LWORK_SORGBR_Q )
  505. MAXWRK = MAX( MAXWRK, BDSPAC )
  506. MINWRK = MAX( 4*M, BDSPAC )
  507. ELSE IF( WNTVO .AND. WNTUN ) THEN
  508. *
  509. * Path 2t(N much larger than M, JOBU='N', JOBVT='O')
  510. *
  511. WRKBL = M + LWORK_SGELQF
  512. WRKBL = MAX( WRKBL, M+LWORK_SORGLQ_M )
  513. WRKBL = MAX( WRKBL, 3*M+LWORK_SGEBRD )
  514. WRKBL = MAX( WRKBL, 3*M+LWORK_SORGBR_P )
  515. WRKBL = MAX( WRKBL, BDSPAC )
  516. MAXWRK = MAX( M*M+WRKBL, M*M+M*N+M )
  517. MINWRK = MAX( 3*M+N, BDSPAC )
  518. ELSE IF( WNTVO .AND. WNTUAS ) THEN
  519. *
  520. * Path 3t(N much larger than M, JOBU='S' or 'A',
  521. * JOBVT='O')
  522. *
  523. WRKBL = M + LWORK_SGELQF
  524. WRKBL = MAX( WRKBL, M+LWORK_SORGLQ_M )
  525. WRKBL = MAX( WRKBL, 3*M+LWORK_SGEBRD )
  526. WRKBL = MAX( WRKBL, 3*M+LWORK_SORGBR_P )
  527. WRKBL = MAX( WRKBL, 3*M+LWORK_SORGBR_Q )
  528. WRKBL = MAX( WRKBL, BDSPAC )
  529. MAXWRK = MAX( M*M+WRKBL, M*M+M*N+M )
  530. MINWRK = MAX( 3*M+N, BDSPAC )
  531. ELSE IF( WNTVS .AND. WNTUN ) THEN
  532. *
  533. * Path 4t(N much larger than M, JOBU='N', JOBVT='S')
  534. *
  535. WRKBL = M + LWORK_SGELQF
  536. WRKBL = MAX( WRKBL, M+LWORK_SORGLQ_M )
  537. WRKBL = MAX( WRKBL, 3*M+LWORK_SGEBRD )
  538. WRKBL = MAX( WRKBL, 3*M+LWORK_SORGBR_P )
  539. WRKBL = MAX( WRKBL, BDSPAC )
  540. MAXWRK = M*M + WRKBL
  541. MINWRK = MAX( 3*M+N, BDSPAC )
  542. ELSE IF( WNTVS .AND. WNTUO ) THEN
  543. *
  544. * Path 5t(N much larger than M, JOBU='O', JOBVT='S')
  545. *
  546. WRKBL = M + LWORK_SGELQF
  547. WRKBL = MAX( WRKBL, M+LWORK_SORGLQ_M )
  548. WRKBL = MAX( WRKBL, 3*M+LWORK_SGEBRD )
  549. WRKBL = MAX( WRKBL, 3*M+LWORK_SORGBR_P )
  550. WRKBL = MAX( WRKBL, 3*M+LWORK_SORGBR_Q )
  551. WRKBL = MAX( WRKBL, BDSPAC )
  552. MAXWRK = 2*M*M + WRKBL
  553. MINWRK = MAX( 3*M+N, BDSPAC )
  554. MAXWRK = MAX( MAXWRK, MINWRK )
  555. ELSE IF( WNTVS .AND. WNTUAS ) THEN
  556. *
  557. * Path 6t(N much larger than M, JOBU='S' or 'A',
  558. * JOBVT='S')
  559. *
  560. WRKBL = M + LWORK_SGELQF
  561. WRKBL = MAX( WRKBL, M+LWORK_SORGLQ_M )
  562. WRKBL = MAX( WRKBL, 3*M+LWORK_SGEBRD )
  563. WRKBL = MAX( WRKBL, 3*M+LWORK_SORGBR_P )
  564. WRKBL = MAX( WRKBL, 3*M+LWORK_SORGBR_Q )
  565. WRKBL = MAX( WRKBL, BDSPAC )
  566. MAXWRK = M*M + WRKBL
  567. MINWRK = MAX( 3*M+N, BDSPAC )
  568. ELSE IF( WNTVA .AND. WNTUN ) THEN
  569. *
  570. * Path 7t(N much larger than M, JOBU='N', JOBVT='A')
  571. *
  572. WRKBL = M + LWORK_SGELQF
  573. WRKBL = MAX( WRKBL, M+LWORK_SORGLQ_N )
  574. WRKBL = MAX( WRKBL, 3*M+LWORK_SGEBRD )
  575. WRKBL = MAX( WRKBL, 3*M+LWORK_SORGBR_P )
  576. WRKBL = MAX( WRKBL, BDSPAC )
  577. MAXWRK = M*M + WRKBL
  578. MINWRK = MAX( 3*M+N, BDSPAC )
  579. ELSE IF( WNTVA .AND. WNTUO ) THEN
  580. *
  581. * Path 8t(N much larger than M, JOBU='O', JOBVT='A')
  582. *
  583. WRKBL = M + LWORK_SGELQF
  584. WRKBL = MAX( WRKBL, M+LWORK_SORGLQ_N )
  585. WRKBL = MAX( WRKBL, 3*M+LWORK_SGEBRD )
  586. WRKBL = MAX( WRKBL, 3*M+LWORK_SORGBR_P )
  587. WRKBL = MAX( WRKBL, 3*M+LWORK_SORGBR_Q )
  588. WRKBL = MAX( WRKBL, BDSPAC )
  589. MAXWRK = 2*M*M + WRKBL
  590. MINWRK = MAX( 3*M+N, BDSPAC )
  591. ELSE IF( WNTVA .AND. WNTUAS ) THEN
  592. *
  593. * Path 9t(N much larger than M, JOBU='S' or 'A',
  594. * JOBVT='A')
  595. *
  596. WRKBL = M + LWORK_SGELQF
  597. WRKBL = MAX( WRKBL, M+LWORK_SORGLQ_N )
  598. WRKBL = MAX( WRKBL, 3*M+LWORK_SGEBRD )
  599. WRKBL = MAX( WRKBL, 3*M+LWORK_SORGBR_P )
  600. WRKBL = MAX( WRKBL, 3*M+LWORK_SORGBR_Q )
  601. WRKBL = MAX( WRKBL, BDSPAC )
  602. MAXWRK = M*M + WRKBL
  603. MINWRK = MAX( 3*M+N, BDSPAC )
  604. END IF
  605. ELSE
  606. *
  607. * Path 10t(N greater than M, but not much larger)
  608. *
  609. CALL SGEBRD( M, N, A, LDA, S, DUM(1), DUM(1),
  610. $ DUM(1), DUM(1), -1, IERR )
  611. LWORK_SGEBRD=DUM(1)
  612. MAXWRK = 3*M + LWORK_SGEBRD
  613. IF( WNTVS .OR. WNTVO ) THEN
  614. * Compute space needed for SORGBR P
  615. CALL SORGBR( 'P', M, N, M, A, N, DUM(1),
  616. $ DUM(1), -1, IERR )
  617. LWORK_SORGBR_P=DUM(1)
  618. MAXWRK = MAX( MAXWRK, 3*M+LWORK_SORGBR_P )
  619. END IF
  620. IF( WNTVA ) THEN
  621. CALL SORGBR( 'P', N, N, M, A, N, DUM(1),
  622. $ DUM(1), -1, IERR )
  623. LWORK_SORGBR_P=DUM(1)
  624. MAXWRK = MAX( MAXWRK, 3*M+LWORK_SORGBR_P )
  625. END IF
  626. IF( .NOT.WNTUN ) THEN
  627. MAXWRK = MAX( MAXWRK, 3*M+LWORK_SORGBR_Q )
  628. END IF
  629. MAXWRK = MAX( MAXWRK, BDSPAC )
  630. MINWRK = MAX( 3*M+N, BDSPAC )
  631. END IF
  632. END IF
  633. MAXWRK = MAX( MAXWRK, MINWRK )
  634. WORK( 1 ) = MAXWRK
  635. *
  636. IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  637. INFO = -13
  638. END IF
  639. END IF
  640. *
  641. IF( INFO.NE.0 ) THEN
  642. CALL XERBLA( 'SGESVD', -INFO )
  643. RETURN
  644. ELSE IF( LQUERY ) THEN
  645. RETURN
  646. END IF
  647. *
  648. * Quick return if possible
  649. *
  650. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  651. RETURN
  652. END IF
  653. *
  654. * Get machine constants
  655. *
  656. EPS = SLAMCH( 'P' )
  657. SMLNUM = SQRT( SLAMCH( 'S' ) ) / EPS
  658. BIGNUM = ONE / SMLNUM
  659. *
  660. * Scale A if max element outside range [SMLNUM,BIGNUM]
  661. *
  662. ANRM = SLANGE( 'M', M, N, A, LDA, DUM )
  663. ISCL = 0
  664. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  665. ISCL = 1
  666. CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, IERR )
  667. ELSE IF( ANRM.GT.BIGNUM ) THEN
  668. ISCL = 1
  669. CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, IERR )
  670. END IF
  671. *
  672. IF( M.GE.N ) THEN
  673. *
  674. * A has at least as many rows as columns. If A has sufficiently
  675. * more rows than columns, first reduce using the QR
  676. * decomposition (if sufficient workspace available)
  677. *
  678. IF( M.GE.MNTHR ) THEN
  679. *
  680. IF( WNTUN ) THEN
  681. *
  682. * Path 1 (M much larger than N, JOBU='N')
  683. * No left singular vectors to be computed
  684. *
  685. ITAU = 1
  686. IWORK = ITAU + N
  687. *
  688. * Compute A=Q*R
  689. * (Workspace: need 2*N, prefer N+N*NB)
  690. *
  691. CALL SGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
  692. $ LWORK-IWORK+1, IERR )
  693. *
  694. * Zero out below R
  695. *
  696. CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
  697. IE = 1
  698. ITAUQ = IE + N
  699. ITAUP = ITAUQ + N
  700. IWORK = ITAUP + N
  701. *
  702. * Bidiagonalize R in A
  703. * (Workspace: need 4*N, prefer 3*N+2*N*NB)
  704. *
  705. CALL SGEBRD( N, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  706. $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  707. $ IERR )
  708. NCVT = 0
  709. IF( WNTVO .OR. WNTVAS ) THEN
  710. *
  711. * If right singular vectors desired, generate P'.
