You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgemv.f 9.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334
  1. *> \brief \b DGEMV
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
  12. *
  13. * .. Scalar Arguments ..
  14. * DOUBLE PRECISION ALPHA,BETA
  15. * INTEGER INCX,INCY,LDA,M,N
  16. * CHARACTER TRANS
  17. * ..
  18. * .. Array Arguments ..
  19. * DOUBLE PRECISION A(LDA,*),X(*),Y(*)
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> DGEMV performs one of the matrix-vector operations
  29. *>
  30. *> y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y,
  31. *>
  32. *> where alpha and beta are scalars, x and y are vectors and A is an
  33. *> m by n matrix.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] TRANS
  40. *> \verbatim
  41. *> TRANS is CHARACTER*1
  42. *> On entry, TRANS specifies the operation to be performed as
  43. *> follows:
  44. *>
  45. *> TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
  46. *>
  47. *> TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
  48. *>
  49. *> TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y.
  50. *> \endverbatim
  51. *>
  52. *> \param[in] M
  53. *> \verbatim
  54. *> M is INTEGER
  55. *> On entry, M specifies the number of rows of the matrix A.
  56. *> M must be at least zero.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] N
  60. *> \verbatim
  61. *> N is INTEGER
  62. *> On entry, N specifies the number of columns of the matrix A.
  63. *> N must be at least zero.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] ALPHA
  67. *> \verbatim
  68. *> ALPHA is DOUBLE PRECISION.
  69. *> On entry, ALPHA specifies the scalar alpha.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] A
  73. *> \verbatim
  74. *> A is DOUBLE PRECISION array of DIMENSION ( LDA, n ).
  75. *> Before entry, the leading m by n part of the array A must
  76. *> contain the matrix of coefficients.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] LDA
  80. *> \verbatim
  81. *> LDA is INTEGER
  82. *> On entry, LDA specifies the first dimension of A as declared
  83. *> in the calling (sub) program. LDA must be at least
  84. *> max( 1, m ).
  85. *> \endverbatim
  86. *>
  87. *> \param[in] X
  88. *> \verbatim
  89. *> X is DOUBLE PRECISION array of DIMENSION at least
  90. *> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
  91. *> and at least
  92. *> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
  93. *> Before entry, the incremented array X must contain the
  94. *> vector x.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] INCX
  98. *> \verbatim
  99. *> INCX is INTEGER
  100. *> On entry, INCX specifies the increment for the elements of
  101. *> X. INCX must not be zero.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] BETA
  105. *> \verbatim
  106. *> BETA is DOUBLE PRECISION.
  107. *> On entry, BETA specifies the scalar beta. When BETA is
  108. *> supplied as zero then Y need not be set on input.
  109. *> \endverbatim
  110. *>
  111. *> \param[in,out] Y
  112. *> \verbatim
  113. *> Y is DOUBLE PRECISION array of DIMENSION at least
  114. *> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  115. *> and at least
  116. *> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  117. *> Before entry with BETA non-zero, the incremented array Y
  118. *> must contain the vector y. On exit, Y is overwritten by the
  119. *> updated vector y.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] INCY
  123. *> \verbatim
  124. *> INCY is INTEGER
  125. *> On entry, INCY specifies the increment for the elements of
  126. *> Y. INCY must not be zero.
  127. *> \endverbatim
  128. *
  129. * Authors:
  130. * ========
  131. *
  132. *> \author Univ. of Tennessee
  133. *> \author Univ. of California Berkeley
  134. *> \author Univ. of Colorado Denver
  135. *> \author NAG Ltd.
  136. *
  137. *> \date November 2011
  138. *
  139. *> \ingroup double_blas_level2
  140. *
  141. *> \par Further Details:
  142. * =====================
  143. *>
  144. *> \verbatim
  145. *>
  146. *> Level 2 Blas routine.
  147. *> The vector and matrix arguments are not referenced when N = 0, or M = 0
  148. *>
  149. *> -- Written on 22-October-1986.
  150. *> Jack Dongarra, Argonne National Lab.
  151. *> Jeremy Du Croz, Nag Central Office.
  152. *> Sven Hammarling, Nag Central Office.
  153. *> Richard Hanson, Sandia National Labs.
  154. *> \endverbatim
  155. *>
  156. * =====================================================================
  157. SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
  158. *
  159. * -- Reference BLAS level2 routine (version 3.4.0) --
  160. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  161. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  162. * November 2011
  163. *
  164. * .. Scalar Arguments ..
  165. DOUBLE PRECISION ALPHA,BETA
  166. INTEGER INCX,INCY,LDA,M,N
  167. CHARACTER TRANS
  168. * ..
  169. * .. Array Arguments ..
  170. DOUBLE PRECISION A(LDA,*),X(*),Y(*)
  171. * ..
  172. *
  173. * =====================================================================
  174. *
  175. * .. Parameters ..
  176. DOUBLE PRECISION ONE,ZERO
  177. PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
  178. * ..
  179. * .. Local Scalars ..
  180. DOUBLE PRECISION TEMP
  181. INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
  182. * ..
