You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssptrd.f 8.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. *> \brief \b SSPTRD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSPTRD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssptrd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssptrd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssptrd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSPTRD( UPLO, N, AP, D, E, TAU, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL AP( * ), D( * ), E( * ), TAU( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> SSPTRD reduces a real symmetric matrix A stored in packed form to
  38. *> symmetric tridiagonal form T by an orthogonal similarity
  39. *> transformation: Q**T * A * Q = T.
  40. *> \endverbatim
  41. *
  42. * Arguments:
  43. * ==========
  44. *
  45. *> \param[in] UPLO
  46. *> \verbatim
  47. *> UPLO is CHARACTER*1
  48. *> = 'U': Upper triangle of A is stored;
  49. *> = 'L': Lower triangle of A is stored.
  50. *> \endverbatim
  51. *>
  52. *> \param[in] N
  53. *> \verbatim
  54. *> N is INTEGER
  55. *> The order of the matrix A. N >= 0.
  56. *> \endverbatim
  57. *>
  58. *> \param[in,out] AP
  59. *> \verbatim
  60. *> AP is REAL array, dimension (N*(N+1)/2)
  61. *> On entry, the upper or lower triangle of the symmetric matrix
  62. *> A, packed columnwise in a linear array. The j-th column of A
  63. *> is stored in the array AP as follows:
  64. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  65. *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
  66. *> On exit, if UPLO = 'U', the diagonal and first superdiagonal
  67. *> of A are overwritten by the corresponding elements of the
  68. *> tridiagonal matrix T, and the elements above the first
  69. *> superdiagonal, with the array TAU, represent the orthogonal
  70. *> matrix Q as a product of elementary reflectors; if UPLO
  71. *> = 'L', the diagonal and first subdiagonal of A are over-
  72. *> written by the corresponding elements of the tridiagonal
  73. *> matrix T, and the elements below the first subdiagonal, with
  74. *> the array TAU, represent the orthogonal matrix Q as a product
  75. *> of elementary reflectors. See Further Details.
  76. *> \endverbatim
  77. *>
  78. *> \param[out] D
  79. *> \verbatim
  80. *> D is REAL array, dimension (N)
  81. *> The diagonal elements of the tridiagonal matrix T:
  82. *> D(i) = A(i,i).
  83. *> \endverbatim
  84. *>
  85. *> \param[out] E
  86. *> \verbatim
  87. *> E is REAL array, dimension (N-1)
  88. *> The off-diagonal elements of the tridiagonal matrix T:
  89. *> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
  90. *> \endverbatim
  91. *>
  92. *> \param[out] TAU
  93. *> \verbatim
  94. *> TAU is REAL array, dimension (N-1)
  95. *> The scalar factors of the elementary reflectors (see Further
  96. *> Details).
  97. *> \endverbatim
  98. *>
  99. *> \param[out] INFO
  100. *> \verbatim
  101. *> INFO is INTEGER
  102. *> = 0: successful exit
  103. *> < 0: if INFO = -i, the i-th argument had an illegal value
  104. *> \endverbatim
  105. *
  106. * Authors:
  107. * ========
  108. *
  109. *> \author Univ. of Tennessee
  110. *> \author Univ. of California Berkeley
  111. *> \author Univ. of Colorado Denver
  112. *> \author NAG Ltd.
  113. *
  114. *> \ingroup realOTHERcomputational
  115. *
  116. *> \par Further Details:
  117. * =====================
  118. *>
  119. *> \verbatim
  120. *>
  121. *> If UPLO = 'U', the matrix Q is represented as a product of elementary
  122. *> reflectors
  123. *>
  124. *> Q = H(n-1) . . . H(2) H(1).
  125. *>
  126. *> Each H(i) has the form
  127. *>
  128. *> H(i) = I - tau * v * v**T
  129. *>
  130. *> where tau is a real scalar, and v is a real vector with
  131. *> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
  132. *> overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
  133. *>
  134. *> If UPLO = 'L', the matrix Q is represented as a product of elementary
  135. *> reflectors
  136. *>
  137. *> Q = H(1) H(2) . . . H(n-1).
  138. *>
  139. *> Each H(i) has the form
  140. *>
  141. *> H(i) = I - tau * v * v**T
  142. *>
  143. *> where tau is a real scalar, and v is a real vector with
  144. *> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
  145. *> overwriting A(i+2:n,i), and tau is stored in TAU(i).
  146. *> \endverbatim
  147. *>
  148. * =====================================================================
  149. SUBROUTINE SSPTRD( UPLO, N, AP, D, E, TAU, INFO )
  150. *
  151. * -- LAPACK computational routine --
  152. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  153. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  154. *
  155. * .. Scalar Arguments ..
  156. CHARACTER UPLO
  157. INTEGER INFO, N
  158. * ..
  159. * .. Array Arguments ..
  160. REAL AP( * ), D( * ), E( * ), TAU( * )
  161. * ..
  162. *
  163. * =====================================================================
  164. *
  165. * .. Parameters ..
  166. REAL ONE, ZERO, HALF
  167. PARAMETER ( ONE = 1.0, ZERO = 0.0, HALF = 1.0 / 2.0 )
  168. * ..
