You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clagge.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368
  1. *> \brief \b CLAGGE
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER INFO, KL, KU, LDA, M, N
  15. * ..
  16. * .. Array Arguments ..
  17. * INTEGER ISEED( 4 )
  18. * REAL D( * )
  19. * COMPLEX A( LDA, * ), WORK( * )
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> CLAGGE generates a complex general m by n matrix A, by pre- and post-
  29. *> multiplying a real diagonal matrix D with random unitary matrices:
  30. *> A = U*D*V. The lower and upper bandwidths may then be reduced to
  31. *> kl and ku by additional unitary transformations.
  32. *> \endverbatim
  33. *
  34. * Arguments:
  35. * ==========
  36. *
  37. *> \param[in] M
  38. *> \verbatim
  39. *> M is INTEGER
  40. *> The number of rows of the matrix A. M >= 0.
  41. *> \endverbatim
  42. *>
  43. *> \param[in] N
  44. *> \verbatim
  45. *> N is INTEGER
  46. *> The number of columns of the matrix A. N >= 0.
  47. *> \endverbatim
  48. *>
  49. *> \param[in] KL
  50. *> \verbatim
  51. *> KL is INTEGER
  52. *> The number of nonzero subdiagonals within the band of A.
  53. *> 0 <= KL <= M-1.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] KU
  57. *> \verbatim
  58. *> KU is INTEGER
  59. *> The number of nonzero superdiagonals within the band of A.
  60. *> 0 <= KU <= N-1.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] D
  64. *> \verbatim
  65. *> D is REAL array, dimension (min(M,N))
  66. *> The diagonal elements of the diagonal matrix D.
  67. *> \endverbatim
  68. *>
  69. *> \param[out] A
  70. *> \verbatim
  71. *> A is COMPLEX array, dimension (LDA,N)
  72. *> The generated m by n matrix A.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the array A. LDA >= M.
  79. *> \endverbatim
  80. *>
  81. *> \param[in,out] ISEED
  82. *> \verbatim
  83. *> ISEED is INTEGER array, dimension (4)
  84. *> On entry, the seed of the random number generator; the array
  85. *> elements must be between 0 and 4095, and ISEED(4) must be
  86. *> odd.
  87. *> On exit, the seed is updated.
  88. *> \endverbatim
  89. *>
  90. *> \param[out] WORK
  91. *> \verbatim
  92. *> WORK is COMPLEX array, dimension (M+N)
  93. *> \endverbatim
  94. *>
  95. *> \param[out] INFO
  96. *> \verbatim
  97. *> INFO is INTEGER
  98. *> = 0: successful exit
  99. *> < 0: if INFO = -i, the i-th argument had an illegal value
  100. *> \endverbatim
  101. *
  102. * Authors:
  103. * ========
  104. *
  105. *> \author Univ. of Tennessee
  106. *> \author Univ. of California Berkeley
  107. *> \author Univ. of Colorado Denver
  108. *> \author NAG Ltd.
  109. *
  110. *> \ingroup complex_matgen
  111. *
  112. * =====================================================================
  113. SUBROUTINE CLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
  114. *
  115. * -- LAPACK auxiliary routine --
  116. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  117. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  118. *
  119. * .. Scalar Arguments ..
  120. INTEGER INFO, KL, KU, LDA, M, N
  121. * ..
  122. * .. Array Arguments ..
  123. INTEGER ISEED( 4 )
  124. REAL D( * )
  125. COMPLEX A( LDA, * ), WORK( * )
  126. * ..
  127. *
  128. * =====================================================================
  129. *
  130. * .. Parameters ..
  131. COMPLEX ZERO, ONE
  132. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ),
  133. $ ONE = ( 1.0E+0, 0.0E+0 ) )
  134. * ..
  135. * .. Local Scalars ..
  136. INTEGER I, J
  137. REAL WN
  138. COMPLEX TAU, WA, WB
  139. * ..
  140. * .. External Subroutines ..
  141. EXTERNAL CGEMV, CGERC, CLACGV, CLARNV, CSCAL, XERBLA
  142. * ..
  143. * .. Intrinsic Functions ..
  144. INTRINSIC ABS, MAX, MIN, REAL
  145. * ..
  146. * .. External Functions ..
  147. REAL SCNRM2
  148. EXTERNAL SCNRM2
  149. * ..
  150. * .. Executable Statements ..
