You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgesdd.f 79 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058
  1. *> \brief \b CGESDD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CGESDD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesdd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesdd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesdd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT,
  22. * WORK, LWORK, RWORK, IWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBZ
  26. * INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * REAL RWORK( * ), S( * )
  31. * COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
  32. * $ WORK( * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> CGESDD computes the singular value decomposition (SVD) of a complex
  42. *> M-by-N matrix A, optionally computing the left and/or right singular
  43. *> vectors, by using divide-and-conquer method. The SVD is written
  44. *>
  45. *> A = U * SIGMA * conjugate-transpose(V)
  46. *>
  47. *> where SIGMA is an M-by-N matrix which is zero except for its
  48. *> min(m,n) diagonal elements, U is an M-by-M unitary matrix, and
  49. *> V is an N-by-N unitary matrix. The diagonal elements of SIGMA
  50. *> are the singular values of A; they are real and non-negative, and
  51. *> are returned in descending order. The first min(m,n) columns of
  52. *> U and V are the left and right singular vectors of A.
  53. *>
  54. *> Note that the routine returns VT = V**H, not V.
  55. *>
  56. *> The divide and conquer algorithm makes very mild assumptions about
  57. *> floating point arithmetic. It will work on machines with a guard
  58. *> digit in add/subtract, or on those binary machines without guard
  59. *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
  60. *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
  61. *> without guard digits, but we know of none.
  62. *> \endverbatim
  63. *
  64. * Arguments:
  65. * ==========
  66. *
  67. *> \param[in] JOBZ
  68. *> \verbatim
  69. *> JOBZ is CHARACTER*1
  70. *> Specifies options for computing all or part of the matrix U:
  71. *> = 'A': all M columns of U and all N rows of V**H are
  72. *> returned in the arrays U and VT;
  73. *> = 'S': the first min(M,N) columns of U and the first
  74. *> min(M,N) rows of V**H are returned in the arrays U
  75. *> and VT;
  76. *> = 'O': If M >= N, the first N columns of U are overwritten
  77. *> in the array A and all rows of V**H are returned in
  78. *> the array VT;
  79. *> otherwise, all columns of U are returned in the
  80. *> array U and the first M rows of V**H are overwritten
  81. *> in the array A;
  82. *> = 'N': no columns of U or rows of V**H are computed.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] M
  86. *> \verbatim
  87. *> M is INTEGER
  88. *> The number of rows of the input matrix A. M >= 0.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] N
  92. *> \verbatim
  93. *> N is INTEGER
  94. *> The number of columns of the input matrix A. N >= 0.
  95. *> \endverbatim
  96. *>
  97. *> \param[in,out] A
  98. *> \verbatim
  99. *> A is COMPLEX array, dimension (LDA,N)
  100. *> On entry, the M-by-N matrix A.
  101. *> On exit,
  102. *> if JOBZ = 'O', A is overwritten with the first N columns
  103. *> of U (the left singular vectors, stored
  104. *> columnwise) if M >= N;
  105. *> A is overwritten with the first M rows
  106. *> of V**H (the right singular vectors, stored
  107. *> rowwise) otherwise.
  108. *> if JOBZ .ne. 'O', the contents of A are destroyed.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] LDA
  112. *> \verbatim
  113. *> LDA is INTEGER
  114. *> The leading dimension of the array A. LDA >= max(1,M).
  115. *> \endverbatim
  116. *>
  117. *> \param[out] S
  118. *> \verbatim
  119. *> S is REAL array, dimension (min(M,N))
  120. *> The singular values of A, sorted so that S(i) >= S(i+1).
  121. *> \endverbatim
  122. *>
  123. *> \param[out] U
  124. *> \verbatim
  125. *> U is COMPLEX array, dimension (LDU,UCOL)
  126. *> UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
  127. *> UCOL = min(M,N) if JOBZ = 'S'.
  128. *> If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
  129. *> unitary matrix U;
  130. *> if JOBZ = 'S', U contains the first min(M,N) columns of U
  131. *> (the left singular vectors, stored columnwise);
  132. *> if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
  133. *> \endverbatim
  134. *>
  135. *> \param[in] LDU
  136. *> \verbatim
  137. *> LDU is INTEGER
  138. *> The leading dimension of the array U. LDU >= 1; if
  139. *> JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
  140. *> \endverbatim
  141. *>
  142. *> \param[out] VT
  143. *> \verbatim
  144. *> VT is COMPLEX array, dimension (LDVT,N)
  145. *> If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
  146. *> N-by-N unitary matrix V**H;
  147. *> if JOBZ = 'S', VT contains the first min(M,N) rows of
  148. *> V**H (the right singular vectors, stored rowwise);
  149. *> if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
  150. *> \endverbatim
  151. *>
  152. *> \param[in] LDVT
  153. *> \verbatim
  154. *> LDVT is INTEGER
  155. *> The leading dimension of the array VT. LDVT >= 1; if
  156. *> JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
  157. *> if JOBZ = 'S', LDVT >= min(M,N).
  158. *> \endverbatim
  159. *>
  160. *> \param[out] WORK
  161. *> \verbatim
  162. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  163. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  164. *> \endverbatim
  165. *>
  166. *> \param[in] LWORK
  167. *> \verbatim
  168. *> LWORK is INTEGER
  169. *> The dimension of the array WORK. LWORK >= 1.
  170. *> if JOBZ = 'N', LWORK >= 2*min(M,N)+max(M,N).
  171. *> if JOBZ = 'O',
  172. *> LWORK >= 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N).
  173. *> if JOBZ = 'S' or 'A',
  174. *> LWORK >= min(M,N)*min(M,N)+2*min(M,N)+max(M,N).
  175. *> For good performance, LWORK should generally be larger.
  176. *>
  177. *> If LWORK = -1, a workspace query is assumed. The optimal
  178. *> size for the WORK array is calculated and stored in WORK(1),
  179. *> and no other work except argument checking is performed.
  180. *> \endverbatim
  181. *>
  182. *> \param[out] RWORK
  183. *> \verbatim
  184. *> RWORK is REAL array, dimension (MAX(1,LRWORK))
  185. *> If JOBZ = 'N', LRWORK >= 5*min(M,N).
  186. *> Otherwise,
  187. *> LRWORK >= min(M,N)*max(5*min(M,N)+7,2*max(M,N)+2*min(M,N)+1)
  188. *> \endverbatim
  189. *>
  190. *> \param[out] IWORK
  191. *> \verbatim
  192. *> IWORK is INTEGER array, dimension (8*min(M,N))
  193. *> \endverbatim
  194. *>
  195. *> \param[out] INFO
  196. *> \verbatim
  197. *> INFO is INTEGER
  198. *> = 0: successful exit.
  199. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  200. *> > 0: The updating process of SBDSDC did not converge.
  201. *> \endverbatim
  202. *
  203. * Authors:
  204. * ========
  205. *
  206. *> \author Univ. of Tennessee
  207. *> \author Univ. of California Berkeley
  208. *> \author Univ. of Colorado Denver
  209. *> \author NAG Ltd.
  210. *
  211. *> \date November 2011
  212. *
  213. *> \ingroup complexGEsing
  214. *
  215. *> \par Contributors:
  216. * ==================
  217. *>
  218. *> Ming Gu and Huan Ren, Computer Science Division, University of
  219. *> California at Berkeley, USA
  220. *>
  221. * =====================================================================
  222. SUBROUTINE CGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT,
  223. $ WORK, LWORK, RWORK, IWORK, INFO )
  224. *
  225. * -- LAPACK driver routine (version 3.4.0) --
  226. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  227. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  228. * November 2011
  229. *
  230. * .. Scalar Arguments ..
  231. CHARACTER JOBZ
  232. INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
  233. * ..
  234. * .. Array Arguments ..
  235. INTEGER IWORK( * )
  236. REAL RWORK( * ), S( * )
  237. COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
  238. $ WORK( * )
  239. * ..
  240. *
  241. * =====================================================================
  242. *
  243. * .. Parameters ..
  244. INTEGER LQUERV
  245. PARAMETER ( LQUERV = -1 )
  246. COMPLEX CZERO, CONE
  247. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
  248. $ CONE = ( 1.0E+0, 0.0E+0 ) )
  249. REAL ZERO, ONE
  250. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  251. * ..
  252. * .. Local Scalars ..
  253. LOGICAL WNTQA, WNTQAS, WNTQN, WNTQO, WNTQS
  254. INTEGER BLK, CHUNK, I, IE, IERR, IL, IR, IRU, IRVT,
  255. $ ISCL, ITAU, ITAUP, ITAUQ, IU, IVT, LDWKVT,
  256. $ LDWRKL, LDWRKR, LDWRKU, MAXWRK, MINMN, MINWRK,
  257. $ MNTHR1, MNTHR2, NRWORK, NWORK, WRKBL
  258. REAL ANRM, BIGNUM, EPS, SMLNUM
  259. * ..
  260. * .. Local Arrays ..
  261. INTEGER IDUM( 1 )
  262. REAL DUM( 1 )
  263. * ..
  264. * .. External Subroutines ..
  265. EXTERNAL CGEBRD, CGELQF, CGEMM, CGEQRF, CLACP2, CLACPY,
  266. $ CLACRM, CLARCM, CLASCL, CLASET, CUNGBR, CUNGLQ,
  267. $ CUNGQR, CUNMBR, SBDSDC, SLASCL, XERBLA
  268. * ..
  269. * .. External Functions ..
  270. LOGICAL LSAME
  271. INTEGER ILAENV
  272. REAL CLANGE, SLAMCH
  273. EXTERNAL CLANGE, SLAMCH, ILAENV, LSAME
  274. * ..
  275. * .. Intrinsic Functions ..
  276. INTRINSIC INT, MAX, MIN, SQRT
  277. * ..
  278. * .. Executable Statements ..
  279. *
  280. * Test the input arguments
  281. *
  282. INFO = 0
  283. MINMN = MIN( M, N )
  284. MNTHR1 = INT( MINMN*17.0 / 9.0 )
  285. MNTHR2 = INT( MINMN*5.0 / 3.0 )
  286. WNTQA = LSAME( JOBZ, 'A' )
  287. WNTQS = LSAME( JOBZ, 'S' )
  288. WNTQAS = WNTQA .OR. WNTQS
  289. WNTQO = LSAME( JOBZ, 'O' )
  290. WNTQN = LSAME( JOBZ, 'N' )
  291. MINWRK = 1
  292. MAXWRK = 1
  293. *
  294. IF( .NOT.( WNTQA .OR. WNTQS .OR. WNTQO .OR. WNTQN ) ) THEN
  295. INFO = -1
  296. ELSE IF( M.LT.0 ) THEN
  297. INFO = -2
  298. ELSE IF( N.LT.0 ) THEN
  299. INFO = -3
  300. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  301. INFO = -5
  302. ELSE IF( LDU.LT.1 .OR. ( WNTQAS .AND. LDU.LT.M ) .OR.
  303. $ ( WNTQO .AND. M.LT.N .AND. LDU.LT.M ) ) THEN
  304. INFO = -8
  305. ELSE IF( LDVT.LT.1 .OR. ( WNTQA .AND. LDVT.LT.N ) .OR.
  306. $ ( WNTQS .AND. LDVT.LT.MINMN ) .OR.