  712. * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  713. *
  714. CALL SORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
  715. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  716. NCVT = N
  717. END IF
  718. IWORK = IE + N
  719. *
  720. * Perform bidiagonal QR iteration, computing right
  721. * singular vectors of A in A if desired
  722. * (Workspace: need BDSPAC)
  723. *
  724. CALL SBDSQR( 'U', N, NCVT, 0, 0, S, WORK( IE ), A, LDA,
  725. $ DUM, 1, DUM, 1, WORK( IWORK ), INFO )
  726. *
  727. * If right singular vectors desired in VT, copy them there
  728. *
  729. IF( WNTVAS )
  730. $ CALL SLACPY( 'F', N, N, A, LDA, VT, LDVT )
  731. *
  732. ELSE IF( WNTUO .AND. WNTVN ) THEN
  733. *
  734. * Path 2 (M much larger than N, JOBU='O', JOBVT='N')
  735. * N left singular vectors to be overwritten on A and
  736. * no right singular vectors to be computed
  737. *
  738. IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
  739. *
  740. * Sufficient workspace for a fast algorithm
  741. *
  742. IR = 1
  743. IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+LDA*N ) THEN
  744. *
  745. * WORK(IU) is LDA by N, WORK(IR) is LDA by N
  746. *
  747. LDWRKU = LDA
  748. LDWRKR = LDA
  749. ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+N*N ) THEN
  750. *
  751. * WORK(IU) is LDA by N, WORK(IR) is N by N
  752. *
  753. LDWRKU = LDA
  754. LDWRKR = N
  755. ELSE
  756. *
  757. * WORK(IU) is LDWRKU by N, WORK(IR) is N by N
  758. *
  759. LDWRKU = ( LWORK-N*N-N ) / N
  760. LDWRKR = N
  761. END IF
  762. ITAU = IR + LDWRKR*N
  763. IWORK = ITAU + N
  764. *
  765. * Compute A=Q*R
  766. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  767. *
  768. CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
  769. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  770. *
  771. * Copy R to WORK(IR) and zero out below it
  772. *
  773. CALL SLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
  774. CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, WORK( IR+1 ),
  775. $ LDWRKR )
  776. *
  777. * Generate Q in A
  778. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  779. *
  780. CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
  781. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  782. IE = ITAU
  783. ITAUQ = IE + N
  784. ITAUP = ITAUQ + N
  785. IWORK = ITAUP + N
  786. *
  787. * Bidiagonalize R in WORK(IR)
  788. * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
  789. *
  790. CALL SGEBRD( N, N, WORK( IR ), LDWRKR, S, WORK( IE ),
  791. $ WORK( ITAUQ ), WORK( ITAUP ),
  792. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  793. *
  794. * Generate left vectors bidiagonalizing R
  795. * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
  796. *
  797. CALL SORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
  798. $ WORK( ITAUQ ), WORK( IWORK ),
  799. $ LWORK-IWORK+1, IERR )
  800. IWORK = IE + N
  801. *
  802. * Perform bidiagonal QR iteration, computing left
  803. * singular vectors of R in WORK(IR)
  804. * (Workspace: need N*N+BDSPAC)
  805. *
  806. CALL SBDSQR( 'U', N, 0, N, 0, S, WORK( IE ), DUM, 1,
  807. $ WORK( IR ), LDWRKR, DUM, 1,
  808. $ WORK( IWORK ), INFO )
  809. IU = IE + N
  810. *
  811. * Multiply Q in A by left singular vectors of R in
  812. * WORK(IR), storing result in WORK(IU) and copying to A
  813. * (Workspace: need N*N+2*N, prefer N*N+M*N+N)
  814. *
  815. DO 10 I = 1, M, LDWRKU
  816. CHUNK = MIN( M-I+1, LDWRKU )
  817. CALL SGEMM( 'N', 'N', CHUNK, N, N, ONE, A( I, 1 ),
  818. $ LDA, WORK( IR ), LDWRKR, ZERO,
  819. $ WORK( IU ), LDWRKU )
  820. CALL SLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
  821. $ A( I, 1 ), LDA )
  822. 10 CONTINUE
  823. *
  824. ELSE
  825. *
  826. * Insufficient workspace for a fast algorithm
  827. *
  828. IE = 1
  829. ITAUQ = IE + N
  830. ITAUP = ITAUQ + N
  831. IWORK = ITAUP + N
  832. *
  833. * Bidiagonalize A
  834. * (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB)
  835. *
  836. CALL SGEBRD( M, N, A, LDA, S, WORK( IE ),
  837. $ WORK( ITAUQ ), WORK( ITAUP ),
  838. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  839. *
  840. * Generate left vectors bidiagonalizing A
  841. * (Workspace: need 4*N, prefer 3*N+N*NB)
  842. *
  843. CALL SORGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
  844. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  845. IWORK = IE + N
  846. *
  847. * Perform bidiagonal QR iteration, computing left
  848. * singular vectors of A in A
  849. * (Workspace: need BDSPAC)
  850. *
  851. CALL SBDSQR( 'U', N, 0, M, 0, S, WORK( IE ), DUM, 1,
  852. $ A, LDA, DUM, 1, WORK( IWORK ), INFO )
  853. *
  854. END IF
  855. *
  856. ELSE IF( WNTUO .AND. WNTVAS ) THEN
  857. *
  858. * Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A')
  859. * N left singular vectors to be overwritten on A and
  860. * N right singular vectors to be computed in VT
  861. *
  862. IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
  863. *
  864. * Sufficient workspace for a fast algorithm
  865. *
  866. IR = 1
  867. IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+LDA*N ) THEN
  868. *
  869. * WORK(IU) is LDA by N and WORK(IR) is LDA by N
  870. *
  871. LDWRKU = LDA
  872. LDWRKR = LDA
  873. ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+N*N ) THEN
  874. *
  875. * WORK(IU) is LDA by N and WORK(IR) is N by N
  876. *
  877. LDWRKU = LDA
  878. LDWRKR = N
  879. ELSE
  880. *
  881. * WORK(IU) is LDWRKU by N and WORK(IR) is N by N
  882. *
  883. LDWRKU = ( LWORK-N*N-N ) / N
  884. LDWRKR = N
  885. END IF
  886. ITAU = IR + LDWRKR*N
  887. IWORK = ITAU + N
  888. *
  889. * Compute A=Q*R
  890. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  891. *
  892. CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
  893. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  894. *
  895. * Copy R to VT, zeroing out below it
  896. *
  897. CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
  898. IF( N.GT.1 )
  899. $ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
  900. $ VT( 2, 1 ), LDVT )
  901. *
  902. * Generate Q in A
  903. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  904. *
  905. CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
  906. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  907. IE = ITAU
  908. ITAUQ = IE + N
  909. ITAUP = ITAUQ + N
  910. IWORK = ITAUP + N
  911. *
  912. * Bidiagonalize R in VT, copying result to WORK(IR)
  913. * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
  914. *
  915. CALL SGEBRD( N, N, VT, LDVT, S, WORK( IE ),
  916. $ WORK( ITAUQ ), WORK( ITAUP ),
  917. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  918. CALL SLACPY( 'L', N, N, VT, LDVT, WORK( IR ), LDWRKR )
  919. *
  920. * Generate left vectors bidiagonalizing R in WORK(IR)
  921. * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
  922. *
  923. CALL SORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
  924. $ WORK( ITAUQ ), WORK( IWORK ),
  925. $ LWORK-IWORK+1, IERR )
  926. *
  927. * Generate right vectors bidiagonalizing R in VT
  928. * (Workspace: need N*N+4*N-1, prefer N*N+3*N+(N-1)*NB)
  929. *
  930. CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  931. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  932. IWORK = IE + N
  933. *
  934. * Perform bidiagonal QR iteration, computing left
  935. * singular vectors of R in WORK(IR) and computing right
  936. * singular vectors of R in VT
  937. * (Workspace: need N*N+BDSPAC)
  938. *
  939. CALL SBDSQR( 'U', N, N, N, 0, S, WORK( IE ), VT, LDVT,
  940. $ WORK( IR ), LDWRKR, DUM, 1,
  941. $ WORK( IWORK ), INFO )
  942. IU = IE + N
  943. *
  944. * Multiply Q in A by left singular vectors of R in
  945. * WORK(IR), storing result in WORK(IU) and copying to A
  946. * (Workspace: need N*N+2*N, prefer N*N+M*N+N)
  947. *
  948. DO 20 I = 1, M, LDWRKU
  949. CHUNK = MIN( M-I+1, LDWRKU )
  950. CALL SGEMM( 'N', 'N', CHUNK, N, N, ONE, A( I, 1 ),
  951. $ LDA, WORK( IR ), LDWRKR, ZERO,
  952. $ WORK( IU ), LDWRKU )
  953. CALL SLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
  954. $ A( I, 1 ), LDA )
  955. 20 CONTINUE
  956. *
  957. ELSE
  958. *
  959. * Insufficient workspace for a fast algorithm
  960. *
  961. ITAU = 1
  962. IWORK = ITAU + N
  963. *
  964. * Compute A=Q*R
  965. * (Workspace: need 2*N, prefer N+N*NB)
  966. *
  967. CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
  968. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  969. *
  970. * Copy R to VT, zeroing out below it
  971. *
  972. CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
  973. IF( N.GT.1 )
  974. $ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
  975. $ VT( 2, 1 ), LDVT )
  976. *
  977. * Generate Q in A
  978. * (Workspace: need 2*N, prefer N+N*NB)
  979. *
  980. CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
  981. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  982. IE = ITAU
  983. ITAUQ = IE + N
  984. ITAUP = ITAUQ + N
  985. IWORK = ITAUP + N
  986. *
  987. * Bidiagonalize R in VT
  988. * (Workspace: need 4*N, prefer 3*N+2*N*NB)
  989. *
  990. CALL SGEBRD( N, N, VT, LDVT, S, WORK( IE ),
  991. $ WORK( ITAUQ ), WORK( ITAUP ),
  992. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  993. *
  994. * Multiply Q in A by left vectors bidiagonalizing R
  995. * (Workspace: need 3*N+M, prefer 3*N+M*NB)
  996. *
  997. CALL SORMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
  998. $ WORK( ITAUQ ), A, LDA, WORK( IWORK ),
  999. $ LWORK-IWORK+1, IERR )
  1000. *
  1001. * Generate right vectors bidiagonalizing R in VT
  1002. * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  1003. *
  1004. CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1005. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1006. IWORK = IE + N
  1007. *
  1008. * Perform bidiagonal QR iteration, computing left
  1009. * singular vectors of A in A and computing right
  1010. * singular vectors of A in VT
  1011. * (Workspace: need BDSPAC)
  1012. *
  1013. CALL SBDSQR( 'U', N, N, M, 0, S, WORK( IE ), VT, LDVT,
  1014. $ A, LDA, DUM, 1, WORK( IWORK ), INFO )
  1015. *
  1016. END IF
  1017. *
  1018. ELSE IF( WNTUS ) THEN
  1019. *
  1020. IF( WNTVN ) THEN
  1021. *
  1022. * Path 4 (M much larger than N, JOBU='S', JOBVT='N')
  1023. * N left singular vectors to be computed in U and
  1024. * no right singular vectors to be computed
  1025. *
  1026. IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
  1027. *
  1028. * Sufficient workspace for a fast algorithm
  1029. *
  1030. IR = 1
  1031. IF( LWORK.GE.WRKBL+LDA*N ) THEN
  1032. *
  1033. * WORK(IR) is LDA by N
  1034. *
  1035. LDWRKR = LDA
  1036. ELSE
  1037. *
  1038. * WORK(IR) is N by N
  1039. *
  1040. LDWRKR = N
  1041. END IF
  1042. ITAU = IR + LDWRKR*N
  1043. IWORK = ITAU + N
  1044. *
  1045. * Compute A=Q*R
  1046. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  1047. *
  1048. CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
  1049. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1050. *
  1051. * Copy R to WORK(IR), zeroing out below it
  1052. *
  1053. CALL SLACPY( 'U', N, N, A, LDA, WORK( IR ),
  1054. $ LDWRKR )
  1055. CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
  1056. $ WORK( IR+1 ), LDWRKR )
  1057. *
  1058. * Generate Q in A
  1059. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  1060. *
  1061. CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
  1062. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1063. IE = ITAU
  1064. ITAUQ = IE + N
  1065. ITAUP = ITAUQ + N
  1066. IWORK = ITAUP + N
  1067. *
  1068. * Bidiagonalize R in WORK(IR)
  1069. * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
  1070. *
  1071. CALL SGEBRD( N, N, WORK( IR ), LDWRKR, S,
  1072. $ WORK( IE ), WORK( ITAUQ ),
  1073. $ WORK( ITAUP ), WORK( IWORK ),
  1074. $ LWORK-IWORK+1, IERR )
  1075. *
  1076. * Generate left vectors bidiagonalizing R in WORK(IR)
  1077. * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
  1078. *
  1079. CALL SORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
  1080. $ WORK( ITAUQ ), WORK( IWORK ),
  1081. $ LWORK-IWORK+1, IERR )
  1082. IWORK = IE + N
  1083. *
  1084. * Perform bidiagonal QR iteration, computing left
  1085. * singular vectors of R in WORK(IR)
  1086. * (Workspace: need N*N+BDSPAC)
  1087. *
  1088. CALL SBDSQR( 'U', N, 0, N, 0, S, WORK( IE ), DUM,
  1089. $ 1, WORK( IR ), LDWRKR, DUM, 1,
  1090. $ WORK( IWORK ), INFO )
  1091. *
  1092. * Multiply Q in A by left singular vectors of R in
  1093. * WORK(IR), storing result in U
  1094. * (Workspace: need N*N)
  1095. *
  1096. CALL SGEMM( 'N', 'N', M, N, N, ONE, A, LDA,
  1097. $ WORK( IR ), LDWRKR, ZERO, U, LDU )
  1098. *
  1099. ELSE
  1100. *
  1101. * Insufficient workspace for a fast algorithm
  1102. *
  1103. ITAU = 1
  1104. IWORK = ITAU + N
  1105. *
  1106. * Compute A=Q*R, copying result to U
  1107. * (Workspace: need 2*N, prefer N+N*NB)
  1108. *
  1109. CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