  151. *
  152. * Test the input arguments
  153. *
  154. INFO = 0
  155. IF( M.LT.0 ) THEN
  156. INFO = -1
  157. ELSE IF( N.LT.0 ) THEN
  158. INFO = -2
  159. ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
  160. INFO = -3
  161. ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
  162. INFO = -4
  163. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  164. INFO = -7
  165. END IF
  166. IF( INFO.LT.0 ) THEN
  167. CALL XERBLA( 'CLAGGE', -INFO )
  168. RETURN
  169. END IF
  170. *
  171. * initialize A to diagonal matrix
  172. *
  173. DO 20 J = 1, N
  174. DO 10 I = 1, M
  175. A( I, J ) = ZERO
  176. 10 CONTINUE
  177. 20 CONTINUE
  178. DO 30 I = 1, MIN( M, N )
  179. A( I, I ) = D( I )
  180. 30 CONTINUE
  181. *
  182. * Quick exit if the user wants a diagonal matrix
  183. *
  184. IF(( KL .EQ. 0 ).AND.( KU .EQ. 0)) RETURN
  185. *
  186. * pre- and post-multiply A by random unitary matrices
  187. *
  188. DO 40 I = MIN( M, N ), 1, -1
  189. IF( I.LT.M ) THEN
  190. *
  191. * generate random reflection
  192. *
  193. CALL CLARNV( 3, ISEED, M-I+1, WORK )
  194. WN = SCNRM2( M-I+1, WORK, 1 )
  195. WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
  196. IF( WN.EQ.ZERO ) THEN
  197. TAU = ZERO
  198. ELSE
  199. WB = WORK( 1 ) + WA
  200. CALL CSCAL( M-I, ONE / WB, WORK( 2 ), 1 )
  201. WORK( 1 ) = ONE
  202. TAU = REAL( WB / WA )
  203. END IF
  204. *
  205. * multiply A(i:m,i:n) by random reflection from the left
  206. *
  207. CALL CGEMV( 'Conjugate transpose', M-I+1, N-I+1, ONE,
  208. $ A( I, I ), LDA, WORK, 1, ZERO, WORK( M+1 ), 1 )
  209. CALL CGERC( M-I+1, N-I+1, -TAU, WORK, 1, WORK( M+1 ), 1,
  210. $ A( I, I ), LDA )
  211. END IF
  212. IF( I.LT.N ) THEN
  213. *
  214. * generate random reflection
  215. *
  216. CALL CLARNV( 3, ISEED, N-I+1, WORK )
  217. WN = SCNRM2( N-I+1, WORK, 1 )
  218. WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
  219. IF( WN.EQ.ZERO ) THEN
  220. TAU = ZERO
  221. ELSE
  222. WB = WORK( 1 ) + WA
  223. CALL CSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
  224. WORK( 1 ) = ONE
  225. TAU = REAL( WB / WA )
  226. END IF
  227. *
  228. * multiply A(i:m,i:n) by random reflection from the right
  229. *
  230. CALL CGEMV( 'No transpose', M-I+1, N-I+1, ONE, A( I, I ),
  231. $ LDA, WORK, 1, ZERO, WORK( N+1 ), 1 )
  232. CALL CGERC( M-I+1, N-I+1, -TAU, WORK( N+1 ), 1, WORK, 1,
  233. $ A( I, I ), LDA )
  234. END IF
  235. 40 CONTINUE
  236. *
  237. * Reduce number of subdiagonals to KL and number of superdiagonals
  238. * to KU
  239. *
  240. DO 70 I = 1, MAX( M-1-KL, N-1-KU )
  241. IF( KL.LE.KU ) THEN
  242. *
  243. * annihilate subdiagonal elements first (necessary if KL = 0)
  244. *
  245. IF( I.LE.MIN( M-1-KL, N ) ) THEN
  246. *
  247. * generate reflection to annihilate A(kl+i+1:m,i)
  248. *
  249. WN = SCNRM2( M-KL-I+1, A( KL+I, I ), 1 )
  250. WA = ( WN / ABS( A( KL+I, I ) ) )*A( KL+I, I )
  251. IF( WN.EQ.ZERO ) THEN
  252. TAU = ZERO
  253. ELSE
  254. WB = A( KL+I, I ) + WA
  255. CALL CSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
  256. A( KL+I, I ) = ONE
  257. TAU = REAL( WB / WA )
  258. END IF
  259. *
  260. * apply reflection to A(kl+i:m,i+1:n) from the left
  261. *
  262. CALL CGEMV( 'Conjugate transpose', M-KL-I+1, N-I, ONE,