  307. $ ( WNTQO .AND. M.GE.N .AND. LDVT.LT.N ) ) THEN
  308. INFO = -10
  309. END IF
  310. *
  311. * Compute workspace
  312. * (Note: Comments in the code beginning "Workspace:" describe the
  313. * minimal amount of workspace needed at that point in the code,
  314. * as well as the preferred amount for good performance.
  315. * CWorkspace refers to complex workspace, and RWorkspace to
  316. * real workspace. NB refers to the optimal block size for the
  317. * immediately following subroutine, as returned by ILAENV.)
  318. *
  319. IF( INFO.EQ.0 .AND. M.GT.0 .AND. N.GT.0 ) THEN
  320. IF( M.GE.N ) THEN
  321. *
  322. * There is no complex work space needed for bidiagonal SVD
  323. * The real work space needed for bidiagonal SVD is BDSPAC
  324. * for computing singular values and singular vectors; BDSPAN
  325. * for computing singular values only.
  326. * BDSPAC = 5*N*N + 7*N
  327. * BDSPAN = MAX(7*N+4, 3*N+2+SMLSIZ*(SMLSIZ+8))
  328. *
  329. IF( M.GE.MNTHR1 ) THEN
  330. IF( WNTQN ) THEN
  331. *
  332. * Path 1 (M much larger than N, JOBZ='N')
  333. *
  334. MAXWRK = N + N*ILAENV( 1, 'CGEQRF', ' ', M, N, -1,
  335. $ -1 )
  336. MAXWRK = MAX( MAXWRK, 2*N+2*N*
  337. $ ILAENV( 1, 'CGEBRD', ' ', N, N, -1, -1 ) )
  338. MINWRK = 3*N
  339. ELSE IF( WNTQO ) THEN
  340. *
  341. * Path 2 (M much larger than N, JOBZ='O')
  342. *
  343. WRKBL = N + N*ILAENV( 1, 'CGEQRF', ' ', M, N, -1, -1 )
  344. WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'CUNGQR', ' ', M,
  345. $ N, N, -1 ) )
  346. WRKBL = MAX( WRKBL, 2*N+2*N*
  347. $ ILAENV( 1, 'CGEBRD', ' ', N, N, -1, -1 ) )
  348. WRKBL = MAX( WRKBL, 2*N+N*
  349. $ ILAENV( 1, 'CUNMBR', 'QLN', N, N, N, -1 ) )
  350. WRKBL = MAX( WRKBL, 2*N+N*
  351. $ ILAENV( 1, 'CUNMBR', 'PRC', N, N, N, -1 ) )
  352. MAXWRK = M*N + N*N + WRKBL
  353. MINWRK = 2*N*N + 3*N
  354. ELSE IF( WNTQS ) THEN
  355. *
  356. * Path 3 (M much larger than N, JOBZ='S')
  357. *
  358. WRKBL = N + N*ILAENV( 1, 'CGEQRF', ' ', M, N, -1, -1 )
  359. WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'CUNGQR', ' ', M,
  360. $ N, N, -1 ) )
  361. WRKBL = MAX( WRKBL, 2*N+2*N*
  362. $ ILAENV( 1, 'CGEBRD', ' ', N, N, -1, -1 ) )
  363. WRKBL = MAX( WRKBL, 2*N+N*
  364. $ ILAENV( 1, 'CUNMBR', 'QLN', N, N, N, -1 ) )
  365. WRKBL = MAX( WRKBL, 2*N+N*
  366. $ ILAENV( 1, 'CUNMBR', 'PRC', N, N, N, -1 ) )
  367. MAXWRK = N*N + WRKBL
  368. MINWRK = N*N + 3*N
  369. ELSE IF( WNTQA ) THEN
  370. *
  371. * Path 4 (M much larger than N, JOBZ='A')
  372. *
  373. WRKBL = N + N*ILAENV( 1, 'CGEQRF', ' ', M, N, -1, -1 )
  374. WRKBL = MAX( WRKBL, N+M*ILAENV( 1, 'CUNGQR', ' ', M,
  375. $ M, N, -1 ) )
  376. WRKBL = MAX( WRKBL, 2*N+2*N*
  377. $ ILAENV( 1, 'CGEBRD', ' ', N, N, -1, -1 ) )
  378. WRKBL = MAX( WRKBL, 2*N+N*
  379. $ ILAENV( 1, 'CUNMBR', 'QLN', N, N, N, -1 ) )
  380. WRKBL = MAX( WRKBL, 2*N+N*
  381. $ ILAENV( 1, 'CUNMBR', 'PRC', N, N, N, -1 ) )
  382. MAXWRK = N*N + WRKBL
  383. MINWRK = N*N + 2*N + M
  384. END IF
  385. ELSE IF( M.GE.MNTHR2 ) THEN
  386. *
  387. * Path 5 (M much larger than N, but not as much as MNTHR1)
  388. *
  389. MAXWRK = 2*N + ( M+N )*ILAENV( 1, 'CGEBRD', ' ', M, N,
  390. $ -1, -1 )
  391. MINWRK = 2*N + M
  392. IF( WNTQO ) THEN
  393. MAXWRK = MAX( MAXWRK, 2*N+N*
  394. $ ILAENV( 1, 'CUNGBR', 'P', N, N, N, -1 ) )
  395. MAXWRK = MAX( MAXWRK, 2*N+N*
  396. $ ILAENV( 1, 'CUNGBR', 'Q', M, N, N, -1 ) )
  397. MAXWRK = MAXWRK + M*N
  398. MINWRK = MINWRK + N*N
  399. ELSE IF( WNTQS ) THEN
  400. MAXWRK = MAX( MAXWRK, 2*N+N*
  401. $ ILAENV( 1, 'CUNGBR', 'P', N, N, N, -1 ) )
  402. MAXWRK = MAX( MAXWRK, 2*N+N*
  403. $ ILAENV( 1, 'CUNGBR', 'Q', M, N, N, -1 ) )
  404. ELSE IF( WNTQA ) THEN
  405. MAXWRK = MAX( MAXWRK, 2*N+N*
  406. $ ILAENV( 1, 'CUNGBR', 'P', N, N, N, -1 ) )
  407. MAXWRK = MAX( MAXWRK, 2*N+M*
  408. $ ILAENV( 1, 'CUNGBR', 'Q', M, M, N, -1 ) )
  409. END IF
  410. ELSE
  411. *
  412. * Path 6 (M at least N, but not much larger)
  413. *
  414. MAXWRK = 2*N + ( M+N )*ILAENV( 1, 'CGEBRD', ' ', M, N,
  415. $ -1, -1 )
  416. MINWRK = 2*N + M
  417. IF( WNTQO ) THEN
  418. MAXWRK = MAX( MAXWRK, 2*N+N*
  419. $ ILAENV( 1, 'CUNMBR', 'PRC', N, N, N, -1 ) )
  420. MAXWRK = MAX( MAXWRK, 2*N+N*
  421. $ ILAENV( 1, 'CUNMBR', 'QLN', M, N, N, -1 ) )
  422. MAXWRK = MAXWRK + M*N
  423. MINWRK = MINWRK + N*N
  424. ELSE IF( WNTQS ) THEN
  425. MAXWRK = MAX( MAXWRK, 2*N+N*
  426. $ ILAENV( 1, 'CUNMBR', 'PRC', N, N, N, -1 ) )
  427. MAXWRK = MAX( MAXWRK, 2*N+N*
  428. $ ILAENV( 1, 'CUNMBR', 'QLN', M, N, N, -1 ) )
  429. ELSE IF( WNTQA ) THEN
  430. MAXWRK = MAX( MAXWRK, 2*N+N*
  431. $ ILAENV( 1, 'CUNGBR', 'PRC', N, N, N, -1 ) )
  432. MAXWRK = MAX( MAXWRK, 2*N+M*
  433. $ ILAENV( 1, 'CUNGBR', 'QLN', M, M, N, -1 ) )
  434. END IF
  435. END IF
  436. ELSE
  437. *
  438. * There is no complex work space needed for bidiagonal SVD
  439. * The real work space needed for bidiagonal SVD is BDSPAC
  440. * for computing singular values and singular vectors; BDSPAN
  441. * for computing singular values only.