  1110. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1111. CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
  1112. *
  1113. * Generate Q in U
  1114. * (Workspace: need 2*N, prefer N+N*NB)
  1115. *
  1116. CALL SORGQR( M, N, N, U, LDU, WORK( ITAU ),
  1117. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1118. IE = ITAU
  1119. ITAUQ = IE + N
  1120. ITAUP = ITAUQ + N
  1121. IWORK = ITAUP + N
  1122. *
  1123. * Zero out below R in A
  1124. *
  1125. CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ),
  1126. $ LDA )
  1127. *
  1128. * Bidiagonalize R in A
  1129. * (Workspace: need 4*N, prefer 3*N+2*N*NB)
  1130. *
  1131. CALL SGEBRD( N, N, A, LDA, S, WORK( IE ),
  1132. $ WORK( ITAUQ ), WORK( ITAUP ),
  1133. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1134. *
  1135. * Multiply Q in U by left vectors bidiagonalizing R
  1136. * (Workspace: need 3*N+M, prefer 3*N+M*NB)
  1137. *
  1138. CALL SORMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
  1139. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  1140. $ LWORK-IWORK+1, IERR )
  1141. IWORK = IE + N
  1142. *
  1143. * Perform bidiagonal QR iteration, computing left
  1144. * singular vectors of A in U
  1145. * (Workspace: need BDSPAC)
  1146. *
  1147. CALL SBDSQR( 'U', N, 0, M, 0, S, WORK( IE ), DUM,
  1148. $ 1, U, LDU, DUM, 1, WORK( IWORK ),
  1149. $ INFO )
  1150. *
  1151. END IF
  1152. *
  1153. ELSE IF( WNTVO ) THEN
  1154. *
  1155. * Path 5 (M much larger than N, JOBU='S', JOBVT='O')
  1156. * N left singular vectors to be computed in U and
  1157. * N right singular vectors to be overwritten on A
  1158. *
  1159. IF( LWORK.GE.2*N*N+MAX( 4*N, BDSPAC ) ) THEN
  1160. *
  1161. * Sufficient workspace for a fast algorithm
  1162. *
  1163. IU = 1
  1164. IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
  1165. *
  1166. * WORK(IU) is LDA by N and WORK(IR) is LDA by N
  1167. *
  1168. LDWRKU = LDA
  1169. IR = IU + LDWRKU*N
  1170. LDWRKR = LDA
  1171. ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
  1172. *
  1173. * WORK(IU) is LDA by N and WORK(IR) is N by N
  1174. *
  1175. LDWRKU = LDA
  1176. IR = IU + LDWRKU*N
  1177. LDWRKR = N
  1178. ELSE
  1179. *
  1180. * WORK(IU) is N by N and WORK(IR) is N by N
  1181. *
  1182. LDWRKU = N
  1183. IR = IU + LDWRKU*N
  1184. LDWRKR = N
  1185. END IF
  1186. ITAU = IR + LDWRKR*N
  1187. IWORK = ITAU + N
  1188. *
  1189. * Compute A=Q*R
  1190. * (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
  1191. *
  1192. CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
  1193. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1194. *
  1195. * Copy R to WORK(IU), zeroing out below it
  1196. *
  1197. CALL SLACPY( 'U', N, N, A, LDA, WORK( IU ),
  1198. $ LDWRKU )
  1199. CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
  1200. $ WORK( IU+1 ), LDWRKU )
  1201. *
  1202. * Generate Q in A
  1203. * (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
  1204. *
  1205. CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
  1206. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1207. IE = ITAU
  1208. ITAUQ = IE + N
  1209. ITAUP = ITAUQ + N
  1210. IWORK = ITAUP + N
  1211. *
  1212. * Bidiagonalize R in WORK(IU), copying result to
  1213. * WORK(IR)
  1214. * (Workspace: need 2*N*N+4*N,
  1215. * prefer 2*N*N+3*N+2*N*NB)
  1216. *
  1217. CALL SGEBRD( N, N, WORK( IU ), LDWRKU, S,
  1218. $ WORK( IE ), WORK( ITAUQ ),
  1219. $ WORK( ITAUP ), WORK( IWORK ),
  1220. $ LWORK-IWORK+1, IERR )
  1221. CALL SLACPY( 'U', N, N, WORK( IU ), LDWRKU,
  1222. $ WORK( IR ), LDWRKR )
  1223. *
  1224. * Generate left bidiagonalizing vectors in WORK(IU)
  1225. * (Workspace: need 2*N*N+4*N, prefer 2*N*N+3*N+N*NB)
  1226. *
  1227. CALL SORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
  1228. $ WORK( ITAUQ ), WORK( IWORK ),
  1229. $ LWORK-IWORK+1, IERR )
  1230. *
  1231. * Generate right bidiagonalizing vectors in WORK(IR)
  1232. * (Workspace: need 2*N*N+4*N-1,
  1233. * prefer 2*N*N+3*N+(N-1)*NB)
  1234. *
  1235. CALL SORGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
  1236. $ WORK( ITAUP ), WORK( IWORK ),
  1237. $ LWORK-IWORK+1, IERR )
  1238. IWORK = IE + N
  1239. *
  1240. * Perform bidiagonal QR iteration, computing left
  1241. * singular vectors of R in WORK(IU) and computing
  1242. * right singular vectors of R in WORK(IR)
  1243. * (Workspace: need 2*N*N+BDSPAC)
  1244. *
  1245. CALL SBDSQR( 'U', N, N, N, 0, S, WORK( IE ),
  1246. $ WORK( IR ), LDWRKR, WORK( IU ),
  1247. $ LDWRKU, DUM, 1, WORK( IWORK ), INFO )
  1248. *
  1249. * Multiply Q in A by left singular vectors of R in
  1250. * WORK(IU), storing result in U
  1251. * (Workspace: need N*N)
  1252. *
  1253. CALL SGEMM( 'N', 'N', M, N, N, ONE, A, LDA,
  1254. $ WORK( IU ), LDWRKU, ZERO, U, LDU )
  1255. *
  1256. * Copy right singular vectors of R to A
  1257. * (Workspace: need N*N)
  1258. *
  1259. CALL SLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
  1260. $ LDA )
  1261. *
  1262. ELSE
  1263. *
  1264. * Insufficient workspace for a fast algorithm
  1265. *
  1266. ITAU = 1
  1267. IWORK = ITAU + N
  1268. *
  1269. * Compute A=Q*R, copying result to U
  1270. * (Workspace: need 2*N, prefer N+N*NB)
  1271. *
  1272. CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
  1273. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1274. CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
  1275. *
  1276. * Generate Q in U
  1277. * (Workspace: need 2*N, prefer N+N*NB)
  1278. *
  1279. CALL SORGQR( M, N, N, U, LDU, WORK( ITAU ),
  1280. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1281. IE = ITAU
  1282. ITAUQ = IE + N
  1283. ITAUP = ITAUQ + N
  1284. IWORK = ITAUP + N
  1285. *
  1286. * Zero out below R in A
  1287. *
  1288. CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ),
  1289. $ LDA )
  1290. *
  1291. * Bidiagonalize R in A
  1292. * (Workspace: need 4*N, prefer 3*N+2*N*NB)
  1293. *
  1294. CALL SGEBRD( N, N, A, LDA, S, WORK( IE ),
  1295. $ WORK( ITAUQ ), WORK( ITAUP ),
  1296. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1297. *
  1298. * Multiply Q in U by left vectors bidiagonalizing R
  1299. * (Workspace: need 3*N+M, prefer 3*N+M*NB)
  1300. *
  1301. CALL SORMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
  1302. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  1303. $ LWORK-IWORK+1, IERR )
  1304. *
  1305. * Generate right vectors bidiagonalizing R in A
  1306. * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  1307. *
  1308. CALL SORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
  1309. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1310. IWORK = IE + N
  1311. *
  1312. * Perform bidiagonal QR iteration, computing left
  1313. * singular vectors of A in U and computing right
  1314. * singular vectors of A in A
  1315. * (Workspace: need BDSPAC)
  1316. *
  1317. CALL SBDSQR( 'U', N, N, M, 0, S, WORK( IE ), A,
  1318. $ LDA, U, LDU, DUM, 1, WORK( IWORK ),
  1319. $ INFO )
  1320. *
  1321. END IF
  1322. *
  1323. ELSE IF( WNTVAS ) THEN
  1324. *
  1325. * Path 6 (M much larger than N, JOBU='S', JOBVT='S'
  1326. * or 'A')
  1327. * N left singular vectors to be computed in U and
  1328. * N right singular vectors to be computed in VT
  1329. *
  1330. IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
  1331. *
  1332. * Sufficient workspace for a fast algorithm
  1333. *
  1334. IU = 1
  1335. IF( LWORK.GE.WRKBL+LDA*N ) THEN
  1336. *
  1337. * WORK(IU) is LDA by N
  1338. *
  1339. LDWRKU = LDA
  1340. ELSE
  1341. *
  1342. * WORK(IU) is N by N
  1343. *
  1344. LDWRKU = N
  1345. END IF
  1346. ITAU = IU + LDWRKU*N
  1347. IWORK = ITAU + N
  1348. *
  1349. * Compute A=Q*R
  1350. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  1351. *
  1352. CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
  1353. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1354. *
  1355. * Copy R to WORK(IU), zeroing out below it
  1356. *
  1357. CALL SLACPY( 'U', N, N, A, LDA, WORK( IU ),
  1358. $ LDWRKU )
  1359. CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
  1360. $ WORK( IU+1 ), LDWRKU )
  1361. *
  1362. * Generate Q in A
  1363. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  1364. *
  1365. CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
  1366. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1367. IE = ITAU
  1368. ITAUQ = IE + N
  1369. ITAUP = ITAUQ + N
  1370. IWORK = ITAUP + N
  1371. *
  1372. * Bidiagonalize R in WORK(IU), copying result to VT
  1373. * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
  1374. *
  1375. CALL SGEBRD( N, N, WORK( IU ), LDWRKU, S,
  1376. $ WORK( IE ), WORK( ITAUQ ),
  1377. $ WORK( ITAUP ), WORK( IWORK ),
  1378. $ LWORK-IWORK+1, IERR )
  1379. CALL SLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
  1380. $ LDVT )
  1381. *
  1382. * Generate left bidiagonalizing vectors in WORK(IU)
  1383. * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
  1384. *
  1385. CALL SORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
  1386. $ WORK( ITAUQ ), WORK( IWORK ),
  1387. $ LWORK-IWORK+1, IERR )
  1388. *
  1389. * Generate right bidiagonalizing vectors in VT
  1390. * (Workspace: need N*N+4*N-1,
  1391. * prefer N*N+3*N+(N-1)*NB)
  1392. *
  1393. CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1394. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1395. IWORK = IE + N
  1396. *
  1397. * Perform bidiagonal QR iteration, computing left
  1398. * singular vectors of R in WORK(IU) and computing
  1399. * right singular vectors of R in VT
  1400. * (Workspace: need N*N+BDSPAC)
  1401. *
  1402. CALL SBDSQR( 'U', N, N, N, 0, S, WORK( IE ), VT,
  1403. $ LDVT, WORK( IU ), LDWRKU, DUM, 1,
  1404. $ WORK( IWORK ), INFO )
  1405. *
  1406. * Multiply Q in A by left singular vectors of R in
  1407. * WORK(IU), storing result in U
  1408. * (Workspace: need N*N)
  1409. *
  1410. CALL SGEMM( 'N', 'N', M, N, N, ONE, A, LDA,
  1411. $ WORK( IU ), LDWRKU, ZERO, U, LDU )
  1412. *
  1413. ELSE
  1414. *
  1415. * Insufficient workspace for a fast algorithm
  1416. *
  1417. ITAU = 1
  1418. IWORK = ITAU + N
  1419. *
  1420. * Compute A=Q*R, copying result to U
  1421. * (Workspace: need 2*N, prefer N+N*NB)
  1422. *
  1423. CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
  1424. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1425. CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
  1426. *
  1427. * Generate Q in U
  1428. * (Workspace: need 2*N, prefer N+N*NB)
  1429. *
  1430. CALL SORGQR( M, N, N, U, LDU, WORK( ITAU ),
  1431. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1432. *
  1433. * Copy R to VT, zeroing out below it
  1434. *
  1435. CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
  1436. IF( N.GT.1 )
  1437. $ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
  1438. $ VT( 2, 1 ), LDVT )
  1439. IE = ITAU
  1440. ITAUQ = IE + N
  1441. ITAUP = ITAUQ + N
  1442. IWORK = ITAUP + N
  1443. *
  1444. * Bidiagonalize R in VT
  1445. * (Workspace: need 4*N, prefer 3*N+2*N*NB)
  1446. *
  1447. CALL SGEBRD( N, N, VT, LDVT, S, WORK( IE ),
  1448. $ WORK( ITAUQ ), WORK( ITAUP ),
  1449. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1450. *
  1451. * Multiply Q in U by left bidiagonalizing vectors
  1452. * in VT
  1453. * (Workspace: need 3*N+M, prefer 3*N+M*NB)
  1454. *
  1455. CALL SORMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
  1456. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  1457. $ LWORK-IWORK+1, IERR )
  1458. *
  1459. * Generate right bidiagonalizing vectors in VT
  1460. * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  1461. *
  1462. CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1463. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1464. IWORK = IE + N
  1465. *
  1466. * Perform bidiagonal QR iteration, computing left
  1467. * singular vectors of A in U and computing right
  1468. * singular vectors of A in VT
  1469. * (Workspace: need BDSPAC)
  1470. *
  1471. CALL SBDSQR( 'U', N, N, M, 0, S, WORK( IE ), VT,
  1472. $ LDVT, U, LDU, DUM, 1, WORK( IWORK ),
  1473. $ INFO )
  1474. *
  1475. END IF
  1476. *
  1477. END IF
  1478. *
  1479. ELSE IF( WNTUA ) THEN
  1480. *
  1481. IF( WNTVN ) THEN
  1482. *
  1483. * Path 7 (M much larger than N, JOBU='A', JOBVT='N')
  1484. * M left singular vectors to be computed in U and
  1485. * no right singular vectors to be computed
  1486. *
  1487. IF( LWORK.GE.N*N+MAX( N+M, 4*N, BDSPAC ) ) THEN
  1488. *
  1489. * Sufficient workspace for a fast algorithm
  1490. *
  1491. IR = 1
  1492. IF( LWORK.GE.WRKBL+LDA*N ) THEN
  1493. *
  1494. * WORK(IR) is LDA by N
  1495. *
  1496. LDWRKR = LDA
  1497. ELSE
  1498. *
  1499. * WORK(IR) is N by N
  1500. *
  1501. LDWRKR = N
  1502. END IF
  1503. ITAU = IR + LDWRKR*N
  1504. IWORK = ITAU + N
  1505. *
  1506. * Compute A=Q*R, copying result to U
  1507. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  1508. *
  1509. CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
  1510. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1511. CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
