You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dchkbd.f 37 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102
  1. *> \brief \b DCHKBD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DCHKBD( NSIZES, MVAL, NVAL, NTYPES, DOTYPE, NRHS,
  12. * ISEED, THRESH, A, LDA, BD, BE, S1, S2, X, LDX,
  13. * Y, Z, Q, LDQ, PT, LDPT, U, VT, WORK, LWORK,
  14. * IWORK, NOUT, INFO )
  15. *
  16. * .. Scalar Arguments ..
  17. * INTEGER INFO, LDA, LDPT, LDQ, LDX, LWORK, NOUT, NRHS,
  18. * $ NSIZES, NTYPES
  19. * DOUBLE PRECISION THRESH
  20. * ..
  21. * .. Array Arguments ..
  22. * LOGICAL DOTYPE( * )
  23. * INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), NVAL( * )
  24. * DOUBLE PRECISION A( LDA, * ), BD( * ), BE( * ), PT( LDPT, * ),
  25. * $ Q( LDQ, * ), S1( * ), S2( * ), U( LDPT, * ),
  26. * $ VT( LDPT, * ), WORK( * ), X( LDX, * ),
  27. * $ Y( LDX, * ), Z( LDX, * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> DCHKBD checks the singular value decomposition (SVD) routines.
  37. *>
  38. *> DGEBRD reduces a real general m by n matrix A to upper or lower
  39. *> bidiagonal form B by an orthogonal transformation: Q' * A * P = B
  40. *> (or A = Q * B * P'). The matrix B is upper bidiagonal if m >= n
  41. *> and lower bidiagonal if m < n.
  42. *>
  43. *> DORGBR generates the orthogonal matrices Q and P' from DGEBRD.
  44. *> Note that Q and P are not necessarily square.
  45. *>
  46. *> DBDSQR computes the singular value decomposition of the bidiagonal
  47. *> matrix B as B = U S V'. It is called three times to compute
  48. *> 1) B = U S1 V', where S1 is the diagonal matrix of singular
  49. *> values and the columns of the matrices U and V are the left
  50. *> and right singular vectors, respectively, of B.
  51. *> 2) Same as 1), but the singular values are stored in S2 and the
  52. *> singular vectors are not computed.
  53. *> 3) A = (UQ) S (P'V'), the SVD of the original matrix A.
  54. *> In addition, DBDSQR has an option to apply the left orthogonal matrix
  55. *> U to a matrix X, useful in least squares applications.
  56. *>
  57. *> DBDSDC computes the singular value decomposition of the bidiagonal
  58. *> matrix B as B = U S V' using divide-and-conquer. It is called twice
  59. *> to compute
  60. *> 1) B = U S1 V', where S1 is the diagonal matrix of singular
  61. *> values and the columns of the matrices U and V are the left
  62. *> and right singular vectors, respectively, of B.
  63. *> 2) Same as 1), but the singular values are stored in S2 and the
  64. *> singular vectors are not computed.
  65. *>
  66. *> For each pair of matrix dimensions (M,N) and each selected matrix
  67. *> type, an M by N matrix A and an M by NRHS matrix X are generated.
  68. *> The problem dimensions are as follows
  69. *> A: M x N
  70. *> Q: M x min(M,N) (but M x M if NRHS > 0)
  71. *> P: min(M,N) x N
  72. *> B: min(M,N) x min(M,N)
  73. *> U, V: min(M,N) x min(M,N)
  74. *> S1, S2 diagonal, order min(M,N)
  75. *> X: M x NRHS
  76. *>
  77. *> For each generated matrix, 14 tests are performed:
  78. *>
  79. *> Test DGEBRD and DORGBR
  80. *>
  81. *> (1) | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P'
  82. *>
  83. *> (2) | I - Q' Q | / ( M ulp )
  84. *>
  85. *> (3) | I - PT PT' | / ( N ulp )
  86. *>
  87. *> Test DBDSQR on bidiagonal matrix B
  88. *>
  89. *> (4) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V'
  90. *>
  91. *> (5) | Y - U Z | / ( |Y| max(min(M,N),k) ulp ), where Y = Q' X
  92. *> and Z = U' Y.