  442. * BDSPAC = 5*M*M + 7*M
  443. * BDSPAN = MAX(7*M+4, 3*M+2+SMLSIZ*(SMLSIZ+8))
  444. *
  445. IF( N.GE.MNTHR1 ) THEN
  446. IF( WNTQN ) THEN
  447. *
  448. * Path 1t (N much larger than M, JOBZ='N')
  449. *
  450. MAXWRK = M + M*ILAENV( 1, 'CGELQF', ' ', M, N, -1,
  451. $ -1 )
  452. MAXWRK = MAX( MAXWRK, 2*M+2*M*
  453. $ ILAENV( 1, 'CGEBRD', ' ', M, M, -1, -1 ) )
  454. MINWRK = 3*M
  455. ELSE IF( WNTQO ) THEN
  456. *
  457. * Path 2t (N much larger than M, JOBZ='O')
  458. *
  459. WRKBL = M + M*ILAENV( 1, 'CGELQF', ' ', M, N, -1, -1 )
  460. WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'CUNGLQ', ' ', M,
  461. $ N, M, -1 ) )
  462. WRKBL = MAX( WRKBL, 2*M+2*M*
  463. $ ILAENV( 1, 'CGEBRD', ' ', M, M, -1, -1 ) )
  464. WRKBL = MAX( WRKBL, 2*M+M*
  465. $ ILAENV( 1, 'CUNMBR', 'PRC', M, M, M, -1 ) )
  466. WRKBL = MAX( WRKBL, 2*M+M*
  467. $ ILAENV( 1, 'CUNMBR', 'QLN', M, M, M, -1 ) )
  468. MAXWRK = M*N + M*M + WRKBL
  469. MINWRK = 2*M*M + 3*M
  470. ELSE IF( WNTQS ) THEN
  471. *
  472. * Path 3t (N much larger than M, JOBZ='S')
  473. *
  474. WRKBL = M + M*ILAENV( 1, 'CGELQF', ' ', M, N, -1, -1 )
  475. WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'CUNGLQ', ' ', M,
  476. $ N, M, -1 ) )
  477. WRKBL = MAX( WRKBL, 2*M+2*M*
  478. $ ILAENV( 1, 'CGEBRD', ' ', M, M, -1, -1 ) )
  479. WRKBL = MAX( WRKBL, 2*M+M*
  480. $ ILAENV( 1, 'CUNMBR', 'PRC', M, M, M, -1 ) )
  481. WRKBL = MAX( WRKBL, 2*M+M*
  482. $ ILAENV( 1, 'CUNMBR', 'QLN', M, M, M, -1 ) )
  483. MAXWRK = M*M + WRKBL
  484. MINWRK = M*M + 3*M
  485. ELSE IF( WNTQA ) THEN
  486. *
  487. * Path 4t (N much larger than M, JOBZ='A')
  488. *
  489. WRKBL = M + M*ILAENV( 1, 'CGELQF', ' ', M, N, -1, -1 )
  490. WRKBL = MAX( WRKBL, M+N*ILAENV( 1, 'CUNGLQ', ' ', N,
  491. $ N, M, -1 ) )
  492. WRKBL = MAX( WRKBL, 2*M+2*M*
  493. $ ILAENV( 1, 'CGEBRD', ' ', M, M, -1, -1 ) )
  494. WRKBL = MAX( WRKBL, 2*M+M*
  495. $ ILAENV( 1, 'CUNMBR', 'PRC', M, M, M, -1 ) )
  496. WRKBL = MAX( WRKBL, 2*M+M*
  497. $ ILAENV( 1, 'CUNMBR', 'QLN', M, M, M, -1 ) )
  498. MAXWRK = M*M + WRKBL
  499. MINWRK = M*M + 2*M + N
  500. END IF
  501. ELSE IF( N.GE.MNTHR2 ) THEN
  502. *
  503. * Path 5t (N much larger than M, but not as much as MNTHR1)
  504. *
  505. MAXWRK = 2*M + ( M+N )*ILAENV( 1, 'CGEBRD', ' ', M, N,
  506. $ -1, -1 )
  507. MINWRK = 2*M + N
  508. IF( WNTQO ) THEN
  509. MAXWRK = MAX( MAXWRK, 2*M+M*
  510. $ ILAENV( 1, 'CUNGBR', 'P', M, N, M, -1 ) )
  511. MAXWRK = MAX( MAXWRK, 2*M+M*
  512. $ ILAENV( 1, 'CUNGBR', 'Q', M, M, N, -1 ) )
  513. MAXWRK = MAXWRK + M*N
  514. MINWRK = MINWRK + M*M
  515. ELSE IF( WNTQS ) THEN
  516. MAXWRK = MAX( MAXWRK, 2*M+M*
  517. $ ILAENV( 1, 'CUNGBR', 'P', M, N, M, -1 ) )
  518. MAXWRK = MAX( MAXWRK, 2*M+M*
  519. $ ILAENV( 1, 'CUNGBR', 'Q', M, M, N, -1 ) )
  520. ELSE IF( WNTQA ) THEN
  521. MAXWRK = MAX( MAXWRK, 2*M+N*
  522. $ ILAENV( 1, 'CUNGBR', 'P', N, N, M, -1 ) )
  523. MAXWRK = MAX( MAXWRK, 2*M+M*
  524. $ ILAENV( 1, 'CUNGBR', 'Q', M, M, N, -1 ) )
  525. END IF
  526. ELSE
  527. *
  528. * Path 6t (N greater than M, but not much larger)
  529. *
  530. MAXWRK = 2*M + ( M+N )*ILAENV( 1, 'CGEBRD', ' ', M, N,
  531. $ -1, -1 )
  532. MINWRK = 2*M + N
  533. IF( WNTQO ) THEN
  534. MAXWRK = MAX( MAXWRK, 2*M+M*
  535. $ ILAENV( 1, 'CUNMBR', 'PRC', M, N, M, -1 ) )
  536. MAXWRK = MAX( MAXWRK, 2*M+M*
  537. $ ILAENV( 1, 'CUNMBR', 'QLN', M, M, N, -1 ) )
  538. MAXWRK = MAXWRK + M*N
  539. MINWRK = MINWRK + M*M
  540. ELSE IF( WNTQS ) THEN
  541. MAXWRK = MAX( MAXWRK, 2*M+M*
  542. $ ILAENV( 1, 'CUNGBR', 'PRC', M, N, M, -1 ) )
  543. MAXWRK = MAX( MAXWRK, 2*M+M*
  544. $ ILAENV( 1, 'CUNGBR', 'QLN', M, M, N, -1 ) )
  545. ELSE IF( WNTQA ) THEN
  546. MAXWRK = MAX( MAXWRK, 2*M+N*
  547. $ ILAENV( 1, 'CUNGBR', 'PRC', N, N, M, -1 ) )
  548. MAXWRK = MAX( MAXWRK, 2*M+M*
  549. $ ILAENV( 1, 'CUNGBR', 'QLN', M, M, N, -1 ) )
  550. END IF
  551. END IF
  552. END IF
  553. MAXWRK = MAX( MAXWRK, MINWRK )
  554. END IF
  555. IF( INFO.EQ.0 ) THEN
  556. WORK( 1 ) = MAXWRK
  557. IF( LWORK.LT.MINWRK .AND. LWORK.NE.LQUERV )
  558. $ INFO = -13
  559. END IF
  560. *
  561. * Quick returns
  562. *
  563. IF( INFO.NE.0 ) THEN
  564. CALL XERBLA( 'CGESDD', -INFO )
  565. RETURN
  566. END IF
  567. IF( LWORK.EQ.LQUERV )
  568. $ RETURN
  569. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  570. RETURN
  571. END IF
  572. *
  573. * Get machine constants
  574. *
  575. EPS = SLAMCH( 'P' )
  576. SMLNUM = SQRT( SLAMCH( 'S' ) ) / EPS
  577. BIGNUM = ONE / SMLNUM
  578. *
  579. * Scale A if max element outside range [SMLNUM,BIGNUM]
  580. *
  581. ANRM = CLANGE( 'M', M, N, A, LDA, DUM )
  582. ISCL = 0
  583. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  584. ISCL = 1
  585. CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, IERR )
  586. ELSE IF( ANRM.GT.BIGNUM ) THEN
  587. ISCL = 1
  588. CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, IERR )
  589. END IF
  590. *
  591. IF( M.GE.N ) THEN
  592. *
  593. * A has at least as many rows as columns. If A has sufficiently
  594. * more rows than columns, first reduce using the QR
  595. * decomposition (if sufficient workspace available)
  596. *
  597. IF( M.GE.MNTHR1 ) THEN
  598. *
  599. IF( WNTQN ) THEN
  600. *
  601. * Path 1 (M much larger than N, JOBZ='N')
  602. * No singular vectors to be computed
  603. *
  604. ITAU = 1
  605. NWORK = ITAU + N
  606. *
  607. * Compute A=Q*R
  608. * (CWorkspace: need 2*N, prefer N+N*NB)
  609. * (RWorkspace: need 0)
  610. *
  611. CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  612. $ LWORK-NWORK+1, IERR )
  613. *
  614. * Zero out below R
  615. *
  616. CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
  617. $ LDA )
  618. IE = 1
  619. ITAUQ = 1
  620. ITAUP = ITAUQ + N
  621. NWORK = ITAUP + N
  622. *
  623. * Bidiagonalize R in A
  624. * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
  625. * (RWorkspace: need N)
  626. *
  627. CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  628. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  629. $ IERR )
  630. NRWORK = IE + N
  631. *
  632. * Perform bidiagonal SVD, compute singular values only
  633. * (CWorkspace: 0)
  634. * (RWorkspace: need BDSPAN)
  635. *
  636. CALL SBDSDC( 'U', 'N', N, S, RWORK( IE ), DUM, 1, DUM, 1,
  637. $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
  638. *
  639. ELSE IF( WNTQO ) THEN
  640. *
  641. * Path 2 (M much larger than N, JOBZ='O')
  642. * N left singular vectors to be overwritten on A and
  643. * N right singular vectors to be computed in VT
  644. *
  645. IU = 1
  646. *
  647. * WORK(IU) is N by N
  648. *
  649. LDWRKU = N
  650. IR = IU + LDWRKU*N
  651. IF( LWORK.GE.M*N+N*N+3*N ) THEN
  652. *
  653. * WORK(IR) is M by N
  654. *
  655. LDWRKR = M
  656. ELSE
  657. LDWRKR = ( LWORK-N*N-3*N ) / N
  658. END IF
  659. ITAU = IR + LDWRKR*N
  660. NWORK = ITAU + N
  661. *
  662. * Compute A=Q*R
  663. * (CWorkspace: need N*N+2*N, prefer M*N+N+N*NB)
  664. * (RWorkspace: 0)
  665. *
  666. CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  667. $ LWORK-NWORK+1, IERR )
  668. *
  669. * Copy R to WORK( IR ), zeroing out below it
  670. *
  671. CALL CLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
  672. CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, WORK( IR+1 ),
  673. $ LDWRKR )
  674. *
  675. * Generate Q in A
  676. * (CWorkspace: need 2*N, prefer N+N*NB)
  677. * (RWorkspace: 0)
  678. *
  679. CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
  680. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  681. IE = 1
  682. ITAUQ = ITAU
  683. ITAUP = ITAUQ + N
  684. NWORK = ITAUP + N
  685. *
  686. * Bidiagonalize R in WORK(IR)
  687. * (CWorkspace: need N*N+3*N, prefer M*N+2*N+2*N*NB)
  688. * (RWorkspace: need N)
  689. *
  690. CALL CGEBRD( N, N, WORK( IR ), LDWRKR, S, RWORK( IE ),
  691. $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
  692. $ LWORK-NWORK+1, IERR )
  693. *
  694. * Perform bidiagonal SVD, computing left singular vectors
  695. * of R in WORK(IRU) and computing right singular vectors
  696. * of R in WORK(IRVT)
  697. * (CWorkspace: need 0)
  698. * (RWorkspace: need BDSPAC)
  699. *
  700. IRU = IE + N
  701. IRVT = IRU + N*N
  702. NRWORK = IRVT + N*N
  703. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  704. $ N, RWORK( IRVT ), N, DUM, IDUM,
  705. $ RWORK( NRWORK ), IWORK, INFO )
  706. *
  707. * Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
  708. * Overwrite WORK(IU) by the left singular vectors of R
  709. * (CWorkspace: need 2*N*N+3*N, prefer M*N+N*N+2*N+N*NB)
  710. * (RWorkspace: 0)
  711. *
  712. CALL CLACP2( 'F', N, N, RWORK( IRU ), N, WORK( IU ),
  713. $ LDWRKU )
  714. CALL CUNMBR( 'Q', 'L', 'N', N, N, N, WORK( IR ), LDWRKR,
  715. $ WORK( ITAUQ ), WORK( IU ), LDWRKU,
  716. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  717. *
  718. * Copy real matrix RWORK(IRVT) to complex matrix VT
  719. * Overwrite VT by the right singular vectors of R
  720. * (CWorkspace: need N*N+3*N, prefer M*N+2*N+N*NB)
  721. * (RWorkspace: 0)
  722. *
  723. CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
  724. CALL CUNMBR( 'P', 'R', 'C', N, N, N, WORK( IR ), LDWRKR,