  1512. *
  1513. * Copy R to WORK(IR), zeroing out below it
  1514. *
  1515. CALL SLACPY( 'U', N, N, A, LDA, WORK( IR ),
  1516. $ LDWRKR )
  1517. CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
  1518. $ WORK( IR+1 ), LDWRKR )
  1519. *
  1520. * Generate Q in U
  1521. * (Workspace: need N*N+N+M, prefer N*N+N+M*NB)
  1522. *
  1523. CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
  1524. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1525. IE = ITAU
  1526. ITAUQ = IE + N
  1527. ITAUP = ITAUQ + N
  1528. IWORK = ITAUP + N
  1529. *
  1530. * Bidiagonalize R in WORK(IR)
  1531. * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
  1532. *
  1533. CALL SGEBRD( N, N, WORK( IR ), LDWRKR, S,
  1534. $ WORK( IE ), WORK( ITAUQ ),
  1535. $ WORK( ITAUP ), WORK( IWORK ),
  1536. $ LWORK-IWORK+1, IERR )
  1537. *
  1538. * Generate left bidiagonalizing vectors in WORK(IR)
  1539. * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
  1540. *
  1541. CALL SORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
  1542. $ WORK( ITAUQ ), WORK( IWORK ),
  1543. $ LWORK-IWORK+1, IERR )
  1544. IWORK = IE + N
  1545. *
  1546. * Perform bidiagonal QR iteration, computing left
  1547. * singular vectors of R in WORK(IR)
  1548. * (Workspace: need N*N+BDSPAC)
  1549. *
  1550. CALL SBDSQR( 'U', N, 0, N, 0, S, WORK( IE ), DUM,
  1551. $ 1, WORK( IR ), LDWRKR, DUM, 1,
  1552. $ WORK( IWORK ), INFO )
  1553. *
  1554. * Multiply Q in U by left singular vectors of R in
  1555. * WORK(IR), storing result in A
  1556. * (Workspace: need N*N)
  1557. *
  1558. CALL SGEMM( 'N', 'N', M, N, N, ONE, U, LDU,
  1559. $ WORK( IR ), LDWRKR, ZERO, A, LDA )
  1560. *
  1561. * Copy left singular vectors of A from A to U
  1562. *
  1563. CALL SLACPY( 'F', M, N, A, LDA, U, LDU )
  1564. *
  1565. ELSE
  1566. *
  1567. * Insufficient workspace for a fast algorithm
  1568. *
  1569. ITAU = 1
  1570. IWORK = ITAU + N
  1571. *
  1572. * Compute A=Q*R, copying result to U
  1573. * (Workspace: need 2*N, prefer N+N*NB)
  1574. *
  1575. CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
  1576. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1577. CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
  1578. *
  1579. * Generate Q in U
  1580. * (Workspace: need N+M, prefer N+M*NB)
  1581. *
  1582. CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
  1583. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1584. IE = ITAU
  1585. ITAUQ = IE + N
  1586. ITAUP = ITAUQ + N
  1587. IWORK = ITAUP + N
  1588. *
  1589. * Zero out below R in A
  1590. *
  1591. CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ),
  1592. $ LDA )
  1593. *
  1594. * Bidiagonalize R in A
  1595. * (Workspace: need 4*N, prefer 3*N+2*N*NB)
  1596. *
  1597. CALL SGEBRD( N, N, A, LDA, S, WORK( IE ),
  1598. $ WORK( ITAUQ ), WORK( ITAUP ),
  1599. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1600. *
  1601. * Multiply Q in U by left bidiagonalizing vectors
  1602. * in A
  1603. * (Workspace: need 3*N+M, prefer 3*N+M*NB)
  1604. *
  1605. CALL SORMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
  1606. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  1607. $ LWORK-IWORK+1, IERR )
  1608. IWORK = IE + N
  1609. *
  1610. * Perform bidiagonal QR iteration, computing left
  1611. * singular vectors of A in U
  1612. * (Workspace: need BDSPAC)
  1613. *
  1614. CALL SBDSQR( 'U', N, 0, M, 0, S, WORK( IE ), DUM,
  1615. $ 1, U, LDU, DUM, 1, WORK( IWORK ),
  1616. $ INFO )
  1617. *
  1618. END IF
  1619. *
  1620. ELSE IF( WNTVO ) THEN
  1621. *
  1622. * Path 8 (M much larger than N, JOBU='A', JOBVT='O')
  1623. * M left singular vectors to be computed in U and
  1624. * N right singular vectors to be overwritten on A
  1625. *
  1626. IF( LWORK.GE.2*N*N+MAX( N+M, 4*N, BDSPAC ) ) THEN
  1627. *
  1628. * Sufficient workspace for a fast algorithm
  1629. *
  1630. IU = 1
  1631. IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
  1632. *
  1633. * WORK(IU) is LDA by N and WORK(IR) is LDA by N
  1634. *
  1635. LDWRKU = LDA
  1636. IR = IU + LDWRKU*N
  1637. LDWRKR = LDA
  1638. ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
  1639. *
  1640. * WORK(IU) is LDA by N and WORK(IR) is N by N
  1641. *
  1642. LDWRKU = LDA
  1643. IR = IU + LDWRKU*N
  1644. LDWRKR = N
  1645. ELSE
  1646. *
  1647. * WORK(IU) is N by N and WORK(IR) is N by N
  1648. *
  1649. LDWRKU = N
  1650. IR = IU + LDWRKU*N
  1651. LDWRKR = N
  1652. END IF
  1653. ITAU = IR + LDWRKR*N
  1654. IWORK = ITAU + N
  1655. *
  1656. * Compute A=Q*R, copying result to U
  1657. * (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
  1658. *
  1659. CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
  1660. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1661. CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
  1662. *
  1663. * Generate Q in U
  1664. * (Workspace: need 2*N*N+N+M, prefer 2*N*N+N+M*NB)
  1665. *
  1666. CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
  1667. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1668. *
  1669. * Copy R to WORK(IU), zeroing out below it
  1670. *
  1671. CALL SLACPY( 'U', N, N, A, LDA, WORK( IU ),
  1672. $ LDWRKU )
  1673. CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
  1674. $ WORK( IU+1 ), LDWRKU )
  1675. IE = ITAU
  1676. ITAUQ = IE + N
  1677. ITAUP = ITAUQ + N
  1678. IWORK = ITAUP + N
  1679. *
  1680. * Bidiagonalize R in WORK(IU), copying result to
  1681. * WORK(IR)
  1682. * (Workspace: need 2*N*N+4*N,
  1683. * prefer 2*N*N+3*N+2*N*NB)
  1684. *
  1685. CALL SGEBRD( N, N, WORK( IU ), LDWRKU, S,
  1686. $ WORK( IE ), WORK( ITAUQ ),
  1687. $ WORK( ITAUP ), WORK( IWORK ),
  1688. $ LWORK-IWORK+1, IERR )
  1689. CALL SLACPY( 'U', N, N, WORK( IU ), LDWRKU,
  1690. $ WORK( IR ), LDWRKR )
  1691. *
  1692. * Generate left bidiagonalizing vectors in WORK(IU)
  1693. * (Workspace: need 2*N*N+4*N, prefer 2*N*N+3*N+N*NB)
  1694. *
  1695. CALL SORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
  1696. $ WORK( ITAUQ ), WORK( IWORK ),
  1697. $ LWORK-IWORK+1, IERR )
  1698. *
  1699. * Generate right bidiagonalizing vectors in WORK(IR)
  1700. * (Workspace: need 2*N*N+4*N-1,
  1701. * prefer 2*N*N+3*N+(N-1)*NB)
  1702. *
  1703. CALL SORGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
  1704. $ WORK( ITAUP ), WORK( IWORK ),
  1705. $ LWORK-IWORK+1, IERR )
  1706. IWORK = IE + N
  1707. *
  1708. * Perform bidiagonal QR iteration, computing left
  1709. * singular vectors of R in WORK(IU) and computing
  1710. * right singular vectors of R in WORK(IR)
  1711. * (Workspace: need 2*N*N+BDSPAC)
  1712. *
  1713. CALL SBDSQR( 'U', N, N, N, 0, S, WORK( IE ),
  1714. $ WORK( IR ), LDWRKR, WORK( IU ),
  1715. $ LDWRKU, DUM, 1, WORK( IWORK ), INFO )
  1716. *
  1717. * Multiply Q in U by left singular vectors of R in
  1718. * WORK(IU), storing result in A
  1719. * (Workspace: need N*N)
  1720. *
  1721. CALL SGEMM( 'N', 'N', M, N, N, ONE, U, LDU,
  1722. $ WORK( IU ), LDWRKU, ZERO, A, LDA )
  1723. *
  1724. * Copy left singular vectors of A from A to U
  1725. *
  1726. CALL SLACPY( 'F', M, N, A, LDA, U, LDU )
  1727. *
  1728. * Copy right singular vectors of R from WORK(IR) to A
  1729. *
  1730. CALL SLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
  1731. $ LDA )
  1732. *
  1733. ELSE
  1734. *
  1735. * Insufficient workspace for a fast algorithm
  1736. *
  1737. ITAU = 1
  1738. IWORK = ITAU + N
  1739. *
  1740. * Compute A=Q*R, copying result to U
  1741. * (Workspace: need 2*N, prefer N+N*NB)
  1742. *
  1743. CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
  1744. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1745. CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
  1746. *
  1747. * Generate Q in U
  1748. * (Workspace: need N+M, prefer N+M*NB)
  1749. *
  1750. CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
  1751. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1752. IE = ITAU
  1753. ITAUQ = IE + N
  1754. ITAUP = ITAUQ + N
  1755. IWORK = ITAUP + N
  1756. *
  1757. * Zero out below R in A
  1758. *
  1759. CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ),
  1760. $ LDA )
  1761. *
  1762. * Bidiagonalize R in A
  1763. * (Workspace: need 4*N, prefer 3*N+2*N*NB)
  1764. *
  1765. CALL SGEBRD( N, N, A, LDA, S, WORK( IE ),
  1766. $ WORK( ITAUQ ), WORK( ITAUP ),
  1767. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1768. *
  1769. * Multiply Q in U by left bidiagonalizing vectors
  1770. * in A
  1771. * (Workspace: need 3*N+M, prefer 3*N+M*NB)
  1772. *
  1773. CALL SORMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
  1774. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  1775. $ LWORK-IWORK+1, IERR )
  1776. *
  1777. * Generate right bidiagonalizing vectors in A
  1778. * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  1779. *
  1780. CALL SORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
  1781. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1782. IWORK = IE + N
  1783. *
  1784. * Perform bidiagonal QR iteration, computing left
  1785. * singular vectors of A in U and computing right
  1786. * singular vectors of A in A
  1787. * (Workspace: need BDSPAC)
  1788. *
  1789. CALL SBDSQR( 'U', N, N, M, 0, S, WORK( IE ), A,
  1790. $ LDA, U, LDU, DUM, 1, WORK( IWORK ),
  1791. $ INFO )
  1792. *
  1793. END IF
  1794. *
  1795. ELSE IF( WNTVAS ) THEN
  1796. *
  1797. * Path 9 (M much larger than N, JOBU='A', JOBVT='S'
  1798. * or 'A')
  1799. * M left singular vectors to be computed in U and
  1800. * N right singular vectors to be computed in VT
  1801. *
  1802. IF( LWORK.GE.N*N+MAX( N+M, 4*N, BDSPAC ) ) THEN
  1803. *
  1804. * Sufficient workspace for a fast algorithm
  1805. *
  1806. IU = 1
  1807. IF( LWORK.GE.WRKBL+LDA*N ) THEN
  1808. *
  1809. * WORK(IU) is LDA by N
  1810. *
  1811. LDWRKU = LDA
  1812. ELSE
  1813. *
  1814. * WORK(IU) is N by N
  1815. *
  1816. LDWRKU = N
  1817. END IF
  1818. ITAU = IU + LDWRKU*N
  1819. IWORK = ITAU + N
  1820. *
  1821. * Compute A=Q*R, copying result to U
  1822. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  1823. *
  1824. CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
  1825. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1826. CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
  1827. *
  1828. * Generate Q in U
  1829. * (Workspace: need N*N+N+M, prefer N*N+N+M*NB)
  1830. *
  1831. CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
  1832. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1833. *
  1834. * Copy R to WORK(IU), zeroing out below it
  1835. *
  1836. CALL SLACPY( 'U', N, N, A, LDA, WORK( IU ),
  1837. $ LDWRKU )
  1838. CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
  1839. $ WORK( IU+1 ), LDWRKU )
  1840. IE = ITAU
  1841. ITAUQ = IE + N
  1842. ITAUP = ITAUQ + N
  1843. IWORK = ITAUP + N
  1844. *
  1845. * Bidiagonalize R in WORK(IU), copying result to VT
  1846. * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
  1847. *
  1848. CALL SGEBRD( N, N, WORK( IU ), LDWRKU, S,
  1849. $ WORK( IE ), WORK( ITAUQ ),
  1850. $ WORK( ITAUP ), WORK( IWORK ),
  1851. $ LWORK-IWORK+1, IERR )
  1852. CALL SLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
  1853. $ LDVT )
  1854. *
  1855. * Generate left bidiagonalizing vectors in WORK(IU)
  1856. * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
  1857. *
  1858. CALL SORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
  1859. $ WORK( ITAUQ ), WORK( IWORK ),
  1860. $ LWORK-IWORK+1, IERR )
  1861. *
  1862. * Generate right bidiagonalizing vectors in VT
  1863. * (Workspace: need N*N+4*N-1,
  1864. * prefer N*N+3*N+(N-1)*NB)
  1865. *
  1866. CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1867. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1868. IWORK = IE + N
  1869. *
  1870. * Perform bidiagonal QR iteration, computing left
  1871. * singular vectors of R in WORK(IU) and computing
  1872. * right singular vectors of R in VT
  1873. * (Workspace: need N*N+BDSPAC)
  1874. *
  1875. CALL SBDSQR( 'U', N, N, N, 0, S, WORK( IE ), VT,
  1876. $ LDVT, WORK( IU ), LDWRKU, DUM, 1,
  1877. $ WORK( IWORK ), INFO )
  1878. *
  1879. * Multiply Q in U by left singular vectors of R in
  1880. * WORK(IU), storing result in A
  1881. * (Workspace: need N*N)
  1882. *
  1883. CALL SGEMM( 'N', 'N', M, N, N, ONE, U, LDU,
  1884. $ WORK( IU ), LDWRKU, ZERO, A, LDA )
  1885. *
  1886. * Copy left singular vectors of A from A to U
  1887. *
  1888. CALL SLACPY( 'F', M, N, A, LDA, U, LDU )
  1889. *
  1890. ELSE
  1891. *
  1892. * Insufficient workspace for a fast algorithm
  1893. *
  1894. ITAU = 1
  1895. IWORK = ITAU + N
  1896. *
  1897. * Compute A=Q*R, copying result to U
  1898. * (Workspace: need 2*N, prefer N+N*NB)
  1899. *
  1900. CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
  1901. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1902. CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
  1903. *
  1904. * Generate Q in U
  1905. * (Workspace: need N+M, prefer N+M*NB)
  1906. *
  1907. CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