  263. $ A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
  264. $ WORK, 1 )
  265. CALL CGERC( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK,
  266. $ 1, A( KL+I, I+1 ), LDA )
  267. A( KL+I, I ) = -WA
  268. END IF
  269. *
  270. IF( I.LE.MIN( N-1-KU, M ) ) THEN
  271. *
  272. * generate reflection to annihilate A(i,ku+i+1:n)
  273. *
  274. WN = SCNRM2( N-KU-I+1, A( I, KU+I ), LDA )
  275. WA = ( WN / ABS( A( I, KU+I ) ) )*A( I, KU+I )
  276. IF( WN.EQ.ZERO ) THEN
  277. TAU = ZERO
  278. ELSE
  279. WB = A( I, KU+I ) + WA
  280. CALL CSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
  281. A( I, KU+I ) = ONE
  282. TAU = REAL( WB / WA )
  283. END IF
  284. *
  285. * apply reflection to A(i+1:m,ku+i:n) from the right
  286. *
  287. CALL CLACGV( N-KU-I+1, A( I, KU+I ), LDA )
  288. CALL CGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
  289. $ A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
  290. $ WORK, 1 )
  291. CALL CGERC( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ),
  292. $ LDA, A( I+1, KU+I ), LDA )
  293. A( I, KU+I ) = -WA
  294. END IF
  295. ELSE
  296. *
  297. * annihilate superdiagonal elements first (necessary if
  298. * KU = 0)
  299. *
  300. IF( I.LE.MIN( N-1-KU, M ) ) THEN
  301. *
  302. * generate reflection to annihilate A(i,ku+i+1:n)
  303. *
  304. WN = SCNRM2( N-KU-I+1, A( I, KU+I ), LDA )
  305. WA = ( WN / ABS( A( I, KU+I ) ) )*A( I, KU+I )
  306. IF( WN.EQ.ZERO ) THEN
  307. TAU = ZERO
  308. ELSE
  309. WB = A( I, KU+I ) + WA
  310. CALL CSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
  311. A( I, KU+I ) = ONE
  312. TAU = REAL( WB / WA )
  313. END IF
  314. *
  315. * apply reflection to A(i+1:m,ku+i:n) from the right
  316. *
  317. CALL CLACGV( N-KU-I+1, A( I, KU+I ), LDA )
  318. CALL CGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
  319. $ A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
  320. $ WORK, 1 )
  321. CALL CGERC( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ),
  322. $ LDA, A( I+1, KU+I ), LDA )
  323. A( I, KU+I ) = -WA
  324. END IF
  325. *
  326. IF( I.LE.MIN( M-1-KL, N ) ) THEN
  327. *
  328. * generate reflection to annihilate A(kl+i+1:m,i)
  329. *
  330. WN = SCNRM2( M-KL-I+1, A( KL+I, I ), 1 )
  331. WA = ( WN / ABS( A( KL+I, I ) ) )*A( KL+I, I )
  332. IF( WN.EQ.ZERO ) THEN
  333. TAU = ZERO
  334. ELSE
  335. WB = A( KL+I, I ) + WA
  336. CALL CSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
  337. A( KL+I, I ) = ONE
  338. TAU = REAL( WB / WA )
  339. END IF
  340. *
  341. * apply reflection to A(kl+i:m,i+1:n) from the left
  342. *
  343. CALL CGEMV( 'Conjugate transpose', M-KL-I+1, N-I, ONE,
  344. $ A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
  345. $ WORK, 1 )
  346. CALL CGERC( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK,
  347. $ 1, A( KL+I, I+1 ), LDA )
  348. A( KL+I, I ) = -WA
  349. END IF
  350. END IF
  351. *
  352. IF (I .LE. N) THEN
  353. DO 50 J = KL + I + 1, M
  354. A( J, I ) = ZERO
  355. 50 CONTINUE
  356. END IF
  357. *
  358. IF (I .LE. M) THEN
  359. DO 60 J = KU + I + 1, N
  360. A( I, J ) = ZERO
  361. 60 CONTINUE
  362. END IF
  363. 70 CONTINUE
  364. RETURN
  365. *
  366. * End of CLAGGE
  367. *
  368. END