  725. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  726. $ LWORK-NWORK+1, IERR )
  727. *
  728. * Multiply Q in A by left singular vectors of R in
  729. * WORK(IU), storing result in WORK(IR) and copying to A
  730. * (CWorkspace: need 2*N*N, prefer N*N+M*N)
  731. * (RWorkspace: 0)
  732. *
  733. DO 10 I = 1, M, LDWRKR
  734. CHUNK = MIN( M-I+1, LDWRKR )
  735. CALL CGEMM( 'N', 'N', CHUNK, N, N, CONE, A( I, 1 ),
  736. $ LDA, WORK( IU ), LDWRKU, CZERO,
  737. $ WORK( IR ), LDWRKR )
  738. CALL CLACPY( 'F', CHUNK, N, WORK( IR ), LDWRKR,
  739. $ A( I, 1 ), LDA )
  740. 10 CONTINUE
  741. *
  742. ELSE IF( WNTQS ) THEN
  743. *
  744. * Path 3 (M much larger than N, JOBZ='S')
  745. * N left singular vectors to be computed in U and
  746. * N right singular vectors to be computed in VT
  747. *
  748. IR = 1
  749. *
  750. * WORK(IR) is N by N
  751. *
  752. LDWRKR = N
  753. ITAU = IR + LDWRKR*N
  754. NWORK = ITAU + N
  755. *
  756. * Compute A=Q*R
  757. * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
  758. * (RWorkspace: 0)
  759. *
  760. CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  761. $ LWORK-NWORK+1, IERR )
  762. *
  763. * Copy R to WORK(IR), zeroing out below it
  764. *
  765. CALL CLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
  766. CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, WORK( IR+1 ),
  767. $ LDWRKR )
  768. *
  769. * Generate Q in A
  770. * (CWorkspace: need 2*N, prefer N+N*NB)
  771. * (RWorkspace: 0)
  772. *
  773. CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
  774. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  775. IE = 1
  776. ITAUQ = ITAU
  777. ITAUP = ITAUQ + N
  778. NWORK = ITAUP + N
  779. *
  780. * Bidiagonalize R in WORK(IR)
  781. * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
  782. * (RWorkspace: need N)
  783. *
  784. CALL CGEBRD( N, N, WORK( IR ), LDWRKR, S, RWORK( IE ),
  785. $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
  786. $ LWORK-NWORK+1, IERR )
  787. *
  788. * Perform bidiagonal SVD, computing left singular vectors
  789. * of bidiagonal matrix in RWORK(IRU) and computing right
  790. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  791. * (CWorkspace: need 0)
  792. * (RWorkspace: need BDSPAC)
  793. *
  794. IRU = IE + N
  795. IRVT = IRU + N*N
  796. NRWORK = IRVT + N*N
  797. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  798. $ N, RWORK( IRVT ), N, DUM, IDUM,
  799. $ RWORK( NRWORK ), IWORK, INFO )
  800. *
  801. * Copy real matrix RWORK(IRU) to complex matrix U
  802. * Overwrite U by left singular vectors of R
  803. * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
  804. * (RWorkspace: 0)
  805. *
  806. CALL CLACP2( 'F', N, N, RWORK( IRU ), N, U, LDU )
  807. CALL CUNMBR( 'Q', 'L', 'N', N, N, N, WORK( IR ), LDWRKR,
  808. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  809. $ LWORK-NWORK+1, IERR )
  810. *
  811. * Copy real matrix RWORK(IRVT) to complex matrix VT
  812. * Overwrite VT by right singular vectors of R
  813. * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
  814. * (RWorkspace: 0)
  815. *
  816. CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
  817. CALL CUNMBR( 'P', 'R', 'C', N, N, N, WORK( IR ), LDWRKR,
  818. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  819. $ LWORK-NWORK+1, IERR )
  820. *
  821. * Multiply Q in A by left singular vectors of R in
  822. * WORK(IR), storing result in U
  823. * (CWorkspace: need N*N)
  824. * (RWorkspace: 0)
  825. *
  826. CALL CLACPY( 'F', N, N, U, LDU, WORK( IR ), LDWRKR )
  827. CALL CGEMM( 'N', 'N', M, N, N, CONE, A, LDA, WORK( IR ),
  828. $ LDWRKR, CZERO, U, LDU )
  829. *
  830. ELSE IF( WNTQA ) THEN
  831. *
  832. * Path 4 (M much larger than N, JOBZ='A')
  833. * M left singular vectors to be computed in U and
  834. * N right singular vectors to be computed in VT
  835. *
  836. IU = 1
  837. *
  838. * WORK(IU) is N by N
  839. *
  840. LDWRKU = N
  841. ITAU = IU + LDWRKU*N
  842. NWORK = ITAU + N
  843. *
  844. * Compute A=Q*R, copying result to U
  845. * (CWorkspace: need 2*N, prefer N+N*NB)
  846. * (RWorkspace: 0)
  847. *
  848. CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  849. $ LWORK-NWORK+1, IERR )
  850. CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
  851. *
  852. * Generate Q in U
  853. * (CWorkspace: need N+M, prefer N+M*NB)
  854. * (RWorkspace: 0)
  855. *
  856. CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ),
  857. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  858. *
  859. * Produce R in A, zeroing out below it
  860. *
  861. CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
  862. $ LDA )
  863. IE = 1
  864. ITAUQ = ITAU
  865. ITAUP = ITAUQ + N
  866. NWORK = ITAUP + N
  867. *
  868. * Bidiagonalize R in A
  869. * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
  870. * (RWorkspace: need N)
  871. *
  872. CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  873. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  874. $ IERR )
  875. IRU = IE + N
  876. IRVT = IRU + N*N
  877. NRWORK = IRVT + N*N
  878. *
  879. * Perform bidiagonal SVD, computing left singular vectors
  880. * of bidiagonal matrix in RWORK(IRU) and computing right
  881. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  882. * (CWorkspace: need 0)
  883. * (RWorkspace: need BDSPAC)
  884. *
  885. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  886. $ N, RWORK( IRVT ), N, DUM, IDUM,
  887. $ RWORK( NRWORK ), IWORK, INFO )
  888. *
  889. * Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
  890. * Overwrite WORK(IU) by left singular vectors of R
  891. * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
  892. * (RWorkspace: 0)
  893. *
  894. CALL CLACP2( 'F', N, N, RWORK( IRU ), N, WORK( IU ),
  895. $ LDWRKU )
  896. CALL CUNMBR( 'Q', 'L', 'N', N, N, N, A, LDA,
  897. $ WORK( ITAUQ ), WORK( IU ), LDWRKU,
  898. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  899. *
  900. * Copy real matrix RWORK(IRVT) to complex matrix VT
  901. * Overwrite VT by right singular vectors of R
  902. * (CWorkspace: need 3*N, prefer 2*N+N*NB)
  903. * (RWorkspace: 0)
  904. *
  905. CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
  906. CALL CUNMBR( 'P', 'R', 'C', N, N, N, A, LDA,
  907. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  908. $ LWORK-NWORK+1, IERR )
  909. *
  910. * Multiply Q in U by left singular vectors of R in
  911. * WORK(IU), storing result in A
  912. * (CWorkspace: need N*N)
  913. * (RWorkspace: 0)
  914. *
  915. CALL CGEMM( 'N', 'N', M, N, N, CONE, U, LDU, WORK( IU ),
  916. $ LDWRKU, CZERO, A, LDA )
  917. *
  918. * Copy left singular vectors of A from A to U
  919. *
  920. CALL CLACPY( 'F', M, N, A, LDA, U, LDU )
  921. *
  922. END IF
  923. *
  924. ELSE IF( M.GE.MNTHR2 ) THEN
  925. *
  926. * MNTHR2 <= M < MNTHR1
  927. *
  928. * Path 5 (M much larger than N, but not as much as MNTHR1)
  929. * Reduce to bidiagonal form without QR decomposition, use
  930. * CUNGBR and matrix multiplication to compute singular vectors
  931. *
  932. IE = 1
  933. NRWORK = IE + N
  934. ITAUQ = 1
  935. ITAUP = ITAUQ + N
  936. NWORK = ITAUP + N
  937. *
  938. * Bidiagonalize A
  939. * (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB)
  940. * (RWorkspace: need N)
  941. *
  942. CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  943. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  944. $ IERR )
  945. IF( WNTQN ) THEN
  946. *
  947. * Compute singular values only
  948. * (Cworkspace: 0)
  949. * (Rworkspace: need BDSPAN)
  950. *
  951. CALL SBDSDC( 'U', 'N', N, S, RWORK( IE ), DUM, 1, DUM, 1,
  952. $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
  953. ELSE IF( WNTQO ) THEN
  954. IU = NWORK
  955. IRU = NRWORK
  956. IRVT = IRU + N*N
  957. NRWORK = IRVT + N*N
  958. *
  959. * Copy A to VT, generate P**H
  960. * (Cworkspace: need 2*N, prefer N+N*NB)
  961. * (Rworkspace: 0)
  962. *
  963. CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
  964. CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  965. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  966. *
  967. * Generate Q in A
  968. * (CWorkspace: need 2*N, prefer N+N*NB)
  969. * (RWorkspace: 0)
  970. *
  971. CALL CUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
  972. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  973. *
  974. IF( LWORK.GE.M*N+3*N ) THEN
  975. *
  976. * WORK( IU ) is M by N
  977. *
  978. LDWRKU = M
  979. ELSE
  980. *
  981. * WORK(IU) is LDWRKU by N
  982. *
  983. LDWRKU = ( LWORK-3*N ) / N
  984. END IF
  985. NWORK = IU + LDWRKU*N
  986. *
  987. * Perform bidiagonal SVD, computing left singular vectors
  988. * of bidiagonal matrix in RWORK(IRU) and computing right
  989. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  990. * (CWorkspace: need 0)
  991. * (RWorkspace: need BDSPAC)
  992. *
  993. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  994. $ N, RWORK( IRVT ), N, DUM, IDUM,
  995. $ RWORK( NRWORK ), IWORK, INFO )
  996. *
  997. * Multiply real matrix RWORK(IRVT) by P**H in VT,
  998. * storing the result in WORK(IU), copying to VT
  999. * (Cworkspace: need 0)
  1000. * (Rworkspace: need 3*N*N)
  1001. *
  1002. CALL CLARCM( N, N, RWORK( IRVT ), N, VT, LDVT,