  1908. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1909. *
  1910. * Copy R from A to VT, zeroing out below it
  1911. *
  1912. CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
  1913. IF( N.GT.1 )
  1914. $ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
  1915. $ VT( 2, 1 ), LDVT )
  1916. IE = ITAU
  1917. ITAUQ = IE + N
  1918. ITAUP = ITAUQ + N
  1919. IWORK = ITAUP + N
  1920. *
  1921. * Bidiagonalize R in VT
  1922. * (Workspace: need 4*N, prefer 3*N+2*N*NB)
  1923. *
  1924. CALL SGEBRD( N, N, VT, LDVT, S, WORK( IE ),
  1925. $ WORK( ITAUQ ), WORK( ITAUP ),
  1926. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1927. *
  1928. * Multiply Q in U by left bidiagonalizing vectors
  1929. * in VT
  1930. * (Workspace: need 3*N+M, prefer 3*N+M*NB)
  1931. *
  1932. CALL SORMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
  1933. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  1934. $ LWORK-IWORK+1, IERR )
  1935. *
  1936. * Generate right bidiagonalizing vectors in VT
  1937. * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  1938. *
  1939. CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1940. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1941. IWORK = IE + N
  1942. *
  1943. * Perform bidiagonal QR iteration, computing left
  1944. * singular vectors of A in U and computing right
  1945. * singular vectors of A in VT
  1946. * (Workspace: need BDSPAC)
  1947. *
  1948. CALL SBDSQR( 'U', N, N, M, 0, S, WORK( IE ), VT,
  1949. $ LDVT, U, LDU, DUM, 1, WORK( IWORK ),
  1950. $ INFO )
  1951. *
  1952. END IF
  1953. *
  1954. END IF
  1955. *
  1956. END IF
  1957. *
  1958. ELSE
  1959. *
  1960. * M .LT. MNTHR
  1961. *
  1962. * Path 10 (M at least N, but not much larger)
  1963. * Reduce to bidiagonal form without QR decomposition
  1964. *
  1965. IE = 1
  1966. ITAUQ = IE + N
  1967. ITAUP = ITAUQ + N
  1968. IWORK = ITAUP + N
  1969. *
  1970. * Bidiagonalize A
  1971. * (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB)
  1972. *
  1973. CALL SGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  1974. $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  1975. $ IERR )
  1976. IF( WNTUAS ) THEN
  1977. *
  1978. * If left singular vectors desired in U, copy result to U
  1979. * and generate left bidiagonalizing vectors in U
  1980. * (Workspace: need 3*N+NCU, prefer 3*N+NCU*NB)
  1981. *
  1982. CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
  1983. IF( WNTUS )
  1984. $ NCU = N
  1985. IF( WNTUA )
  1986. $ NCU = M
  1987. CALL SORGBR( 'Q', M, NCU, N, U, LDU, WORK( ITAUQ ),
  1988. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1989. END IF
  1990. IF( WNTVAS ) THEN
  1991. *
  1992. * If right singular vectors desired in VT, copy result to
  1993. * VT and generate right bidiagonalizing vectors in VT
  1994. * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  1995. *
  1996. CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
  1997. CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1998. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1999. END IF
  2000. IF( WNTUO ) THEN
  2001. *
  2002. * If left singular vectors desired in A, generate left
  2003. * bidiagonalizing vectors in A
  2004. * (Workspace: need 4*N, prefer 3*N+N*NB)
  2005. *
  2006. CALL SORGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
  2007. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2008. END IF
  2009. IF( WNTVO ) THEN
  2010. *
  2011. * If right singular vectors desired in A, generate right
  2012. * bidiagonalizing vectors in A
  2013. * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  2014. *
  2015. CALL SORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
  2016. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2017. END IF
  2018. IWORK = IE + N
  2019. IF( WNTUAS .OR. WNTUO )
  2020. $ NRU = M
  2021. IF( WNTUN )
  2022. $ NRU = 0
  2023. IF( WNTVAS .OR. WNTVO )
  2024. $ NCVT = N
  2025. IF( WNTVN )
  2026. $ NCVT = 0
  2027. IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
  2028. *
  2029. * Perform bidiagonal QR iteration, if desired, computing
  2030. * left singular vectors in U and computing right singular
  2031. * vectors in VT
  2032. * (Workspace: need BDSPAC)
  2033. *
  2034. CALL SBDSQR( 'U', N, NCVT, NRU, 0, S, WORK( IE ), VT,
  2035. $ LDVT, U, LDU, DUM, 1, WORK( IWORK ), INFO )
  2036. ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
  2037. *
  2038. * Perform bidiagonal QR iteration, if desired, computing
  2039. * left singular vectors in U and computing right singular
  2040. * vectors in A
  2041. * (Workspace: need BDSPAC)
  2042. *
  2043. CALL SBDSQR( 'U', N, NCVT, NRU, 0, S, WORK( IE ), A, LDA,
  2044. $ U, LDU, DUM, 1, WORK( IWORK ), INFO )
  2045. ELSE
  2046. *
  2047. * Perform bidiagonal QR iteration, if desired, computing
  2048. * left singular vectors in A and computing right singular
  2049. * vectors in VT
  2050. * (Workspace: need BDSPAC)
  2051. *
  2052. CALL SBDSQR( 'U', N, NCVT, NRU, 0, S, WORK( IE ), VT,
  2053. $ LDVT, A, LDA, DUM, 1, WORK( IWORK ), INFO )
  2054. END IF
  2055. *
  2056. END IF
  2057. *
  2058. ELSE
  2059. *
  2060. * A has more columns than rows. If A has sufficiently more
  2061. * columns than rows, first reduce using the LQ decomposition (if
  2062. * sufficient workspace available)
  2063. *
  2064. IF( N.GE.MNTHR ) THEN
  2065. *
  2066. IF( WNTVN ) THEN
  2067. *
  2068. * Path 1t(N much larger than M, JOBVT='N')
  2069. * No right singular vectors to be computed
  2070. *
  2071. ITAU = 1
  2072. IWORK = ITAU + M
  2073. *
  2074. * Compute A=L*Q
  2075. * (Workspace: need 2*M, prefer M+M*NB)
  2076. *
  2077. CALL SGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
  2078. $ LWORK-IWORK+1, IERR )
  2079. *
  2080. * Zero out above L
  2081. *
  2082. CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ), LDA )
  2083. IE = 1
  2084. ITAUQ = IE + M
  2085. ITAUP = ITAUQ + M
  2086. IWORK = ITAUP + M
  2087. *
  2088. * Bidiagonalize L in A
  2089. * (Workspace: need 4*M, prefer 3*M+2*M*NB)
  2090. *
  2091. CALL SGEBRD( M, M, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  2092. $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  2093. $ IERR )
  2094. IF( WNTUO .OR. WNTUAS ) THEN
  2095. *
  2096. * If left singular vectors desired, generate Q
  2097. * (Workspace: need 4*M, prefer 3*M+M*NB)
  2098. *
  2099. CALL SORGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
  2100. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2101. END IF
  2102. IWORK = IE + M
  2103. NRU = 0
  2104. IF( WNTUO .OR. WNTUAS )
  2105. $ NRU = M
  2106. *
  2107. * Perform bidiagonal QR iteration, computing left singular
  2108. * vectors of A in A if desired
  2109. * (Workspace: need BDSPAC)
  2110. *
  2111. CALL SBDSQR( 'U', M, 0, NRU, 0, S, WORK( IE ), DUM, 1, A,
  2112. $ LDA, DUM, 1, WORK( IWORK ), INFO )
  2113. *
  2114. * If left singular vectors desired in U, copy them there
  2115. *
  2116. IF( WNTUAS )
  2117. $ CALL SLACPY( 'F', M, M, A, LDA, U, LDU )
  2118. *
  2119. ELSE IF( WNTVO .AND. WNTUN ) THEN
  2120. *
  2121. * Path 2t(N much larger than M, JOBU='N', JOBVT='O')
  2122. * M right singular vectors to be overwritten on A and
  2123. * no left singular vectors to be computed
  2124. *
  2125. IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN
  2126. *
  2127. * Sufficient workspace for a fast algorithm
  2128. *
  2129. IR = 1
  2130. IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+LDA*M ) THEN
  2131. *
  2132. * WORK(IU) is LDA by N and WORK(IR) is LDA by M
  2133. *
  2134. LDWRKU = LDA
  2135. CHUNK = N
  2136. LDWRKR = LDA
  2137. ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+M*M ) THEN
  2138. *
  2139. * WORK(IU) is LDA by N and WORK(IR) is M by M
  2140. *
  2141. LDWRKU = LDA
  2142. CHUNK = N
  2143. LDWRKR = M
  2144. ELSE
  2145. *
  2146. * WORK(IU) is M by CHUNK and WORK(IR) is M by M
  2147. *
  2148. LDWRKU = M
  2149. CHUNK = ( LWORK-M*M-M ) / M
  2150. LDWRKR = M
  2151. END IF
  2152. ITAU = IR + LDWRKR*M
  2153. IWORK = ITAU + M
  2154. *
  2155. * Compute A=L*Q
  2156. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2157. *
  2158. CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
  2159. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2160. *
  2161. * Copy L to WORK(IR) and zero out above it
  2162. *
  2163. CALL SLACPY( 'L', M, M, A, LDA, WORK( IR ), LDWRKR )
  2164. CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
  2165. $ WORK( IR+LDWRKR ), LDWRKR )
  2166. *
  2167. * Generate Q in A
  2168. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2169. *
  2170. CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2171. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2172. IE = ITAU
  2173. ITAUQ = IE + M
  2174. ITAUP = ITAUQ + M
  2175. IWORK = ITAUP + M
  2176. *
  2177. * Bidiagonalize L in WORK(IR)
  2178. * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
  2179. *
  2180. CALL SGEBRD( M, M, WORK( IR ), LDWRKR, S, WORK( IE ),
  2181. $ WORK( ITAUQ ), WORK( ITAUP ),
  2182. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2183. *
  2184. * Generate right vectors bidiagonalizing L
  2185. * (Workspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
  2186. *
  2187. CALL SORGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
  2188. $ WORK( ITAUP ), WORK( IWORK ),
  2189. $ LWORK-IWORK+1, IERR )
  2190. IWORK = IE + M
  2191. *
  2192. * Perform bidiagonal QR iteration, computing right
  2193. * singular vectors of L in WORK(IR)
  2194. * (Workspace: need M*M+BDSPAC)
  2195. *
  2196. CALL SBDSQR( 'U', M, M, 0, 0, S, WORK( IE ),
  2197. $ WORK( IR ), LDWRKR, DUM, 1, DUM, 1,
  2198. $ WORK( IWORK ), INFO )
  2199. IU = IE + M
  2200. *
  2201. * Multiply right singular vectors of L in WORK(IR) by Q
  2202. * in A, storing result in WORK(IU) and copying to A
  2203. * (Workspace: need M*M+2*M, prefer M*M+M*N+M)
  2204. *
  2205. DO 30 I = 1, N, CHUNK
  2206. BLK = MIN( N-I+1, CHUNK )
  2207. CALL SGEMM( 'N', 'N', M, BLK, M, ONE, WORK( IR ),
  2208. $ LDWRKR, A( 1, I ), LDA, ZERO,
  2209. $ WORK( IU ), LDWRKU )
  2210. CALL SLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
  2211. $ A( 1, I ), LDA )
  2212. 30 CONTINUE
  2213. *
  2214. ELSE
  2215. *
  2216. * Insufficient workspace for a fast algorithm
  2217. *
  2218. IE = 1
  2219. ITAUQ = IE + M
  2220. ITAUP = ITAUQ + M
  2221. IWORK = ITAUP + M
  2222. *
  2223. * Bidiagonalize A
  2224. * (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
  2225. *
  2226. CALL SGEBRD( M, N, A, LDA, S, WORK( IE ),
  2227. $ WORK( ITAUQ ), WORK( ITAUP ),
  2228. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2229. *
  2230. * Generate right vectors bidiagonalizing A
  2231. * (Workspace: need 4*M, prefer 3*M+M*NB)
  2232. *
  2233. CALL SORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
  2234. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2235. IWORK = IE + M
  2236. *
  2237. * Perform bidiagonal QR iteration, computing right
  2238. * singular vectors of A in A
  2239. * (Workspace: need BDSPAC)
  2240. *
  2241. CALL SBDSQR( 'L', M, N, 0, 0, S, WORK( IE ), A, LDA,
  2242. $ DUM, 1, DUM, 1, WORK( IWORK ), INFO )
  2243. *
  2244. END IF
  2245. *
  2246. ELSE IF( WNTVO .AND. WNTUAS ) THEN
  2247. *
  2248. * Path 3t(N much larger than M, JOBU='S' or 'A', JOBVT='O')
  2249. * M right singular vectors to be overwritten on A and
  2250. * M left singular vectors to be computed in U
  2251. *
  2252. IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN
  2253. *
  2254. * Sufficient workspace for a fast algorithm
  2255. *
  2256. IR = 1
  2257. IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+LDA*M ) THEN
  2258. *
  2259. * WORK(IU) is LDA by N and WORK(IR) is LDA by M
  2260. *
  2261. LDWRKU = LDA
  2262. CHUNK = N
  2263. LDWRKR = LDA
  2264. ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+M*M ) THEN
  2265. *
  2266. * WORK(IU) is LDA by N and WORK(IR) is M by M
  2267. *
  2268. LDWRKU = LDA
  2269. CHUNK = N
  2270. LDWRKR = M
  2271. ELSE
  2272. *
  2273. * WORK(IU) is M by CHUNK and WORK(IR) is M by M
  2274. *
  2275. LDWRKU = M
  2276. CHUNK = ( LWORK-M*M-M ) / M
  2277. LDWRKR = M
  2278. END IF
  2279. ITAU = IR + LDWRKR*M
  2280. IWORK = ITAU + M
  2281. *
  2282. * Compute A=L*Q
  2283. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2284. *
  2285. CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
  2286. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2287. *
  2288. * Copy L to U, zeroing about above it
  2289. *
  2290. CALL SLACPY( 'L', M, M, A, LDA, U, LDU )
  2291. CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ),
  2292. $ LDU )
  2293. *
  2294. * Generate Q in A
  2295. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2296. *
  2297. CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2298. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2299. IE = ITAU
  2300. ITAUQ = IE + M
  2301. ITAUP = ITAUQ + M
  2302. IWORK = ITAUP + M
  2303. *
  2304. * Bidiagonalize L in U, copying result to WORK(IR)