  93. *> (6) | I - U' U | / ( min(M,N) ulp )
  94. *>
  95. *> (7) | I - VT VT' | / ( min(M,N) ulp )
  96. *>
  97. *> (8) S1 contains min(M,N) nonnegative values in decreasing order.
  98. *> (Return 0 if true, 1/ULP if false.)
  99. *>
  100. *> (9) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without
  101. *> computing U and V.
  102. *>
  103. *> (10) 0 if the true singular values of B are within THRESH of
  104. *> those in S1. 2*THRESH if they are not. (Tested using
  105. *> DSVDCH)
  106. *>
  107. *> Test DBDSQR on matrix A
  108. *>
  109. *> (11) | A - (QU) S (VT PT) | / ( |A| max(M,N) ulp )
  110. *>
  111. *> (12) | X - (QU) Z | / ( |X| max(M,k) ulp )
  112. *>
  113. *> (13) | I - (QU)'(QU) | / ( M ulp )
  114. *>
  115. *> (14) | I - (VT PT) (PT'VT') | / ( N ulp )
  116. *>
  117. *> Test DBDSDC on bidiagonal matrix B
  118. *>
  119. *> (15) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V'
  120. *>
  121. *> (16) | I - U' U | / ( min(M,N) ulp )
  122. *>
  123. *> (17) | I - VT VT' | / ( min(M,N) ulp )
  124. *>
  125. *> (18) S1 contains min(M,N) nonnegative values in decreasing order.
  126. *> (Return 0 if true, 1/ULP if false.)
  127. *>
  128. *> (19) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without
  129. *> computing U and V.
  130. *> The possible matrix types are
  131. *>
  132. *> (1) The zero matrix.
  133. *> (2) The identity matrix.
  134. *>
  135. *> (3) A diagonal matrix with evenly spaced entries
  136. *> 1, ..., ULP and random signs.
  137. *> (ULP = (first number larger than 1) - 1 )
  138. *> (4) A diagonal matrix with geometrically spaced entries
  139. *> 1, ..., ULP and random signs.
  140. *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
  141. *> and random signs.
  142. *>
  143. *> (6) Same as (3), but multiplied by SQRT( overflow threshold )
  144. *> (7) Same as (3), but multiplied by SQRT( underflow threshold )
  145. *>
  146. *> (8) A matrix of the form U D V, where U and V are orthogonal and
  147. *> D has evenly spaced entries 1, ..., ULP with random signs
  148. *> on the diagonal.
  149. *>
  150. *> (9) A matrix of the form U D V, where U and V are orthogonal and
  151. *> D has geometrically spaced entries 1, ..., ULP with random
  152. *> signs on the diagonal.
  153. *>
  154. *> (10) A matrix of the form U D V, where U and V are orthogonal and
  155. *> D has "clustered" entries 1, ULP,..., ULP with random
  156. *> signs on the diagonal.
  157. *>
  158. *> (11) Same as (8), but multiplied by SQRT( overflow threshold )
  159. *> (12) Same as (8), but multiplied by SQRT( underflow threshold )
  160. *>
  161. *> (13) Rectangular matrix with random entries chosen from (-1,1).
  162. *> (14) Same as (13), but multiplied by SQRT( overflow threshold )
  163. *> (15) Same as (13), but multiplied by SQRT( underflow threshold )
  164. *>
  165. *> Special case:
  166. *> (16) A bidiagonal matrix with random entries chosen from a
  167. *> logarithmic distribution on [ulp^2,ulp^(-2)] (I.e., each
  168. *> entry is e^x, where x is chosen uniformly on
  169. *> [ 2 log(ulp), -2 log(ulp) ] .) For *this* type:
  170. *> (a) DGEBRD is not called to reduce it to bidiagonal form.
  171. *> (b) the bidiagonal is min(M,N) x min(M,N); if M<N, the
  172. *> matrix will be lower bidiagonal, otherwise upper.
  173. *> (c) only tests 5--8 and 14 are performed.
  174. *>
  175. *> A subset of the full set of matrix types may be selected through
  176. *> the logical array DOTYPE.