  1003. $ WORK( IU ), LDWRKU, RWORK( NRWORK ) )
  1004. CALL CLACPY( 'F', N, N, WORK( IU ), LDWRKU, VT, LDVT )
  1005. *
  1006. * Multiply Q in A by real matrix RWORK(IRU), storing the
  1007. * result in WORK(IU), copying to A
  1008. * (CWorkspace: need N*N, prefer M*N)
  1009. * (Rworkspace: need 3*N*N, prefer N*N+2*M*N)
  1010. *
  1011. NRWORK = IRVT
  1012. DO 20 I = 1, M, LDWRKU
  1013. CHUNK = MIN( M-I+1, LDWRKU )
  1014. CALL CLACRM( CHUNK, N, A( I, 1 ), LDA, RWORK( IRU ),
  1015. $ N, WORK( IU ), LDWRKU, RWORK( NRWORK ) )
  1016. CALL CLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
  1017. $ A( I, 1 ), LDA )
  1018. 20 CONTINUE
  1019. *
  1020. ELSE IF( WNTQS ) THEN
  1021. *
  1022. * Copy A to VT, generate P**H
  1023. * (Cworkspace: need 2*N, prefer N+N*NB)
  1024. * (Rworkspace: 0)
  1025. *
  1026. CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
  1027. CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1028. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1029. *
  1030. * Copy A to U, generate Q
  1031. * (Cworkspace: need 2*N, prefer N+N*NB)
  1032. * (Rworkspace: 0)
  1033. *
  1034. CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
  1035. CALL CUNGBR( 'Q', M, N, N, U, LDU, WORK( ITAUQ ),
  1036. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1037. *
  1038. * Perform bidiagonal SVD, computing left singular vectors
  1039. * of bidiagonal matrix in RWORK(IRU) and computing right
  1040. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1041. * (CWorkspace: need 0)
  1042. * (RWorkspace: need BDSPAC)
  1043. *
  1044. IRU = NRWORK
  1045. IRVT = IRU + N*N
  1046. NRWORK = IRVT + N*N
  1047. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  1048. $ N, RWORK( IRVT ), N, DUM, IDUM,
  1049. $ RWORK( NRWORK ), IWORK, INFO )
  1050. *
  1051. * Multiply real matrix RWORK(IRVT) by P**H in VT,
  1052. * storing the result in A, copying to VT
  1053. * (Cworkspace: need 0)
  1054. * (Rworkspace: need 3*N*N)
  1055. *
  1056. CALL CLARCM( N, N, RWORK( IRVT ), N, VT, LDVT, A, LDA,
  1057. $ RWORK( NRWORK ) )
  1058. CALL CLACPY( 'F', N, N, A, LDA, VT, LDVT )
  1059. *
  1060. * Multiply Q in U by real matrix RWORK(IRU), storing the
  1061. * result in A, copying to U
  1062. * (CWorkspace: need 0)
  1063. * (Rworkspace: need N*N+2*M*N)
  1064. *
  1065. NRWORK = IRVT
  1066. CALL CLACRM( M, N, U, LDU, RWORK( IRU ), N, A, LDA,
  1067. $ RWORK( NRWORK ) )
  1068. CALL CLACPY( 'F', M, N, A, LDA, U, LDU )
  1069. ELSE
  1070. *
  1071. * Copy A to VT, generate P**H
  1072. * (Cworkspace: need 2*N, prefer N+N*NB)
  1073. * (Rworkspace: 0)
  1074. *
  1075. CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
  1076. CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1077. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1078. *
  1079. * Copy A to U, generate Q
  1080. * (Cworkspace: need 2*N, prefer N+N*NB)
  1081. * (Rworkspace: 0)
  1082. *
  1083. CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
  1084. CALL CUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
  1085. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1086. *
  1087. * Perform bidiagonal SVD, computing left singular vectors
  1088. * of bidiagonal matrix in RWORK(IRU) and computing right
  1089. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1090. * (CWorkspace: need 0)
  1091. * (RWorkspace: need BDSPAC)
  1092. *
  1093. IRU = NRWORK
  1094. IRVT = IRU + N*N
  1095. NRWORK = IRVT + N*N
  1096. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  1097. $ N, RWORK( IRVT ), N, DUM, IDUM,
  1098. $ RWORK( NRWORK ), IWORK, INFO )
  1099. *
  1100. * Multiply real matrix RWORK(IRVT) by P**H in VT,
  1101. * storing the result in A, copying to VT
  1102. * (Cworkspace: need 0)
  1103. * (Rworkspace: need 3*N*N)
  1104. *
  1105. CALL CLARCM( N, N, RWORK( IRVT ), N, VT, LDVT, A, LDA,
  1106. $ RWORK( NRWORK ) )
  1107. CALL CLACPY( 'F', N, N, A, LDA, VT, LDVT )
  1108. *
  1109. * Multiply Q in U by real matrix RWORK(IRU), storing the
  1110. * result in A, copying to U
  1111. * (CWorkspace: 0)
  1112. * (Rworkspace: need 3*N*N)
  1113. *
  1114. NRWORK = IRVT
  1115. CALL CLACRM( M, N, U, LDU, RWORK( IRU ), N, A, LDA,
  1116. $ RWORK( NRWORK ) )
  1117. CALL CLACPY( 'F', M, N, A, LDA, U, LDU )
  1118. END IF
  1119. *
  1120. ELSE
  1121. *
  1122. * M .LT. MNTHR2
  1123. *
  1124. * Path 6 (M at least N, but not much larger)
  1125. * Reduce to bidiagonal form without QR decomposition
  1126. * Use CUNMBR to compute singular vectors
  1127. *
  1128. IE = 1
  1129. NRWORK = IE + N
  1130. ITAUQ = 1
  1131. ITAUP = ITAUQ + N
  1132. NWORK = ITAUP + N
  1133. *
  1134. * Bidiagonalize A
  1135. * (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB)
  1136. * (RWorkspace: need N)
  1137. *
  1138. CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  1139. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  1140. $ IERR )
  1141. IF( WNTQN ) THEN
  1142. *
  1143. * Compute singular values only
  1144. * (Cworkspace: 0)
  1145. * (Rworkspace: need BDSPAN)
  1146. *
  1147. CALL SBDSDC( 'U', 'N', N, S, RWORK( IE ), DUM, 1, DUM, 1,
  1148. $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
  1149. ELSE IF( WNTQO ) THEN
  1150. IU = NWORK
  1151. IRU = NRWORK
  1152. IRVT = IRU + N*N
  1153. NRWORK = IRVT + N*N
  1154. IF( LWORK.GE.M*N+3*N ) THEN
  1155. *
  1156. * WORK( IU ) is M by N
  1157. *
  1158. LDWRKU = M
  1159. ELSE
  1160. *
  1161. * WORK( IU ) is LDWRKU by N
  1162. *
  1163. LDWRKU = ( LWORK-3*N ) / N
  1164. END IF
  1165. NWORK = IU + LDWRKU*N
  1166. *
  1167. * Perform bidiagonal SVD, computing left singular vectors
  1168. * of bidiagonal matrix in RWORK(IRU) and computing right
  1169. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1170. * (CWorkspace: need 0)
  1171. * (RWorkspace: need BDSPAC)
  1172. *
  1173. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  1174. $ N, RWORK( IRVT ), N, DUM, IDUM,
  1175. $ RWORK( NRWORK ), IWORK, INFO )
  1176. *
  1177. * Copy real matrix RWORK(IRVT) to complex matrix VT
  1178. * Overwrite VT by right singular vectors of A
  1179. * (Cworkspace: need 2*N, prefer N+N*NB)
  1180. * (Rworkspace: need 0)
  1181. *
  1182. CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
  1183. CALL CUNMBR( 'P', 'R', 'C', N, N, N, A, LDA,
  1184. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  1185. $ LWORK-NWORK+1, IERR )
  1186. *
  1187. IF( LWORK.GE.M*N+3*N ) THEN
  1188. *
  1189. * Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
  1190. * Overwrite WORK(IU) by left singular vectors of A, copying
  1191. * to A
  1192. * (Cworkspace: need M*N+2*N, prefer M*N+N+N*NB)
  1193. * (Rworkspace: need 0)
  1194. *
  1195. CALL CLASET( 'F', M, N, CZERO, CZERO, WORK( IU ),
  1196. $ LDWRKU )
  1197. CALL CLACP2( 'F', N, N, RWORK( IRU ), N, WORK( IU ),
  1198. $ LDWRKU )
  1199. CALL CUNMBR( 'Q', 'L', 'N', M, N, N, A, LDA,
  1200. $ WORK( ITAUQ ), WORK( IU ), LDWRKU,
  1201. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1202. CALL CLACPY( 'F', M, N, WORK( IU ), LDWRKU, A, LDA )
  1203. ELSE
  1204. *
  1205. * Generate Q in A
  1206. * (Cworkspace: need 2*N, prefer N+N*NB)
  1207. * (Rworkspace: need 0)
  1208. *
  1209. CALL CUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
  1210. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1211. *
  1212. * Multiply Q in A by real matrix RWORK(IRU), storing the
  1213. * result in WORK(IU), copying to A
  1214. * (CWorkspace: need N*N, prefer M*N)
  1215. * (Rworkspace: need 3*N*N, prefer N*N+2*M*N)
  1216. *
  1217. NRWORK = IRVT
  1218. DO 30 I = 1, M, LDWRKU
  1219. CHUNK = MIN( M-I+1, LDWRKU )
  1220. CALL CLACRM( CHUNK, N, A( I, 1 ), LDA,
  1221. $ RWORK( IRU ), N, WORK( IU ), LDWRKU,
  1222. $ RWORK( NRWORK ) )
  1223. CALL CLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
  1224. $ A( I, 1 ), LDA )
  1225. 30 CONTINUE
  1226. END IF
  1227. *
  1228. ELSE IF( WNTQS ) THEN
  1229. *
  1230. * Perform bidiagonal SVD, computing left singular vectors
  1231. * of bidiagonal matrix in RWORK(IRU) and computing right
  1232. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1233. * (CWorkspace: need 0)
  1234. * (RWorkspace: need BDSPAC)
  1235. *
  1236. IRU = NRWORK
  1237. IRVT = IRU + N*N
  1238. NRWORK = IRVT + N*N
  1239. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  1240. $ N, RWORK( IRVT ), N, DUM, IDUM,
  1241. $ RWORK( NRWORK ), IWORK, INFO )
  1242. *
  1243. * Copy real matrix RWORK(IRU) to complex matrix U
  1244. * Overwrite U by left singular vectors of A
  1245. * (CWorkspace: need 3*N, prefer 2*N+N*NB)
  1246. * (RWorkspace: 0)
  1247. *
  1248. CALL CLASET( 'F', M, N, CZERO, CZERO, U, LDU )
  1249. CALL CLACP2( 'F', N, N, RWORK( IRU ), N, U, LDU )
  1250. CALL CUNMBR( 'Q', 'L', 'N', M, N, N, A, LDA,
  1251. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  1252. $ LWORK-NWORK+1, IERR )
  1253. *
  1254. * Copy real matrix RWORK(IRVT) to complex matrix VT
  1255. * Overwrite VT by right singular vectors of A
  1256. * (CWorkspace: need 3*N, prefer 2*N+N*NB)
  1257. * (RWorkspace: 0)
  1258. *
  1259. CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
  1260. CALL CUNMBR( 'P', 'R', 'C', N, N, N, A, LDA,
  1261. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  1262. $ LWORK-NWORK+1, IERR )