  2305. * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
  2306. *
  2307. CALL SGEBRD( M, M, U, LDU, S, WORK( IE ),
  2308. $ WORK( ITAUQ ), WORK( ITAUP ),
  2309. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2310. CALL SLACPY( 'U', M, M, U, LDU, WORK( IR ), LDWRKR )
  2311. *
  2312. * Generate right vectors bidiagonalizing L in WORK(IR)
  2313. * (Workspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
  2314. *
  2315. CALL SORGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
  2316. $ WORK( ITAUP ), WORK( IWORK ),
  2317. $ LWORK-IWORK+1, IERR )
  2318. *
  2319. * Generate left vectors bidiagonalizing L in U
  2320. * (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB)
  2321. *
  2322. CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  2323. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2324. IWORK = IE + M
  2325. *
  2326. * Perform bidiagonal QR iteration, computing left
  2327. * singular vectors of L in U, and computing right
  2328. * singular vectors of L in WORK(IR)
  2329. * (Workspace: need M*M+BDSPAC)
  2330. *
  2331. CALL SBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
  2332. $ WORK( IR ), LDWRKR, U, LDU, DUM, 1,
  2333. $ WORK( IWORK ), INFO )
  2334. IU = IE + M
  2335. *
  2336. * Multiply right singular vectors of L in WORK(IR) by Q
  2337. * in A, storing result in WORK(IU) and copying to A
  2338. * (Workspace: need M*M+2*M, prefer M*M+M*N+M))
  2339. *
  2340. DO 40 I = 1, N, CHUNK
  2341. BLK = MIN( N-I+1, CHUNK )
  2342. CALL SGEMM( 'N', 'N', M, BLK, M, ONE, WORK( IR ),
  2343. $ LDWRKR, A( 1, I ), LDA, ZERO,
  2344. $ WORK( IU ), LDWRKU )
  2345. CALL SLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
  2346. $ A( 1, I ), LDA )
  2347. 40 CONTINUE
  2348. *
  2349. ELSE
  2350. *
  2351. * Insufficient workspace for a fast algorithm
  2352. *
  2353. ITAU = 1
  2354. IWORK = ITAU + M
  2355. *
  2356. * Compute A=L*Q
  2357. * (Workspace: need 2*M, prefer M+M*NB)
  2358. *
  2359. CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
  2360. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2361. *
  2362. * Copy L to U, zeroing out above it
  2363. *
  2364. CALL SLACPY( 'L', M, M, A, LDA, U, LDU )
  2365. CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ),
  2366. $ LDU )
  2367. *
  2368. * Generate Q in A
  2369. * (Workspace: need 2*M, prefer M+M*NB)
  2370. *
  2371. CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2372. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2373. IE = ITAU
  2374. ITAUQ = IE + M
  2375. ITAUP = ITAUQ + M
  2376. IWORK = ITAUP + M
  2377. *
  2378. * Bidiagonalize L in U
  2379. * (Workspace: need 4*M, prefer 3*M+2*M*NB)
  2380. *
  2381. CALL SGEBRD( M, M, U, LDU, S, WORK( IE ),
  2382. $ WORK( ITAUQ ), WORK( ITAUP ),
  2383. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2384. *
  2385. * Multiply right vectors bidiagonalizing L by Q in A
  2386. * (Workspace: need 3*M+N, prefer 3*M+N*NB)
  2387. *
  2388. CALL SORMBR( 'P', 'L', 'T', M, N, M, U, LDU,
  2389. $ WORK( ITAUP ), A, LDA, WORK( IWORK ),
  2390. $ LWORK-IWORK+1, IERR )
  2391. *
  2392. * Generate left vectors bidiagonalizing L in U
  2393. * (Workspace: need 4*M, prefer 3*M+M*NB)
  2394. *
  2395. CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  2396. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2397. IWORK = IE + M
  2398. *
  2399. * Perform bidiagonal QR iteration, computing left
  2400. * singular vectors of A in U and computing right
  2401. * singular vectors of A in A
  2402. * (Workspace: need BDSPAC)
  2403. *
  2404. CALL SBDSQR( 'U', M, N, M, 0, S, WORK( IE ), A, LDA,
  2405. $ U, LDU, DUM, 1, WORK( IWORK ), INFO )
  2406. *
  2407. END IF
  2408. *
  2409. ELSE IF( WNTVS ) THEN
  2410. *
  2411. IF( WNTUN ) THEN
  2412. *
  2413. * Path 4t(N much larger than M, JOBU='N', JOBVT='S')
  2414. * M right singular vectors to be computed in VT and
  2415. * no left singular vectors to be computed
  2416. *
  2417. IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN
  2418. *
  2419. * Sufficient workspace for a fast algorithm
  2420. *
  2421. IR = 1
  2422. IF( LWORK.GE.WRKBL+LDA*M ) THEN
  2423. *
  2424. * WORK(IR) is LDA by M
  2425. *
  2426. LDWRKR = LDA
  2427. ELSE
  2428. *
  2429. * WORK(IR) is M by M
  2430. *
  2431. LDWRKR = M
  2432. END IF
  2433. ITAU = IR + LDWRKR*M
  2434. IWORK = ITAU + M
  2435. *
  2436. * Compute A=L*Q
  2437. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2438. *
  2439. CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
  2440. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2441. *
  2442. * Copy L to WORK(IR), zeroing out above it
  2443. *
  2444. CALL SLACPY( 'L', M, M, A, LDA, WORK( IR ),
  2445. $ LDWRKR )
  2446. CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
  2447. $ WORK( IR+LDWRKR ), LDWRKR )
  2448. *
  2449. * Generate Q in A
  2450. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2451. *
  2452. CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2453. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2454. IE = ITAU
  2455. ITAUQ = IE + M
  2456. ITAUP = ITAUQ + M
  2457. IWORK = ITAUP + M
  2458. *
  2459. * Bidiagonalize L in WORK(IR)
  2460. * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
  2461. *
  2462. CALL SGEBRD( M, M, WORK( IR ), LDWRKR, S,
  2463. $ WORK( IE ), WORK( ITAUQ ),
  2464. $ WORK( ITAUP ), WORK( IWORK ),
  2465. $ LWORK-IWORK+1, IERR )
  2466. *
  2467. * Generate right vectors bidiagonalizing L in
  2468. * WORK(IR)
  2469. * (Workspace: need M*M+4*M, prefer M*M+3*M+(M-1)*NB)
  2470. *
  2471. CALL SORGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
  2472. $ WORK( ITAUP ), WORK( IWORK ),
  2473. $ LWORK-IWORK+1, IERR )
  2474. IWORK = IE + M
  2475. *
  2476. * Perform bidiagonal QR iteration, computing right
  2477. * singular vectors of L in WORK(IR)
  2478. * (Workspace: need M*M+BDSPAC)
  2479. *
  2480. CALL SBDSQR( 'U', M, M, 0, 0, S, WORK( IE ),
  2481. $ WORK( IR ), LDWRKR, DUM, 1, DUM, 1,
  2482. $ WORK( IWORK ), INFO )
  2483. *
  2484. * Multiply right singular vectors of L in WORK(IR) by
  2485. * Q in A, storing result in VT
  2486. * (Workspace: need M*M)
  2487. *
  2488. CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IR ),
  2489. $ LDWRKR, A, LDA, ZERO, VT, LDVT )
  2490. *
  2491. ELSE
  2492. *
  2493. * Insufficient workspace for a fast algorithm
  2494. *
  2495. ITAU = 1
  2496. IWORK = ITAU + M
  2497. *
  2498. * Compute A=L*Q
  2499. * (Workspace: need 2*M, prefer M+M*NB)
  2500. *
  2501. CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
  2502. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2503. *
  2504. * Copy result to VT
  2505. *
  2506. CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
  2507. *
  2508. * Generate Q in VT
  2509. * (Workspace: need 2*M, prefer M+M*NB)
  2510. *
  2511. CALL SORGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
  2512. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2513. IE = ITAU
  2514. ITAUQ = IE + M
  2515. ITAUP = ITAUQ + M
  2516. IWORK = ITAUP + M
  2517. *
  2518. * Zero out above L in A
  2519. *
  2520. CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ),
  2521. $ LDA )
  2522. *
  2523. * Bidiagonalize L in A
  2524. * (Workspace: need 4*M, prefer 3*M+2*M*NB)
  2525. *
  2526. CALL SGEBRD( M, M, A, LDA, S, WORK( IE ),
  2527. $ WORK( ITAUQ ), WORK( ITAUP ),
  2528. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2529. *
  2530. * Multiply right vectors bidiagonalizing L by Q in VT
  2531. * (Workspace: need 3*M+N, prefer 3*M+N*NB)
  2532. *
  2533. CALL SORMBR( 'P', 'L', 'T', M, N, M, A, LDA,
  2534. $ WORK( ITAUP ), VT, LDVT,
  2535. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2536. IWORK = IE + M
  2537. *
  2538. * Perform bidiagonal QR iteration, computing right
  2539. * singular vectors of A in VT
  2540. * (Workspace: need BDSPAC)
  2541. *
  2542. CALL SBDSQR( 'U', M, N, 0, 0, S, WORK( IE ), VT,
  2543. $ LDVT, DUM, 1, DUM, 1, WORK( IWORK ),
  2544. $ INFO )
  2545. *
  2546. END IF
  2547. *
  2548. ELSE IF( WNTUO ) THEN
  2549. *
  2550. * Path 5t(N much larger than M, JOBU='O', JOBVT='S')
  2551. * M right singular vectors to be computed in VT and
  2552. * M left singular vectors to be overwritten on A
  2553. *
  2554. IF( LWORK.GE.2*M*M+MAX( 4*M, BDSPAC ) ) THEN
  2555. *
  2556. * Sufficient workspace for a fast algorithm
  2557. *
  2558. IU = 1
  2559. IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
  2560. *
  2561. * WORK(IU) is LDA by M and WORK(IR) is LDA by M
  2562. *
  2563. LDWRKU = LDA
  2564. IR = IU + LDWRKU*M
  2565. LDWRKR = LDA
  2566. ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
  2567. *
  2568. * WORK(IU) is LDA by M and WORK(IR) is M by M
  2569. *
  2570. LDWRKU = LDA
  2571. IR = IU + LDWRKU*M
  2572. LDWRKR = M
  2573. ELSE
  2574. *
  2575. * WORK(IU) is M by M and WORK(IR) is M by M
  2576. *
  2577. LDWRKU = M
  2578. IR = IU + LDWRKU*M
  2579. LDWRKR = M
  2580. END IF
  2581. ITAU = IR + LDWRKR*M
  2582. IWORK = ITAU + M
  2583. *
  2584. * Compute A=L*Q
  2585. * (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
  2586. *
  2587. CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
  2588. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2589. *
  2590. * Copy L to WORK(IU), zeroing out below it
  2591. *
  2592. CALL SLACPY( 'L', M, M, A, LDA, WORK( IU ),
  2593. $ LDWRKU )
  2594. CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
  2595. $ WORK( IU+LDWRKU ), LDWRKU )
  2596. *
  2597. * Generate Q in A
  2598. * (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
  2599. *
  2600. CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2601. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2602. IE = ITAU
  2603. ITAUQ = IE + M
  2604. ITAUP = ITAUQ + M
  2605. IWORK = ITAUP + M
  2606. *
  2607. * Bidiagonalize L in WORK(IU), copying result to
  2608. * WORK(IR)
  2609. * (Workspace: need 2*M*M+4*M,
  2610. * prefer 2*M*M+3*M+2*M*NB)
  2611. *
  2612. CALL SGEBRD( M, M, WORK( IU ), LDWRKU, S,
  2613. $ WORK( IE ), WORK( ITAUQ ),
  2614. $ WORK( ITAUP ), WORK( IWORK ),
  2615. $ LWORK-IWORK+1, IERR )
  2616. CALL SLACPY( 'L', M, M, WORK( IU ), LDWRKU,
  2617. $ WORK( IR ), LDWRKR )
  2618. *
  2619. * Generate right bidiagonalizing vectors in WORK(IU)
  2620. * (Workspace: need 2*M*M+4*M-1,
  2621. * prefer 2*M*M+3*M+(M-1)*NB)
  2622. *
  2623. CALL SORGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
  2624. $ WORK( ITAUP ), WORK( IWORK ),
  2625. $ LWORK-IWORK+1, IERR )
  2626. *
  2627. * Generate left bidiagonalizing vectors in WORK(IR)
  2628. * (Workspace: need 2*M*M+4*M, prefer 2*M*M+3*M+M*NB)
  2629. *
  2630. CALL SORGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
  2631. $ WORK( ITAUQ ), WORK( IWORK ),
  2632. $ LWORK-IWORK+1, IERR )
  2633. IWORK = IE + M
  2634. *
  2635. * Perform bidiagonal QR iteration, computing left
  2636. * singular vectors of L in WORK(IR) and computing
  2637. * right singular vectors of L in WORK(IU)
  2638. * (Workspace: need 2*M*M+BDSPAC)
  2639. *
  2640. CALL SBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
  2641. $ WORK( IU ), LDWRKU, WORK( IR ),
  2642. $ LDWRKR, DUM, 1, WORK( IWORK ), INFO )
  2643. *
  2644. * Multiply right singular vectors of L in WORK(IU) by
  2645. * Q in A, storing result in VT
  2646. * (Workspace: need M*M)
  2647. *
  2648. CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ),
  2649. $ LDWRKU, A, LDA, ZERO, VT, LDVT )
  2650. *
  2651. * Copy left singular vectors of L to A
  2652. * (Workspace: need M*M)
  2653. *
  2654. CALL SLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
  2655. $ LDA )
  2656. *
  2657. ELSE
  2658. *
  2659. * Insufficient workspace for a fast algorithm
  2660. *
  2661. ITAU = 1
  2662. IWORK = ITAU + M
  2663. *
  2664. * Compute A=L*Q, copying result to VT
  2665. * (Workspace: need 2*M, prefer M+M*NB)
  2666. *
  2667. CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
  2668. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2669. CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
  2670. *
  2671. * Generate Q in VT
  2672. * (Workspace: need 2*M, prefer M+M*NB)
  2673. *
  2674. CALL SORGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
  2675. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2676. IE = ITAU
  2677. ITAUQ = IE + M
  2678. ITAUP = ITAUQ + M
  2679. IWORK = ITAUP + M
  2680. *
  2681. * Zero out above L in A
  2682. *
  2683. CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ),
  2684. $ LDA )
  2685. *
  2686. * Bidiagonalize L in A
  2687. * (Workspace: need 4*M, prefer 3*M+2*M*NB)
  2688. *
  2689. CALL SGEBRD( M, M, A, LDA, S, WORK( IE ),
  2690. $ WORK( ITAUQ ), WORK( ITAUP ),
  2691. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2692. *
  2693. * Multiply right vectors bidiagonalizing L by Q in VT
  2694. * (Workspace: need 3*M+N, prefer 3*M+N*NB)
  2695. *
  2696. CALL SORMBR( 'P', 'L', 'T', M, N, M, A, LDA,
  2697. $ WORK( ITAUP ), VT, LDVT,
  2698. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2699. *