  169. * .. Local Scalars ..
  170. LOGICAL UPPER
  171. INTEGER I, I1, I1I1, II
  172. REAL ALPHA, TAUI
  173. * ..
  174. * .. External Subroutines ..
  175. EXTERNAL SAXPY, SLARFG, SSPMV, SSPR2, XERBLA
  176. * ..
  177. * .. External Functions ..
  178. LOGICAL LSAME
  179. REAL SDOT
  180. EXTERNAL LSAME, SDOT
  181. * ..
  182. * .. Executable Statements ..
  183. *
  184. * Test the input parameters
  185. *
  186. INFO = 0
  187. UPPER = LSAME( UPLO, 'U' )
  188. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  189. INFO = -1
  190. ELSE IF( N.LT.0 ) THEN
  191. INFO = -2
  192. END IF
  193. IF( INFO.NE.0 ) THEN
  194. CALL XERBLA( 'SSPTRD', -INFO )
  195. RETURN
  196. END IF
  197. *
  198. * Quick return if possible
  199. *
  200. IF( N.LE.0 )
  201. $ RETURN
  202. *
  203. IF( UPPER ) THEN
  204. *
  205. * Reduce the upper triangle of A.
  206. * I1 is the index in AP of A(1,I+1).
  207. *
  208. I1 = N*( N-1 ) / 2 + 1
  209. DO 10 I = N - 1, 1, -1
  210. *
  211. * Generate elementary reflector H(i) = I - tau * v * v**T
  212. * to annihilate A(1:i-1,i+1)
  213. *
  214. CALL SLARFG( I, AP( I1+I-1 ), AP( I1 ), 1, TAUI )
  215. E( I ) = AP( I1+I-1 )
  216. *
  217. IF( TAUI.NE.ZERO ) THEN
  218. *
  219. * Apply H(i) from both sides to A(1:i,1:i)
  220. *
  221. AP( I1+I-1 ) = ONE
  222. *
  223. * Compute y := tau * A * v storing y in TAU(1:i)
  224. *
  225. CALL SSPMV( UPLO, I, TAUI, AP, AP( I1 ), 1, ZERO, TAU,
  226. $ 1 )
  227. *
  228. * Compute w := y - 1/2 * tau * (y**T *v) * v
  229. *
  230. ALPHA = -HALF*TAUI*SDOT( I, TAU, 1, AP( I1 ), 1 )
  231. CALL SAXPY( I, ALPHA, AP( I1 ), 1, TAU, 1 )
  232. *
  233. * Apply the transformation as a rank-2 update:
  234. * A := A - v * w**T - w * v**T
  235. *
  236. CALL SSPR2( UPLO, I, -ONE, AP( I1 ), 1, TAU, 1, AP )
  237. *
  238. AP( I1+I-1 ) = E( I )
  239. END IF
  240. D( I+1 ) = AP( I1+I )
  241. TAU( I ) = TAUI
  242. I1 = I1 - I
  243. 10 CONTINUE
  244. D( 1 ) = AP( 1 )
  245. ELSE
  246. *
  247. * Reduce the lower triangle of A. II is the index in AP of
  248. * A(i,i) and I1I1 is the index of A(i+1,i+1).
  249. *
  250. II = 1
  251. DO 20 I = 1, N - 1
  252. I1I1 = II + N - I + 1
  253. *
  254. * Generate elementary reflector H(i) = I - tau * v * v**T
  255. * to annihilate A(i+2:n,i)
  256. *
  257. CALL SLARFG( N-I, AP( II+1 ), AP( II+2 ), 1, TAUI )
  258. E( I ) = AP( II+1 )
  259. *
  260. IF( TAUI.NE.ZERO ) THEN
  261. *
  262. * Apply H(i) from both sides to A(i+1:n,i+1:n)
  263. *
  264. AP( II+1 ) = ONE
  265. *
  266. * Compute y := tau * A * v storing y in TAU(i:n-1)
  267. *
  268. CALL SSPMV( UPLO, N-I, TAUI, AP( I1I1 ), AP( II+1 ), 1,
  269. $ ZERO, TAU( I ), 1 )
  270. *
  271. * Compute w := y - 1/2 * tau * (y**T *v) * v
  272. *
  273. ALPHA = -HALF*TAUI*SDOT( N-I, TAU( I ), 1, AP( II+1 ),
  274. $ 1 )
  275. CALL SAXPY( N-I, ALPHA, AP( II+1 ), 1, TAU( I ), 1 )
  276. *
  277. * Apply the transformation as a rank-2 update:
  278. * A := A - v * w**T - w * v**T
  279. *
  280. CALL SSPR2( UPLO, N-I, -ONE, AP( II+1 ), 1, TAU( I ), 1,
  281. $ AP( I1I1 ) )
  282. *
  283. AP( II+1 ) = E( I )
  284. END IF
  285. D( I ) = AP( II )
  286. TAU( I ) = TAUI
  287. II = I1I1
  288. 20 CONTINUE
  289. D( N ) = AP( II )
  290. END IF
  291. *
  292. RETURN
  293. *
  294. * End of SSPTRD
  295. *
  296. END