  1263. ELSE
  1264. *
  1265. * Perform bidiagonal SVD, computing left singular vectors
  1266. * of bidiagonal matrix in RWORK(IRU) and computing right
  1267. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1268. * (CWorkspace: need 0)
  1269. * (RWorkspace: need BDSPAC)
  1270. *
  1271. IRU = NRWORK
  1272. IRVT = IRU + N*N
  1273. NRWORK = IRVT + N*N
  1274. CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
  1275. $ N, RWORK( IRVT ), N, DUM, IDUM,
  1276. $ RWORK( NRWORK ), IWORK, INFO )
  1277. *
  1278. * Set the right corner of U to identity matrix
  1279. *
  1280. CALL CLASET( 'F', M, M, CZERO, CZERO, U, LDU )
  1281. IF( M.GT.N ) THEN
  1282. CALL CLASET( 'F', M-N, M-N, CZERO, CONE,
  1283. $ U( N+1, N+1 ), LDU )
  1284. END IF
  1285. *
  1286. * Copy real matrix RWORK(IRU) to complex matrix U
  1287. * Overwrite U by left singular vectors of A
  1288. * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
  1289. * (RWorkspace: 0)
  1290. *
  1291. CALL CLACP2( 'F', N, N, RWORK( IRU ), N, U, LDU )
  1292. CALL CUNMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
  1293. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  1294. $ LWORK-NWORK+1, IERR )
  1295. *
  1296. * Copy real matrix RWORK(IRVT) to complex matrix VT
  1297. * Overwrite VT by right singular vectors of A
  1298. * (CWorkspace: need 3*N, prefer 2*N+N*NB)
  1299. * (RWorkspace: 0)
  1300. *
  1301. CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
  1302. CALL CUNMBR( 'P', 'R', 'C', N, N, N, A, LDA,
  1303. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  1304. $ LWORK-NWORK+1, IERR )
  1305. END IF
  1306. *
  1307. END IF
  1308. *
  1309. ELSE
  1310. *
  1311. * A has more columns than rows. If A has sufficiently more
  1312. * columns than rows, first reduce using the LQ decomposition (if
  1313. * sufficient workspace available)
  1314. *
  1315. IF( N.GE.MNTHR1 ) THEN
  1316. *
  1317. IF( WNTQN ) THEN
  1318. *
  1319. * Path 1t (N much larger than M, JOBZ='N')
  1320. * No singular vectors to be computed
  1321. *
  1322. ITAU = 1
  1323. NWORK = ITAU + M
  1324. *
  1325. * Compute A=L*Q
  1326. * (CWorkspace: need 2*M, prefer M+M*NB)
  1327. * (RWorkspace: 0)
  1328. *
  1329. CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  1330. $ LWORK-NWORK+1, IERR )
  1331. *
  1332. * Zero out above L
  1333. *
  1334. CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, A( 1, 2 ),
  1335. $ LDA )
  1336. IE = 1
  1337. ITAUQ = 1
  1338. ITAUP = ITAUQ + M
  1339. NWORK = ITAUP + M
  1340. *
  1341. * Bidiagonalize L in A
  1342. * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
  1343. * (RWorkspace: need M)
  1344. *
  1345. CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  1346. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  1347. $ IERR )
  1348. NRWORK = IE + M
  1349. *
  1350. * Perform bidiagonal SVD, compute singular values only
  1351. * (CWorkspace: 0)
  1352. * (RWorkspace: need BDSPAN)
  1353. *
  1354. CALL SBDSDC( 'U', 'N', M, S, RWORK( IE ), DUM, 1, DUM, 1,
  1355. $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
  1356. *
  1357. ELSE IF( WNTQO ) THEN
  1358. *
  1359. * Path 2t (N much larger than M, JOBZ='O')
  1360. * M right singular vectors to be overwritten on A and
  1361. * M left singular vectors to be computed in U
  1362. *
  1363. IVT = 1
  1364. LDWKVT = M
  1365. *
  1366. * WORK(IVT) is M by M
  1367. *
  1368. IL = IVT + LDWKVT*M
  1369. IF( LWORK.GE.M*N+M*M+3*M ) THEN
  1370. *
  1371. * WORK(IL) M by N
  1372. *
  1373. LDWRKL = M
  1374. CHUNK = N
  1375. ELSE
  1376. *
  1377. * WORK(IL) is M by CHUNK
  1378. *
  1379. LDWRKL = M
  1380. CHUNK = ( LWORK-M*M-3*M ) / M
  1381. END IF
  1382. ITAU = IL + LDWRKL*CHUNK
  1383. NWORK = ITAU + M
  1384. *
  1385. * Compute A=L*Q
  1386. * (CWorkspace: need 2*M, prefer M+M*NB)
  1387. * (RWorkspace: 0)
  1388. *
  1389. CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  1390. $ LWORK-NWORK+1, IERR )
  1391. *
  1392. * Copy L to WORK(IL), zeroing about above it
  1393. *
  1394. CALL CLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWRKL )
  1395. CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
  1396. $ WORK( IL+LDWRKL ), LDWRKL )
  1397. *
  1398. * Generate Q in A
  1399. * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
  1400. * (RWorkspace: 0)
  1401. *
  1402. CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
  1403. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1404. IE = 1
  1405. ITAUQ = ITAU
  1406. ITAUP = ITAUQ + M
  1407. NWORK = ITAUP + M
  1408. *
  1409. * Bidiagonalize L in WORK(IL)
  1410. * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
  1411. * (RWorkspace: need M)
  1412. *
  1413. CALL CGEBRD( M, M, WORK( IL ), LDWRKL, S, RWORK( IE ),
  1414. $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
  1415. $ LWORK-NWORK+1, IERR )
  1416. *
  1417. * Perform bidiagonal SVD, computing left singular vectors
  1418. * of bidiagonal matrix in RWORK(IRU) and computing right
  1419. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1420. * (CWorkspace: need 0)
  1421. * (RWorkspace: need BDSPAC)
  1422. *
  1423. IRU = IE + M
  1424. IRVT = IRU + M*M
  1425. NRWORK = IRVT + M*M
  1426. CALL SBDSDC( 'U', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  1427. $ M, RWORK( IRVT ), M, DUM, IDUM,
  1428. $ RWORK( NRWORK ), IWORK, INFO )
  1429. *
  1430. * Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
  1431. * Overwrite WORK(IU) by the left singular vectors of L
  1432. * (CWorkspace: need N*N+3*N, prefer M*N+2*N+N*NB)
  1433. * (RWorkspace: 0)
  1434. *
  1435. CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
  1436. CALL CUNMBR( 'Q', 'L', 'N', M, M, M, WORK( IL ), LDWRKL,
  1437. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  1438. $ LWORK-NWORK+1, IERR )
  1439. *
  1440. * Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT)
  1441. * Overwrite WORK(IVT) by the right singular vectors of L
  1442. * (CWorkspace: need N*N+3*N, prefer M*N+2*N+N*NB)
  1443. * (RWorkspace: 0)
  1444. *
  1445. CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, WORK( IVT ),
  1446. $ LDWKVT )
  1447. CALL CUNMBR( 'P', 'R', 'C', M, M, M, WORK( IL ), LDWRKL,
  1448. $ WORK( ITAUP ), WORK( IVT ), LDWKVT,
  1449. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1450. *
  1451. * Multiply right singular vectors of L in WORK(IL) by Q
  1452. * in A, storing result in WORK(IL) and copying to A
  1453. * (CWorkspace: need 2*M*M, prefer M*M+M*N))
  1454. * (RWorkspace: 0)
  1455. *
  1456. DO 40 I = 1, N, CHUNK
  1457. BLK = MIN( N-I+1, CHUNK )
  1458. CALL CGEMM( 'N', 'N', M, BLK, M, CONE, WORK( IVT ), M,
  1459. $ A( 1, I ), LDA, CZERO, WORK( IL ),
  1460. $ LDWRKL )
  1461. CALL CLACPY( 'F', M, BLK, WORK( IL ), LDWRKL,
  1462. $ A( 1, I ), LDA )
  1463. 40 CONTINUE
  1464. *
  1465. ELSE IF( WNTQS ) THEN
  1466. *
  1467. * Path 3t (N much larger than M, JOBZ='S')
  1468. * M right singular vectors to be computed in VT and
  1469. * M left singular vectors to be computed in U
  1470. *
  1471. IL = 1
  1472. *
  1473. * WORK(IL) is M by M
  1474. *
  1475. LDWRKL = M
  1476. ITAU = IL + LDWRKL*M
  1477. NWORK = ITAU + M
  1478. *
  1479. * Compute A=L*Q
  1480. * (CWorkspace: need 2*M, prefer M+M*NB)
  1481. * (RWorkspace: 0)
  1482. *
  1483. CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  1484. $ LWORK-NWORK+1, IERR )
  1485. *
  1486. * Copy L to WORK(IL), zeroing out above it
  1487. *
  1488. CALL CLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWRKL )
  1489. CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
  1490. $ WORK( IL+LDWRKL ), LDWRKL )
  1491. *
  1492. * Generate Q in A
  1493. * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
  1494. * (RWorkspace: 0)
  1495. *
  1496. CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
  1497. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1498. IE = 1
  1499. ITAUQ = ITAU
  1500. ITAUP = ITAUQ + M
  1501. NWORK = ITAUP + M
  1502. *
  1503. * Bidiagonalize L in WORK(IL)
  1504. * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
  1505. * (RWorkspace: need M)
  1506. *
  1507. CALL CGEBRD( M, M, WORK( IL ), LDWRKL, S, RWORK( IE ),
  1508. $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
  1509. $ LWORK-NWORK+1, IERR )
  1510. *
  1511. * Perform bidiagonal SVD, computing left singular vectors
  1512. * of bidiagonal matrix in RWORK(IRU) and computing right
  1513. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1514. * (CWorkspace: need 0)
  1515. * (RWorkspace: need BDSPAC)
  1516. *
  1517. IRU = IE + M
  1518. IRVT = IRU + M*M
  1519. NRWORK = IRVT + M*M
  1520. CALL SBDSDC( 'U', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  1521. $ M, RWORK( IRVT ), M, DUM, IDUM,
  1522. $ RWORK( NRWORK ), IWORK, INFO )
  1523. *
  1524. * Copy real matrix RWORK(IRU) to complex matrix U
  1525. * Overwrite U by left singular vectors of L
  1526. * (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
  1527. * (RWorkspace: 0)
  1528. *
  1529. CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
  1530. CALL CUNMBR( 'Q', 'L', 'N', M, M, M, WORK( IL ), LDWRKL,
  1531. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  1532. $ LWORK-NWORK+1, IERR )