  2700. * Generate left bidiagonalizing vectors of L in A
  2701. * (Workspace: need 4*M, prefer 3*M+M*NB)
  2702. *
  2703. CALL SORGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
  2704. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2705. IWORK = IE + M
  2706. *
  2707. * Perform bidiagonal QR iteration, compute left
  2708. * singular vectors of A in A and compute right
  2709. * singular vectors of A in VT
  2710. * (Workspace: need BDSPAC)
  2711. *
  2712. CALL SBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT,
  2713. $ LDVT, A, LDA, DUM, 1, WORK( IWORK ),
  2714. $ INFO )
  2715. *
  2716. END IF
  2717. *
  2718. ELSE IF( WNTUAS ) THEN
  2719. *
  2720. * Path 6t(N much larger than M, JOBU='S' or 'A',
  2721. * JOBVT='S')
  2722. * M right singular vectors to be computed in VT and
  2723. * M left singular vectors to be computed in U
  2724. *
  2725. IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN
  2726. *
  2727. * Sufficient workspace for a fast algorithm
  2728. *
  2729. IU = 1
  2730. IF( LWORK.GE.WRKBL+LDA*M ) THEN
  2731. *
  2732. * WORK(IU) is LDA by N
  2733. *
  2734. LDWRKU = LDA
  2735. ELSE
  2736. *
  2737. * WORK(IU) is LDA by M
  2738. *
  2739. LDWRKU = M
  2740. END IF
  2741. ITAU = IU + LDWRKU*M
  2742. IWORK = ITAU + M
  2743. *
  2744. * Compute A=L*Q
  2745. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2746. *
  2747. CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
  2748. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2749. *
  2750. * Copy L to WORK(IU), zeroing out above it
  2751. *
  2752. CALL SLACPY( 'L', M, M, A, LDA, WORK( IU ),
  2753. $ LDWRKU )
  2754. CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
  2755. $ WORK( IU+LDWRKU ), LDWRKU )
  2756. *
  2757. * Generate Q in A
  2758. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2759. *
  2760. CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2761. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2762. IE = ITAU
  2763. ITAUQ = IE + M
  2764. ITAUP = ITAUQ + M
  2765. IWORK = ITAUP + M
  2766. *
  2767. * Bidiagonalize L in WORK(IU), copying result to U
  2768. * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
  2769. *
  2770. CALL SGEBRD( M, M, WORK( IU ), LDWRKU, S,
  2771. $ WORK( IE ), WORK( ITAUQ ),
  2772. $ WORK( ITAUP ), WORK( IWORK ),
  2773. $ LWORK-IWORK+1, IERR )
  2774. CALL SLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
  2775. $ LDU )
  2776. *
  2777. * Generate right bidiagonalizing vectors in WORK(IU)
  2778. * (Workspace: need M*M+4*M-1,
  2779. * prefer M*M+3*M+(M-1)*NB)
  2780. *
  2781. CALL SORGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
  2782. $ WORK( ITAUP ), WORK( IWORK ),
  2783. $ LWORK-IWORK+1, IERR )
  2784. *
  2785. * Generate left bidiagonalizing vectors in U
  2786. * (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB)
  2787. *
  2788. CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  2789. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2790. IWORK = IE + M
  2791. *
  2792. * Perform bidiagonal QR iteration, computing left
  2793. * singular vectors of L in U and computing right
  2794. * singular vectors of L in WORK(IU)
  2795. * (Workspace: need M*M+BDSPAC)
  2796. *
  2797. CALL SBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
  2798. $ WORK( IU ), LDWRKU, U, LDU, DUM, 1,
  2799. $ WORK( IWORK ), INFO )
  2800. *
  2801. * Multiply right singular vectors of L in WORK(IU) by
  2802. * Q in A, storing result in VT
  2803. * (Workspace: need M*M)
  2804. *
  2805. CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ),
  2806. $ LDWRKU, A, LDA, ZERO, VT, LDVT )
  2807. *
  2808. ELSE
  2809. *
  2810. * Insufficient workspace for a fast algorithm
  2811. *
  2812. ITAU = 1
  2813. IWORK = ITAU + M
  2814. *
  2815. * Compute A=L*Q, copying result to VT
  2816. * (Workspace: need 2*M, prefer M+M*NB)
  2817. *
  2818. CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
  2819. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2820. CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
  2821. *
  2822. * Generate Q in VT
  2823. * (Workspace: need 2*M, prefer M+M*NB)
  2824. *
  2825. CALL SORGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
  2826. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2827. *
  2828. * Copy L to U, zeroing out above it
  2829. *
  2830. CALL SLACPY( 'L', M, M, A, LDA, U, LDU )
  2831. CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ),
  2832. $ LDU )
  2833. IE = ITAU
  2834. ITAUQ = IE + M
  2835. ITAUP = ITAUQ + M
  2836. IWORK = ITAUP + M
  2837. *
  2838. * Bidiagonalize L in U
  2839. * (Workspace: need 4*M, prefer 3*M+2*M*NB)
  2840. *
  2841. CALL SGEBRD( M, M, U, LDU, S, WORK( IE ),
  2842. $ WORK( ITAUQ ), WORK( ITAUP ),
  2843. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2844. *
  2845. * Multiply right bidiagonalizing vectors in U by Q
  2846. * in VT
  2847. * (Workspace: need 3*M+N, prefer 3*M+N*NB)
  2848. *
  2849. CALL SORMBR( 'P', 'L', 'T', M, N, M, U, LDU,
  2850. $ WORK( ITAUP ), VT, LDVT,
  2851. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2852. *
  2853. * Generate left bidiagonalizing vectors in U
  2854. * (Workspace: need 4*M, prefer 3*M+M*NB)
  2855. *
  2856. CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  2857. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2858. IWORK = IE + M
  2859. *
  2860. * Perform bidiagonal QR iteration, computing left
  2861. * singular vectors of A in U and computing right
  2862. * singular vectors of A in VT
  2863. * (Workspace: need BDSPAC)
  2864. *
  2865. CALL SBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT,
  2866. $ LDVT, U, LDU, DUM, 1, WORK( IWORK ),
  2867. $ INFO )
  2868. *
  2869. END IF
  2870. *
  2871. END IF
  2872. *
  2873. ELSE IF( WNTVA ) THEN
  2874. *
  2875. IF( WNTUN ) THEN
  2876. *
  2877. * Path 7t(N much larger than M, JOBU='N', JOBVT='A')
  2878. * N right singular vectors to be computed in VT and
  2879. * no left singular vectors to be computed
  2880. *
  2881. IF( LWORK.GE.M*M+MAX( N+M, 4*M, BDSPAC ) ) THEN
  2882. *
  2883. * Sufficient workspace for a fast algorithm
  2884. *
  2885. IR = 1
  2886. IF( LWORK.GE.WRKBL+LDA*M ) THEN
  2887. *
  2888. * WORK(IR) is LDA by M
  2889. *
  2890. LDWRKR = LDA
  2891. ELSE
  2892. *
  2893. * WORK(IR) is M by M
  2894. *
  2895. LDWRKR = M
  2896. END IF
  2897. ITAU = IR + LDWRKR*M
  2898. IWORK = ITAU + M
  2899. *
  2900. * Compute A=L*Q, copying result to VT
  2901. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2902. *
  2903. CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
  2904. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2905. CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
  2906. *
  2907. * Copy L to WORK(IR), zeroing out above it
  2908. *
  2909. CALL SLACPY( 'L', M, M, A, LDA, WORK( IR ),
  2910. $ LDWRKR )
  2911. CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
  2912. $ WORK( IR+LDWRKR ), LDWRKR )
  2913. *
  2914. * Generate Q in VT
  2915. * (Workspace: need M*M+M+N, prefer M*M+M+N*NB)
  2916. *
  2917. CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  2918. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2919. IE = ITAU
  2920. ITAUQ = IE + M
  2921. ITAUP = ITAUQ + M
  2922. IWORK = ITAUP + M
  2923. *
  2924. * Bidiagonalize L in WORK(IR)
  2925. * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
  2926. *
  2927. CALL SGEBRD( M, M, WORK( IR ), LDWRKR, S,
  2928. $ WORK( IE ), WORK( ITAUQ ),
  2929. $ WORK( ITAUP ), WORK( IWORK ),
  2930. $ LWORK-IWORK+1, IERR )
  2931. *
  2932. * Generate right bidiagonalizing vectors in WORK(IR)
  2933. * (Workspace: need M*M+4*M-1,
  2934. * prefer M*M+3*M+(M-1)*NB)
  2935. *
  2936. CALL SORGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
  2937. $ WORK( ITAUP ), WORK( IWORK ),
  2938. $ LWORK-IWORK+1, IERR )
  2939. IWORK = IE + M
  2940. *
  2941. * Perform bidiagonal QR iteration, computing right
  2942. * singular vectors of L in WORK(IR)
  2943. * (Workspace: need M*M+BDSPAC)
  2944. *
  2945. CALL SBDSQR( 'U', M, M, 0, 0, S, WORK( IE ),
  2946. $ WORK( IR ), LDWRKR, DUM, 1, DUM, 1,
  2947. $ WORK( IWORK ), INFO )
  2948. *
  2949. * Multiply right singular vectors of L in WORK(IR) by
  2950. * Q in VT, storing result in A
  2951. * (Workspace: need M*M)
  2952. *
  2953. CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IR ),
  2954. $ LDWRKR, VT, LDVT, ZERO, A, LDA )
  2955. *
  2956. * Copy right singular vectors of A from A to VT
  2957. *
  2958. CALL SLACPY( 'F', M, N, A, LDA, VT, LDVT )
  2959. *
  2960. ELSE
  2961. *
  2962. * Insufficient workspace for a fast algorithm
  2963. *
  2964. ITAU = 1
  2965. IWORK = ITAU + M
  2966. *
  2967. * Compute A=L*Q, copying result to VT
  2968. * (Workspace: need 2*M, prefer M+M*NB)
  2969. *
  2970. CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
  2971. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2972. CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
  2973. *
  2974. * Generate Q in VT
  2975. * (Workspace: need M+N, prefer M+N*NB)
  2976. *
  2977. CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  2978. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2979. IE = ITAU
  2980. ITAUQ = IE + M
  2981. ITAUP = ITAUQ + M
  2982. IWORK = ITAUP + M
  2983. *
  2984. * Zero out above L in A
  2985. *
  2986. CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ),
  2987. $ LDA )
  2988. *
  2989. * Bidiagonalize L in A
  2990. * (Workspace: need 4*M, prefer 3*M+2*M*NB)
  2991. *
  2992. CALL SGEBRD( M, M, A, LDA, S, WORK( IE ),
  2993. $ WORK( ITAUQ ), WORK( ITAUP ),
  2994. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2995. *
  2996. * Multiply right bidiagonalizing vectors in A by Q
  2997. * in VT
  2998. * (Workspace: need 3*M+N, prefer 3*M+N*NB)
  2999. *
  3000. CALL SORMBR( 'P', 'L', 'T', M, N, M, A, LDA,
  3001. $ WORK( ITAUP ), VT, LDVT,
  3002. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3003. IWORK = IE + M
  3004. *
  3005. * Perform bidiagonal QR iteration, computing right
  3006. * singular vectors of A in VT
  3007. * (Workspace: need BDSPAC)
  3008. *
  3009. CALL SBDSQR( 'U', M, N, 0, 0, S, WORK( IE ), VT,
  3010. $ LDVT, DUM, 1, DUM, 1, WORK( IWORK ),
  3011. $ INFO )
  3012. *
  3013. END IF
  3014. *
  3015. ELSE IF( WNTUO ) THEN
  3016. *
  3017. * Path 8t(N much larger than M, JOBU='O', JOBVT='A')
  3018. * N right singular vectors to be computed in VT and
  3019. * M left singular vectors to be overwritten on A
  3020. *
  3021. IF( LWORK.GE.2*M*M+MAX( N+M, 4*M, BDSPAC ) ) THEN
  3022. *
  3023. * Sufficient workspace for a fast algorithm
  3024. *
  3025. IU = 1
  3026. IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
  3027. *
  3028. * WORK(IU) is LDA by M and WORK(IR) is LDA by M
  3029. *
  3030. LDWRKU = LDA
  3031. IR = IU + LDWRKU*M
  3032. LDWRKR = LDA
  3033. ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
  3034. *
  3035. * WORK(IU) is LDA by M and WORK(IR) is M by M
  3036. *
  3037. LDWRKU = LDA
  3038. IR = IU + LDWRKU*M
  3039. LDWRKR = M
  3040. ELSE
  3041. *
  3042. * WORK(IU) is M by M and WORK(IR) is M by M
  3043. *
  3044. LDWRKU = M
  3045. IR = IU + LDWRKU*M
  3046. LDWRKR = M
  3047. END IF
  3048. ITAU = IR + LDWRKR*M
  3049. IWORK = ITAU + M
  3050. *
  3051. * Compute A=L*Q, copying result to VT
  3052. * (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
  3053. *
  3054. CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
  3055. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3056. CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
  3057. *
  3058. * Generate Q in VT
  3059. * (Workspace: need 2*M*M+M+N, prefer 2*M*M+M+N*NB)
  3060. *
  3061. CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  3062. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3063. *
  3064. * Copy L to WORK(IU), zeroing out above it
  3065. *
  3066. CALL SLACPY( 'L', M, M, A, LDA, WORK( IU ),
  3067. $ LDWRKU )
  3068. CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
  3069. $ WORK( IU+LDWRKU ), LDWRKU )
  3070. IE = ITAU
  3071. ITAUQ = IE + M
  3072. ITAUP = ITAUQ + M
  3073. IWORK = ITAUP + M
  3074. *
  3075. * Bidiagonalize L in WORK(IU), copying result to
  3076. * WORK(IR)
  3077. * (Workspace: need 2*M*M+4*M,
  3078. * prefer 2*M*M+3*M+2*M*NB)
  3079. *
  3080. CALL SGEBRD( M, M, WORK( IU ), LDWRKU, S,
  3081. $ WORK( IE ), WORK( ITAUQ ),
  3082. $ WORK( ITAUP ), WORK( IWORK ),
  3083. $ LWORK-IWORK+1, IERR )
  3084. CALL SLACPY( 'L', M, M, WORK( IU ), LDWRKU,
  3085. $ WORK( IR ), LDWRKR )
  3086. *
  3087. * Generate right bidiagonalizing vectors in WORK(IU)
  3088. * (Workspace: need 2*M*M+4*M-1,
  3089. * prefer 2*M*M+3*M+(M-1)*NB)
  3090. *
  3091. CALL SORGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
  3092. $ WORK( ITAUP ), WORK( IWORK ),
  3093. $ LWORK-IWORK+1, IERR )
  3094. *
  3095. * Generate left bidiagonalizing vectors in WORK(IR)
  3096. * (Workspace: need 2*M*M+4*M, prefer 2*M*M+3*M+M*NB)
  3097. *
  3098. CALL SORGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
  3099. $ WORK( ITAUQ ), WORK( IWORK ),