  183. * .. External Functions ..
  184. LOGICAL LSAME
  185. EXTERNAL LSAME
  186. * ..
  187. * .. External Subroutines ..
  188. EXTERNAL XERBLA
  189. * ..
  190. * .. Intrinsic Functions ..
  191. INTRINSIC MAX
  192. * ..
  193. *
  194. * Test the input parameters.
  195. *
  196. INFO = 0
  197. IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  198. + .NOT.LSAME(TRANS,'C')) THEN
  199. INFO = 1
  200. ELSE IF (M.LT.0) THEN
  201. INFO = 2
  202. ELSE IF (N.LT.0) THEN
  203. INFO = 3
  204. ELSE IF (LDA.LT.MAX(1,M)) THEN
  205. INFO = 6
  206. ELSE IF (INCX.EQ.0) THEN
  207. INFO = 8
  208. ELSE IF (INCY.EQ.0) THEN
  209. INFO = 11
  210. END IF
  211. IF (INFO.NE.0) THEN
  212. CALL XERBLA('DGEMV ',INFO)
  213. RETURN
  214. END IF
  215. *
  216. * Quick return if possible.
  217. *
  218. IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
  219. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  220. *
  221. * Set LENX and LENY, the lengths of the vectors x and y, and set
  222. * up the start points in X and Y.
  223. *
  224. IF (LSAME(TRANS,'N')) THEN
  225. LENX = N
  226. LENY = M
  227. ELSE
  228. LENX = M
  229. LENY = N
  230. END IF
  231. IF (INCX.GT.0) THEN
  232. KX = 1
  233. ELSE
  234. KX = 1 - (LENX-1)*INCX
  235. END IF
  236. IF (INCY.GT.0) THEN
  237. KY = 1
  238. ELSE
  239. KY = 1 - (LENY-1)*INCY
  240. END IF
  241. *
  242. * Start the operations. In this version the elements of A are
  243. * accessed sequentially with one pass through A.
  244. *
  245. * First form y := beta*y.
  246. *
  247. IF (BETA.NE.ONE) THEN
  248. IF (INCY.EQ.1) THEN
  249. IF (BETA.EQ.ZERO) THEN
  250. DO 10 I = 1,LENY
  251. Y(I) = ZERO
  252. 10 CONTINUE
  253. ELSE
  254. DO 20 I = 1,LENY
  255. Y(I) = BETA*Y(I)
  256. 20 CONTINUE
  257. END IF
  258. ELSE
  259. IY = KY
  260. IF (BETA.EQ.ZERO) THEN
  261. DO 30 I = 1,LENY
  262. Y(IY) = ZERO
  263. IY = IY + INCY
  264. 30 CONTINUE
  265. ELSE
  266. DO 40 I = 1,LENY
  267. Y(IY) = BETA*Y(IY)
  268. IY = IY + INCY
  269. 40 CONTINUE
  270. END IF
  271. END IF
  272. END IF
  273. IF (ALPHA.EQ.ZERO) RETURN
  274. IF (LSAME(TRANS,'N')) THEN
  275. *
  276. * Form y := alpha*A*x + y.
  277. *
  278. JX = KX
  279. IF (INCY.EQ.1) THEN
  280. DO 60 J = 1,N
  281. IF (X(JX).NE.ZERO) THEN
  282. TEMP = ALPHA*X(JX)
  283. DO 50 I = 1,M
  284. Y(I) = Y(I) + TEMP*A(I,J)
  285. 50 CONTINUE
  286. END IF
  287. JX = JX + INCX
  288. 60 CONTINUE
  289. ELSE
  290. DO 80 J = 1,N
  291. IF (X(JX).NE.ZERO) THEN
  292. TEMP = ALPHA*X(JX)
  293. IY = KY
  294. DO 70 I = 1,M
  295. Y(IY) = Y(IY) + TEMP*A(I,J)
  296. IY = IY + INCY
  297. 70 CONTINUE
  298. END IF
  299. JX = JX + INCX
  300. 80 CONTINUE
  301. END IF
  302. ELSE
  303. *
  304. * Form y := alpha*A**T*x + y.
  305. *
  306. JY = KY
  307. IF (INCX.EQ.1) THEN
  308. DO 100 J = 1,N
  309. TEMP = ZERO
  310. DO 90 I = 1,M
  311. TEMP = TEMP + A(I,J)*X(I)
  312. 90 CONTINUE
  313. Y(JY) = Y(JY) + ALPHA*TEMP
  314. JY = JY + INCY
  315. 100 CONTINUE
  316. ELSE
  317. DO 120 J = 1,N
  318. TEMP = ZERO
  319. IX = KX
  320. DO 110 I = 1,M
  321. TEMP = TEMP + A(I,J)*X(IX)
  322. IX = IX + INCX
  323. 110 CONTINUE
  324. Y(JY) = Y(JY) + ALPHA*TEMP
  325. JY = JY + INCY
  326. 120 CONTINUE
  327. END IF
  328. END IF
  329. *
  330. RETURN
  331. *
  332. * End of DGEMV .
  333. *
  334. END