  1533. *
  1534. * Copy real matrix RWORK(IRVT) to complex matrix VT
  1535. * Overwrite VT by left singular vectors of L
  1536. * (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
  1537. * (RWorkspace: 0)
  1538. *
  1539. CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, VT, LDVT )
  1540. CALL CUNMBR( 'P', 'R', 'C', M, M, M, WORK( IL ), LDWRKL,
  1541. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  1542. $ LWORK-NWORK+1, IERR )
  1543. *
  1544. * Copy VT to WORK(IL), multiply right singular vectors of L
  1545. * in WORK(IL) by Q in A, storing result in VT
  1546. * (CWorkspace: need M*M)
  1547. * (RWorkspace: 0)
  1548. *
  1549. CALL CLACPY( 'F', M, M, VT, LDVT, WORK( IL ), LDWRKL )
  1550. CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IL ), LDWRKL,
  1551. $ A, LDA, CZERO, VT, LDVT )
  1552. *
  1553. ELSE IF( WNTQA ) THEN
  1554. *
  1555. * Path 9t (N much larger than M, JOBZ='A')
  1556. * N right singular vectors to be computed in VT and
  1557. * M left singular vectors to be computed in U
  1558. *
  1559. IVT = 1
  1560. *
  1561. * WORK(IVT) is M by M
  1562. *
  1563. LDWKVT = M
  1564. ITAU = IVT + LDWKVT*M
  1565. NWORK = ITAU + M
  1566. *
  1567. * Compute A=L*Q, copying result to VT
  1568. * (CWorkspace: need 2*M, prefer M+M*NB)
  1569. * (RWorkspace: 0)
  1570. *
  1571. CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  1572. $ LWORK-NWORK+1, IERR )
  1573. CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
  1574. *
  1575. * Generate Q in VT
  1576. * (CWorkspace: need M+N, prefer M+N*NB)
  1577. * (RWorkspace: 0)
  1578. *
  1579. CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  1580. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1581. *
  1582. * Produce L in A, zeroing out above it
  1583. *
  1584. CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, A( 1, 2 ),
  1585. $ LDA )
  1586. IE = 1
  1587. ITAUQ = ITAU
  1588. ITAUP = ITAUQ + M
  1589. NWORK = ITAUP + M
  1590. *
  1591. * Bidiagonalize L in A
  1592. * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
  1593. * (RWorkspace: need M)
  1594. *
  1595. CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  1596. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  1597. $ IERR )
  1598. *
  1599. * Perform bidiagonal SVD, computing left singular vectors
  1600. * of bidiagonal matrix in RWORK(IRU) and computing right
  1601. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1602. * (CWorkspace: need 0)
  1603. * (RWorkspace: need BDSPAC)
  1604. *
  1605. IRU = IE + M
  1606. IRVT = IRU + M*M
  1607. NRWORK = IRVT + M*M
  1608. CALL SBDSDC( 'U', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  1609. $ M, RWORK( IRVT ), M, DUM, IDUM,
  1610. $ RWORK( NRWORK ), IWORK, INFO )
  1611. *
  1612. * Copy real matrix RWORK(IRU) to complex matrix U
  1613. * Overwrite U by left singular vectors of L
  1614. * (CWorkspace: need 3*M, prefer 2*M+M*NB)
  1615. * (RWorkspace: 0)
  1616. *
  1617. CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
  1618. CALL CUNMBR( 'Q', 'L', 'N', M, M, M, A, LDA,
  1619. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  1620. $ LWORK-NWORK+1, IERR )
  1621. *
  1622. * Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT)
  1623. * Overwrite WORK(IVT) by right singular vectors of L
  1624. * (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
  1625. * (RWorkspace: 0)
  1626. *
  1627. CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, WORK( IVT ),
  1628. $ LDWKVT )
  1629. CALL CUNMBR( 'P', 'R', 'C', M, M, M, A, LDA,
  1630. $ WORK( ITAUP ), WORK( IVT ), LDWKVT,
  1631. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1632. *
  1633. * Multiply right singular vectors of L in WORK(IVT) by
  1634. * Q in VT, storing result in A
  1635. * (CWorkspace: need M*M)
  1636. * (RWorkspace: 0)
  1637. *
  1638. CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IVT ),
  1639. $ LDWKVT, VT, LDVT, CZERO, A, LDA )
  1640. *
  1641. * Copy right singular vectors of A from A to VT
  1642. *
  1643. CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT )
  1644. *
  1645. END IF
  1646. *
  1647. ELSE IF( N.GE.MNTHR2 ) THEN
  1648. *
  1649. * MNTHR2 <= N < MNTHR1
  1650. *
  1651. * Path 5t (N much larger than M, but not as much as MNTHR1)
  1652. * Reduce to bidiagonal form without QR decomposition, use
  1653. * CUNGBR and matrix multiplication to compute singular vectors
  1654. *
  1655. *
  1656. IE = 1
  1657. NRWORK = IE + M
  1658. ITAUQ = 1
  1659. ITAUP = ITAUQ + M
  1660. NWORK = ITAUP + M
  1661. *
  1662. * Bidiagonalize A
  1663. * (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
  1664. * (RWorkspace: M)
  1665. *
  1666. CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  1667. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  1668. $ IERR )
  1669. *
  1670. IF( WNTQN ) THEN
  1671. *
  1672. * Compute singular values only
  1673. * (Cworkspace: 0)
  1674. * (Rworkspace: need BDSPAN)
  1675. *
  1676. CALL SBDSDC( 'L', 'N', M, S, RWORK( IE ), DUM, 1, DUM, 1,
  1677. $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
  1678. ELSE IF( WNTQO ) THEN
  1679. IRVT = NRWORK
  1680. IRU = IRVT + M*M
  1681. NRWORK = IRU + M*M
  1682. IVT = NWORK
  1683. *
  1684. * Copy A to U, generate Q
  1685. * (Cworkspace: need 2*M, prefer M+M*NB)
  1686. * (Rworkspace: 0)
  1687. *
  1688. CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
  1689. CALL CUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
  1690. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1691. *
  1692. * Generate P**H in A
  1693. * (Cworkspace: need 2*M, prefer M+M*NB)
  1694. * (Rworkspace: 0)
  1695. *
  1696. CALL CUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
  1697. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1698. *
  1699. LDWKVT = M
  1700. IF( LWORK.GE.M*N+3*M ) THEN
  1701. *
  1702. * WORK( IVT ) is M by N
  1703. *
  1704. NWORK = IVT + LDWKVT*N
  1705. CHUNK = N
  1706. ELSE
  1707. *
  1708. * WORK( IVT ) is M by CHUNK
  1709. *
  1710. CHUNK = ( LWORK-3*M ) / M
  1711. NWORK = IVT + LDWKVT*CHUNK
  1712. END IF
  1713. *
  1714. * Perform bidiagonal SVD, computing left singular vectors
  1715. * of bidiagonal matrix in RWORK(IRU) and computing right
  1716. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1717. * (CWorkspace: need 0)
  1718. * (RWorkspace: need BDSPAC)
  1719. *
  1720. CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  1721. $ M, RWORK( IRVT ), M, DUM, IDUM,
  1722. $ RWORK( NRWORK ), IWORK, INFO )
  1723. *
  1724. * Multiply Q in U by real matrix RWORK(IRVT)
  1725. * storing the result in WORK(IVT), copying to U
  1726. * (Cworkspace: need 0)
  1727. * (Rworkspace: need 2*M*M)
  1728. *
  1729. CALL CLACRM( M, M, U, LDU, RWORK( IRU ), M, WORK( IVT ),
  1730. $ LDWKVT, RWORK( NRWORK ) )
  1731. CALL CLACPY( 'F', M, M, WORK( IVT ), LDWKVT, U, LDU )
  1732. *
  1733. * Multiply RWORK(IRVT) by P**H in A, storing the
  1734. * result in WORK(IVT), copying to A
  1735. * (CWorkspace: need M*M, prefer M*N)
  1736. * (Rworkspace: need 2*M*M, prefer 2*M*N)
  1737. *
  1738. NRWORK = IRU
  1739. DO 50 I = 1, N, CHUNK
  1740. BLK = MIN( N-I+1, CHUNK )
  1741. CALL CLARCM( M, BLK, RWORK( IRVT ), M, A( 1, I ), LDA,
  1742. $ WORK( IVT ), LDWKVT, RWORK( NRWORK ) )
  1743. CALL CLACPY( 'F', M, BLK, WORK( IVT ), LDWKVT,
  1744. $ A( 1, I ), LDA )
  1745. 50 CONTINUE
  1746. ELSE IF( WNTQS ) THEN
  1747. *
  1748. * Copy A to U, generate Q
  1749. * (Cworkspace: need 2*M, prefer M+M*NB)
  1750. * (Rworkspace: 0)
  1751. *
  1752. CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
  1753. CALL CUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
  1754. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1755. *
  1756. * Copy A to VT, generate P**H
  1757. * (Cworkspace: need 2*M, prefer M+M*NB)
  1758. * (Rworkspace: 0)
  1759. *
  1760. CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
  1761. CALL CUNGBR( 'P', M, N, M, VT, LDVT, WORK( ITAUP ),
  1762. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1763. *
  1764. * Perform bidiagonal SVD, computing left singular vectors
  1765. * of bidiagonal matrix in RWORK(IRU) and computing right
  1766. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1767. * (CWorkspace: need 0)
  1768. * (RWorkspace: need BDSPAC)
  1769. *
  1770. IRVT = NRWORK
  1771. IRU = IRVT + M*M
  1772. NRWORK = IRU + M*M
  1773. CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  1774. $ M, RWORK( IRVT ), M, DUM, IDUM,
  1775. $ RWORK( NRWORK ), IWORK, INFO )
  1776. *
  1777. * Multiply Q in U by real matrix RWORK(IRU), storing the
  1778. * result in A, copying to U
  1779. * (CWorkspace: need 0)
  1780. * (Rworkspace: need 3*M*M)
  1781. *
  1782. CALL CLACRM( M, M, U, LDU, RWORK( IRU ), M, A, LDA,
  1783. $ RWORK( NRWORK ) )
  1784. CALL CLACPY( 'F', M, M, A, LDA, U, LDU )
  1785. *
  1786. * Multiply real matrix RWORK(IRVT) by P**H in VT,
  1787. * storing the result in A, copying to VT
  1788. * (Cworkspace: need 0)
  1789. * (Rworkspace: need M*M+2*M*N)
  1790. *
  1791. NRWORK = IRU
  1792. CALL CLARCM( M, N, RWORK( IRVT ), M, VT, LDVT, A, LDA,
  1793. $ RWORK( NRWORK ) )
  1794. CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT )
  1795. ELSE
  1796. *