  3100. $ LWORK-IWORK+1, IERR )
  3101. IWORK = IE + M
  3102. *
  3103. * Perform bidiagonal QR iteration, computing left
  3104. * singular vectors of L in WORK(IR) and computing
  3105. * right singular vectors of L in WORK(IU)
  3106. * (Workspace: need 2*M*M+BDSPAC)
  3107. *
  3108. CALL SBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
  3109. $ WORK( IU ), LDWRKU, WORK( IR ),
  3110. $ LDWRKR, DUM, 1, WORK( IWORK ), INFO )
  3111. *
  3112. * Multiply right singular vectors of L in WORK(IU) by
  3113. * Q in VT, storing result in A
  3114. * (Workspace: need M*M)
  3115. *
  3116. CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ),
  3117. $ LDWRKU, VT, LDVT, ZERO, A, LDA )
  3118. *
  3119. * Copy right singular vectors of A from A to VT
  3120. *
  3121. CALL SLACPY( 'F', M, N, A, LDA, VT, LDVT )
  3122. *
  3123. * Copy left singular vectors of A from WORK(IR) to A
  3124. *
  3125. CALL SLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
  3126. $ LDA )
  3127. *
  3128. ELSE
  3129. *
  3130. * Insufficient workspace for a fast algorithm
  3131. *
  3132. ITAU = 1
  3133. IWORK = ITAU + M
  3134. *
  3135. * Compute A=L*Q, copying result to VT
  3136. * (Workspace: need 2*M, prefer M+M*NB)
  3137. *
  3138. CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
  3139. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3140. CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
  3141. *
  3142. * Generate Q in VT
  3143. * (Workspace: need M+N, prefer M+N*NB)
  3144. *
  3145. CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  3146. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3147. IE = ITAU
  3148. ITAUQ = IE + M
  3149. ITAUP = ITAUQ + M
  3150. IWORK = ITAUP + M
  3151. *
  3152. * Zero out above L in A
  3153. *
  3154. CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ),
  3155. $ LDA )
  3156. *
  3157. * Bidiagonalize L in A
  3158. * (Workspace: need 4*M, prefer 3*M+2*M*NB)
  3159. *
  3160. CALL SGEBRD( M, M, A, LDA, S, WORK( IE ),
  3161. $ WORK( ITAUQ ), WORK( ITAUP ),
  3162. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3163. *
  3164. * Multiply right bidiagonalizing vectors in A by Q
  3165. * in VT
  3166. * (Workspace: need 3*M+N, prefer 3*M+N*NB)
  3167. *
  3168. CALL SORMBR( 'P', 'L', 'T', M, N, M, A, LDA,
  3169. $ WORK( ITAUP ), VT, LDVT,
  3170. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3171. *
  3172. * Generate left bidiagonalizing vectors in A
  3173. * (Workspace: need 4*M, prefer 3*M+M*NB)
  3174. *
  3175. CALL SORGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
  3176. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3177. IWORK = IE + M
  3178. *
  3179. * Perform bidiagonal QR iteration, computing left
  3180. * singular vectors of A in A and computing right
  3181. * singular vectors of A in VT
  3182. * (Workspace: need BDSPAC)
  3183. *
  3184. CALL SBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT,
  3185. $ LDVT, A, LDA, DUM, 1, WORK( IWORK ),
  3186. $ INFO )
  3187. *
  3188. END IF
  3189. *
  3190. ELSE IF( WNTUAS ) THEN
  3191. *
  3192. * Path 9t(N much larger than M, JOBU='S' or 'A',
  3193. * JOBVT='A')
  3194. * N right singular vectors to be computed in VT and
  3195. * M left singular vectors to be computed in U
  3196. *
  3197. IF( LWORK.GE.M*M+MAX( N+M, 4*M, BDSPAC ) ) THEN
  3198. *
  3199. * Sufficient workspace for a fast algorithm
  3200. *
  3201. IU = 1
  3202. IF( LWORK.GE.WRKBL+LDA*M ) THEN
  3203. *
  3204. * WORK(IU) is LDA by M
  3205. *
  3206. LDWRKU = LDA
  3207. ELSE
  3208. *
  3209. * WORK(IU) is M by M
  3210. *
  3211. LDWRKU = M
  3212. END IF
  3213. ITAU = IU + LDWRKU*M
  3214. IWORK = ITAU + M
  3215. *
  3216. * Compute A=L*Q, copying result to VT
  3217. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  3218. *
  3219. CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
  3220. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3221. CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
  3222. *
  3223. * Generate Q in VT
  3224. * (Workspace: need M*M+M+N, prefer M*M+M+N*NB)
  3225. *
  3226. CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  3227. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3228. *
  3229. * Copy L to WORK(IU), zeroing out above it
  3230. *
  3231. CALL SLACPY( 'L', M, M, A, LDA, WORK( IU ),
  3232. $ LDWRKU )
  3233. CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
  3234. $ WORK( IU+LDWRKU ), LDWRKU )
  3235. IE = ITAU
  3236. ITAUQ = IE + M
  3237. ITAUP = ITAUQ + M
  3238. IWORK = ITAUP + M
  3239. *
  3240. * Bidiagonalize L in WORK(IU), copying result to U
  3241. * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
  3242. *
  3243. CALL SGEBRD( M, M, WORK( IU ), LDWRKU, S,
  3244. $ WORK( IE ), WORK( ITAUQ ),
  3245. $ WORK( ITAUP ), WORK( IWORK ),
  3246. $ LWORK-IWORK+1, IERR )
  3247. CALL SLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
  3248. $ LDU )
  3249. *
  3250. * Generate right bidiagonalizing vectors in WORK(IU)
  3251. * (Workspace: need M*M+4*M, prefer M*M+3*M+(M-1)*NB)
  3252. *
  3253. CALL SORGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
  3254. $ WORK( ITAUP ), WORK( IWORK ),
  3255. $ LWORK-IWORK+1, IERR )
  3256. *
  3257. * Generate left bidiagonalizing vectors in U
  3258. * (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB)
  3259. *
  3260. CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  3261. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3262. IWORK = IE + M
  3263. *
  3264. * Perform bidiagonal QR iteration, computing left
  3265. * singular vectors of L in U and computing right
  3266. * singular vectors of L in WORK(IU)
  3267. * (Workspace: need M*M+BDSPAC)
  3268. *
  3269. CALL SBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
  3270. $ WORK( IU ), LDWRKU, U, LDU, DUM, 1,
  3271. $ WORK( IWORK ), INFO )
  3272. *
  3273. * Multiply right singular vectors of L in WORK(IU) by
  3274. * Q in VT, storing result in A
  3275. * (Workspace: need M*M)
  3276. *
  3277. CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ),
  3278. $ LDWRKU, VT, LDVT, ZERO, A, LDA )
  3279. *
  3280. * Copy right singular vectors of A from A to VT
  3281. *
  3282. CALL SLACPY( 'F', M, N, A, LDA, VT, LDVT )
  3283. *
  3284. ELSE
  3285. *
  3286. * Insufficient workspace for a fast algorithm
  3287. *
  3288. ITAU = 1
  3289. IWORK = ITAU + M
  3290. *
  3291. * Compute A=L*Q, copying result to VT
  3292. * (Workspace: need 2*M, prefer M+M*NB)
  3293. *
  3294. CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
  3295. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3296. CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
  3297. *
  3298. * Generate Q in VT
  3299. * (Workspace: need M+N, prefer M+N*NB)
  3300. *
  3301. CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  3302. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3303. *
  3304. * Copy L to U, zeroing out above it
  3305. *
  3306. CALL SLACPY( 'L', M, M, A, LDA, U, LDU )
  3307. CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ),
  3308. $ LDU )
  3309. IE = ITAU
  3310. ITAUQ = IE + M
  3311. ITAUP = ITAUQ + M
  3312. IWORK = ITAUP + M
  3313. *
  3314. * Bidiagonalize L in U
  3315. * (Workspace: need 4*M, prefer 3*M+2*M*NB)
  3316. *
  3317. CALL SGEBRD( M, M, U, LDU, S, WORK( IE ),
  3318. $ WORK( ITAUQ ), WORK( ITAUP ),
  3319. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3320. *
  3321. * Multiply right bidiagonalizing vectors in U by Q
  3322. * in VT
  3323. * (Workspace: need 3*M+N, prefer 3*M+N*NB)
  3324. *
  3325. CALL SORMBR( 'P', 'L', 'T', M, N, M, U, LDU,
  3326. $ WORK( ITAUP ), VT, LDVT,
  3327. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3328. *
  3329. * Generate left bidiagonalizing vectors in U
  3330. * (Workspace: need 4*M, prefer 3*M+M*NB)
  3331. *
  3332. CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  3333. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3334. IWORK = IE + M
  3335. *
  3336. * Perform bidiagonal QR iteration, computing left
  3337. * singular vectors of A in U and computing right
  3338. * singular vectors of A in VT
  3339. * (Workspace: need BDSPAC)
  3340. *
  3341. CALL SBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT,
  3342. $ LDVT, U, LDU, DUM, 1, WORK( IWORK ),
  3343. $ INFO )
  3344. *
  3345. END IF
  3346. *
  3347. END IF
  3348. *
  3349. END IF
  3350. *
  3351. ELSE
  3352. *
  3353. * N .LT. MNTHR
  3354. *
  3355. * Path 10t(N greater than M, but not much larger)
  3356. * Reduce to bidiagonal form without LQ decomposition
  3357. *
  3358. IE = 1
  3359. ITAUQ = IE + M
  3360. ITAUP = ITAUQ + M
  3361. IWORK = ITAUP + M
  3362. *
  3363. * Bidiagonalize A
  3364. * (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
  3365. *
  3366. CALL SGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  3367. $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  3368. $ IERR )
  3369. IF( WNTUAS ) THEN
  3370. *
  3371. * If left singular vectors desired in U, copy result to U
  3372. * and generate left bidiagonalizing vectors in U
  3373. * (Workspace: need 4*M-1, prefer 3*M+(M-1)*NB)
  3374. *
  3375. CALL SLACPY( 'L', M, M, A, LDA, U, LDU )
  3376. CALL SORGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
  3377. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3378. END IF
  3379. IF( WNTVAS ) THEN
  3380. *
  3381. * If right singular vectors desired in VT, copy result to
  3382. * VT and generate right bidiagonalizing vectors in VT
  3383. * (Workspace: need 3*M+NRVT, prefer 3*M+NRVT*NB)
  3384. *
  3385. CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
  3386. IF( WNTVA )
  3387. $ NRVT = N
  3388. IF( WNTVS )
  3389. $ NRVT = M
  3390. CALL SORGBR( 'P', NRVT, N, M, VT, LDVT, WORK( ITAUP ),
  3391. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3392. END IF
  3393. IF( WNTUO ) THEN
  3394. *
  3395. * If left singular vectors desired in A, generate left
  3396. * bidiagonalizing vectors in A
  3397. * (Workspace: need 4*M-1, prefer 3*M+(M-1)*NB)
  3398. *
  3399. CALL SORGBR( 'Q', M, M, N, A, LDA, WORK( ITAUQ ),
  3400. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3401. END IF
  3402. IF( WNTVO ) THEN
  3403. *
  3404. * If right singular vectors desired in A, generate right
  3405. * bidiagonalizing vectors in A
  3406. * (Workspace: need 4*M, prefer 3*M+M*NB)
  3407. *
  3408. CALL SORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
  3409. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3410. END IF
  3411. IWORK = IE + M
  3412. IF( WNTUAS .OR. WNTUO )
  3413. $ NRU = M
  3414. IF( WNTUN )
  3415. $ NRU = 0
  3416. IF( WNTVAS .OR. WNTVO )
  3417. $ NCVT = N
  3418. IF( WNTVN )
  3419. $ NCVT = 0
  3420. IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
  3421. *
  3422. * Perform bidiagonal QR iteration, if desired, computing
  3423. * left singular vectors in U and computing right singular
  3424. * vectors in VT
  3425. * (Workspace: need BDSPAC)
  3426. *
  3427. CALL SBDSQR( 'L', M, NCVT, NRU, 0, S, WORK( IE ), VT,
  3428. $ LDVT, U, LDU, DUM, 1, WORK( IWORK ), INFO )
  3429. ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
  3430. *
  3431. * Perform bidiagonal QR iteration, if desired, computing
  3432. * left singular vectors in U and computing right singular
  3433. * vectors in A
  3434. * (Workspace: need BDSPAC)
  3435. *
  3436. CALL SBDSQR( 'L', M, NCVT, NRU, 0, S, WORK( IE ), A, LDA,
  3437. $ U, LDU, DUM, 1, WORK( IWORK ), INFO )
  3438. ELSE
  3439. *
  3440. * Perform bidiagonal QR iteration, if desired, computing
  3441. * left singular vectors in A and computing right singular
  3442. * vectors in VT
  3443. * (Workspace: need BDSPAC)
  3444. *
  3445. CALL SBDSQR( 'L', M, NCVT, NRU, 0, S, WORK( IE ), VT,
  3446. $ LDVT, A, LDA, DUM, 1, WORK( IWORK ), INFO )
  3447. END IF
  3448. *
  3449. END IF
  3450. *
  3451. END IF
  3452. *
  3453. * If SBDSQR failed to converge, copy unconverged superdiagonals
  3454. * to WORK( 2:MINMN )
  3455. *
  3456. IF( INFO.NE.0 ) THEN
  3457. IF( IE.GT.2 ) THEN
  3458. DO 50 I = 1, MINMN - 1
  3459. WORK( I+1 ) = WORK( I+IE-1 )
  3460. 50 CONTINUE
  3461. END IF
  3462. IF( IE.LT.2 ) THEN
  3463. DO 60 I = MINMN - 1, 1, -1
  3464. WORK( I+1 ) = WORK( I+IE-1 )
  3465. 60 CONTINUE
  3466. END IF
  3467. END IF
  3468. *
  3469. * Undo scaling if necessary
  3470. *
  3471. IF( ISCL.EQ.1 ) THEN
  3472. IF( ANRM.GT.BIGNUM )
  3473. $ CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
  3474. $ IERR )
  3475. IF( INFO.NE.0 .AND. ANRM.GT.BIGNUM )
  3476. $ CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN-1, 1, WORK( 2 ),
  3477. $ MINMN, IERR )
  3478. IF( ANRM.LT.SMLNUM )
  3479. $ CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
  3480. $ IERR )
  3481. IF( INFO.NE.0 .AND. ANRM.LT.SMLNUM )
  3482. $ CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN-1, 1, WORK( 2 ),
  3483. $ MINMN, IERR )
  3484. END IF
  3485. *
  3486. * Return optimal workspace in WORK(1)
  3487. *
  3488. WORK( 1 ) = MAXWRK
  3489. *
  3490. RETURN
  3491. *
  3492. * End of SGESVD
  3493. *
  3494. END