  1797. * Copy A to U, generate Q
  1798. * (Cworkspace: need 2*M, prefer M+M*NB)
  1799. * (Rworkspace: 0)
  1800. *
  1801. CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
  1802. CALL CUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
  1803. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1804. *
  1805. * Copy A to VT, generate P**H
  1806. * (Cworkspace: need 2*M, prefer M+M*NB)
  1807. * (Rworkspace: 0)
  1808. *
  1809. CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
  1810. CALL CUNGBR( 'P', N, N, M, VT, LDVT, WORK( ITAUP ),
  1811. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1812. *
  1813. * Perform bidiagonal SVD, computing left singular vectors
  1814. * of bidiagonal matrix in RWORK(IRU) and computing right
  1815. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1816. * (CWorkspace: need 0)
  1817. * (RWorkspace: need BDSPAC)
  1818. *
  1819. IRVT = NRWORK
  1820. IRU = IRVT + M*M
  1821. NRWORK = IRU + M*M
  1822. CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  1823. $ M, RWORK( IRVT ), M, DUM, IDUM,
  1824. $ RWORK( NRWORK ), IWORK, INFO )
  1825. *
  1826. * Multiply Q in U by real matrix RWORK(IRU), storing the
  1827. * result in A, copying to U
  1828. * (CWorkspace: need 0)
  1829. * (Rworkspace: need 3*M*M)
  1830. *
  1831. CALL CLACRM( M, M, U, LDU, RWORK( IRU ), M, A, LDA,
  1832. $ RWORK( NRWORK ) )
  1833. CALL CLACPY( 'F', M, M, A, LDA, U, LDU )
  1834. *
  1835. * Multiply real matrix RWORK(IRVT) by P**H in VT,
  1836. * storing the result in A, copying to VT
  1837. * (Cworkspace: need 0)
  1838. * (Rworkspace: need M*M+2*M*N)
  1839. *
  1840. CALL CLARCM( M, N, RWORK( IRVT ), M, VT, LDVT, A, LDA,
  1841. $ RWORK( NRWORK ) )
  1842. CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT )
  1843. END IF
  1844. *
  1845. ELSE
  1846. *
  1847. * N .LT. MNTHR2
  1848. *
  1849. * Path 6t (N greater than M, but not much larger)
  1850. * Reduce to bidiagonal form without LQ decomposition
  1851. * Use CUNMBR to compute singular vectors
  1852. *
  1853. IE = 1
  1854. NRWORK = IE + M
  1855. ITAUQ = 1
  1856. ITAUP = ITAUQ + M
  1857. NWORK = ITAUP + M
  1858. *
  1859. * Bidiagonalize A
  1860. * (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
  1861. * (RWorkspace: M)
  1862. *
  1863. CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  1864. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  1865. $ IERR )
  1866. IF( WNTQN ) THEN
  1867. *
  1868. * Compute singular values only
  1869. * (Cworkspace: 0)
  1870. * (Rworkspace: need BDSPAN)
  1871. *
  1872. CALL SBDSDC( 'L', 'N', M, S, RWORK( IE ), DUM, 1, DUM, 1,
  1873. $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
  1874. ELSE IF( WNTQO ) THEN
  1875. LDWKVT = M
  1876. IVT = NWORK
  1877. IF( LWORK.GE.M*N+3*M ) THEN
  1878. *
  1879. * WORK( IVT ) is M by N
  1880. *
  1881. CALL CLASET( 'F', M, N, CZERO, CZERO, WORK( IVT ),
  1882. $ LDWKVT )
  1883. NWORK = IVT + LDWKVT*N
  1884. ELSE
  1885. *
  1886. * WORK( IVT ) is M by CHUNK
  1887. *
  1888. CHUNK = ( LWORK-3*M ) / M
  1889. NWORK = IVT + LDWKVT*CHUNK
  1890. END IF
  1891. *
  1892. * Perform bidiagonal SVD, computing left singular vectors
  1893. * of bidiagonal matrix in RWORK(IRU) and computing right
  1894. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1895. * (CWorkspace: need 0)
  1896. * (RWorkspace: need BDSPAC)
  1897. *
  1898. IRVT = NRWORK
  1899. IRU = IRVT + M*M
  1900. NRWORK = IRU + M*M
  1901. CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  1902. $ M, RWORK( IRVT ), M, DUM, IDUM,
  1903. $ RWORK( NRWORK ), IWORK, INFO )
  1904. *
  1905. * Copy real matrix RWORK(IRU) to complex matrix U
  1906. * Overwrite U by left singular vectors of A
  1907. * (Cworkspace: need 2*M, prefer M+M*NB)
  1908. * (Rworkspace: need 0)
  1909. *
  1910. CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
  1911. CALL CUNMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
  1912. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  1913. $ LWORK-NWORK+1, IERR )
  1914. *
  1915. IF( LWORK.GE.M*N+3*M ) THEN
  1916. *
  1917. * Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT)
  1918. * Overwrite WORK(IVT) by right singular vectors of A,
  1919. * copying to A
  1920. * (Cworkspace: need M*N+2*M, prefer M*N+M+M*NB)
  1921. * (Rworkspace: need 0)
  1922. *
  1923. CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, WORK( IVT ),
  1924. $ LDWKVT )
  1925. CALL CUNMBR( 'P', 'R', 'C', M, N, M, A, LDA,
  1926. $ WORK( ITAUP ), WORK( IVT ), LDWKVT,
  1927. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1928. CALL CLACPY( 'F', M, N, WORK( IVT ), LDWKVT, A, LDA )
  1929. ELSE
  1930. *
  1931. * Generate P**H in A
  1932. * (Cworkspace: need 2*M, prefer M+M*NB)
  1933. * (Rworkspace: need 0)
  1934. *
  1935. CALL CUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
  1936. $ WORK( NWORK ), LWORK-NWORK+1, IERR )
  1937. *
  1938. * Multiply Q in A by real matrix RWORK(IRU), storing the
  1939. * result in WORK(IU), copying to A
  1940. * (CWorkspace: need M*M, prefer M*N)
  1941. * (Rworkspace: need 3*M*M, prefer M*M+2*M*N)
  1942. *
  1943. NRWORK = IRU
  1944. DO 60 I = 1, N, CHUNK
  1945. BLK = MIN( N-I+1, CHUNK )
  1946. CALL CLARCM( M, BLK, RWORK( IRVT ), M, A( 1, I ),
  1947. $ LDA, WORK( IVT ), LDWKVT,
  1948. $ RWORK( NRWORK ) )
  1949. CALL CLACPY( 'F', M, BLK, WORK( IVT ), LDWKVT,
  1950. $ A( 1, I ), LDA )
  1951. 60 CONTINUE
  1952. END IF
  1953. ELSE IF( WNTQS ) THEN
  1954. *
  1955. * Perform bidiagonal SVD, computing left singular vectors
  1956. * of bidiagonal matrix in RWORK(IRU) and computing right
  1957. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1958. * (CWorkspace: need 0)
  1959. * (RWorkspace: need BDSPAC)
  1960. *
  1961. IRVT = NRWORK
  1962. IRU = IRVT + M*M
  1963. NRWORK = IRU + M*M
  1964. CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  1965. $ M, RWORK( IRVT ), M, DUM, IDUM,
  1966. $ RWORK( NRWORK ), IWORK, INFO )
  1967. *
  1968. * Copy real matrix RWORK(IRU) to complex matrix U
  1969. * Overwrite U by left singular vectors of A
  1970. * (CWorkspace: need 3*M, prefer 2*M+M*NB)
  1971. * (RWorkspace: M*M)
  1972. *
  1973. CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
  1974. CALL CUNMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
  1975. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  1976. $ LWORK-NWORK+1, IERR )
  1977. *
  1978. * Copy real matrix RWORK(IRVT) to complex matrix VT
  1979. * Overwrite VT by right singular vectors of A
  1980. * (CWorkspace: need 3*M, prefer 2*M+M*NB)
  1981. * (RWorkspace: M*M)
  1982. *
  1983. CALL CLASET( 'F', M, N, CZERO, CZERO, VT, LDVT )
  1984. CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, VT, LDVT )
  1985. CALL CUNMBR( 'P', 'R', 'C', M, N, M, A, LDA,
  1986. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  1987. $ LWORK-NWORK+1, IERR )
  1988. ELSE
  1989. *
  1990. * Perform bidiagonal SVD, computing left singular vectors
  1991. * of bidiagonal matrix in RWORK(IRU) and computing right
  1992. * singular vectors of bidiagonal matrix in RWORK(IRVT)
  1993. * (CWorkspace: need 0)
  1994. * (RWorkspace: need BDSPAC)
  1995. *
  1996. IRVT = NRWORK
  1997. IRU = IRVT + M*M
  1998. NRWORK = IRU + M*M
  1999. *
  2000. CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
  2001. $ M, RWORK( IRVT ), M, DUM, IDUM,
  2002. $ RWORK( NRWORK ), IWORK, INFO )
  2003. *
  2004. * Copy real matrix RWORK(IRU) to complex matrix U
  2005. * Overwrite U by left singular vectors of A
  2006. * (CWorkspace: need 3*M, prefer 2*M+M*NB)
  2007. * (RWorkspace: M*M)
  2008. *
  2009. CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
  2010. CALL CUNMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
  2011. $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
  2012. $ LWORK-NWORK+1, IERR )
  2013. *
  2014. * Set all of VT to identity matrix
  2015. *
  2016. CALL CLASET( 'F', N, N, CZERO, CONE, VT, LDVT )
  2017. *
  2018. * Copy real matrix RWORK(IRVT) to complex matrix VT
  2019. * Overwrite VT by right singular vectors of A
  2020. * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
  2021. * (RWorkspace: M*M)
  2022. *
  2023. CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, VT, LDVT )
  2024. CALL CUNMBR( 'P', 'R', 'C', N, N, M, A, LDA,
  2025. $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
  2026. $ LWORK-NWORK+1, IERR )
  2027. END IF
  2028. *
  2029. END IF
  2030. *
  2031. END IF
  2032. *
  2033. * Undo scaling if necessary
  2034. *
  2035. IF( ISCL.EQ.1 ) THEN
  2036. IF( ANRM.GT.BIGNUM )
  2037. $ CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
  2038. $ IERR )
  2039. IF( INFO.NE.0 .AND. ANRM.GT.BIGNUM )
  2040. $ CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN-1, 1,
  2041. $ RWORK( IE ), MINMN, IERR )
  2042. IF( ANRM.LT.SMLNUM )
  2043. $ CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
  2044. $ IERR )
  2045. IF( INFO.NE.0 .AND. ANRM.LT.SMLNUM )
  2046. $ CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN-1, 1,
  2047. $ RWORK( IE ), MINMN, IERR )
  2048. END IF
  2049. *
  2050. * Return optimal workspace in WORK(1)
  2051. *
  2052. WORK( 1 ) = MAXWRK
  2053. *
  2054. RETURN
  2055. *
  2056. * End of CGESDD
  2057. *
  2058. END