  177. *> \endverbatim
  178. *
  179. * Arguments:
  180. * ==========
  181. *
  182. *> \param[in] NSIZES
  183. *> \verbatim
  184. *> NSIZES is INTEGER
  185. *> The number of values of M and N contained in the vectors
  186. *> MVAL and NVAL. The matrix sizes are used in pairs (M,N).
  187. *> \endverbatim
  188. *>
  189. *> \param[in] MVAL
  190. *> \verbatim
  191. *> MVAL is INTEGER array, dimension (NM)
  192. *> The values of the matrix row dimension M.
  193. *> \endverbatim
  194. *>
  195. *> \param[in] NVAL
  196. *> \verbatim
  197. *> NVAL is INTEGER array, dimension (NM)
  198. *> The values of the matrix column dimension N.
  199. *> \endverbatim
  200. *>
  201. *> \param[in] NTYPES
  202. *> \verbatim
  203. *> NTYPES is INTEGER
  204. *> The number of elements in DOTYPE. If it is zero, DCHKBD
  205. *> does nothing. It must be at least zero. If it is MAXTYP+1
  206. *> and NSIZES is 1, then an additional type, MAXTYP+1 is
  207. *> defined, which is to use whatever matrices are in A and B.
  208. *> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
  209. *> DOTYPE(MAXTYP+1) is .TRUE. .
  210. *> \endverbatim
  211. *>
  212. *> \param[in] DOTYPE
  213. *> \verbatim
  214. *> DOTYPE is LOGICAL array, dimension (NTYPES)
  215. *> If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix
  216. *> of type j will be generated. If NTYPES is smaller than the
  217. *> maximum number of types defined (PARAMETER MAXTYP), then
  218. *> types NTYPES+1 through MAXTYP will not be generated. If
  219. *> NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through
  220. *> DOTYPE(NTYPES) will be ignored.
  221. *> \endverbatim
  222. *>
  223. *> \param[in] NRHS
  224. *> \verbatim
  225. *> NRHS is INTEGER
  226. *> The number of columns in the "right-hand side" matrices X, Y,
  227. *> and Z, used in testing DBDSQR. If NRHS = 0, then the
  228. *> operations on the right-hand side will not be tested.
  229. *> NRHS must be at least 0.
  230. *> \endverbatim
  231. *>
  232. *> \param[in,out] ISEED
  233. *> \verbatim
  234. *> ISEED is INTEGER array, dimension (4)
  235. *> On entry ISEED specifies the seed of the random number
  236. *> generator. The array elements should be between 0 and 4095;
  237. *> if not they will be reduced mod 4096. Also, ISEED(4) must
  238. *> be odd. The values of ISEED are changed on exit, and can be
  239. *> used in the next call to DCHKBD to continue the same random
  240. *> number sequence.
  241. *> \endverbatim
  242. *>
  243. *> \param[in] THRESH
  244. *> \verbatim
  245. *> THRESH is DOUBLE PRECISION
  246. *> The threshold value for the test ratios. A result is
  247. *> included in the output file if RESULT >= THRESH. To have
  248. *> every test ratio printed, use THRESH = 0. Note that the
  249. *> expected value of the test ratios is O(1), so THRESH should
  250. *> be a reasonably small multiple of 1, e.g., 10 or 100.
  251. *> \endverbatim
  252. *>
  253. *> \param[out] A
  254. *> \verbatim
  255. *> A is DOUBLE PRECISION array, dimension (LDA,NMAX)
  256. *> where NMAX is the maximum value of N in NVAL.
  257. *> \endverbatim
  258. *>
  259. *> \param[in] LDA
  260. *> \verbatim
  261. *> LDA is INTEGER
  262. *> The leading dimension of the array A. LDA >= max(1,MMAX),
  263. *> where MMAX is the maximum value of M in MVAL.
  264. *> \endverbatim
  265. *>
  266. *> \param[out] BD
  267. *> \verbatim
  268. *> BD is DOUBLE PRECISION array, dimension
  269. *> (max(min(MVAL(j),NVAL(j))))
  270. *> \endverbatim
  271. *>
  272. *> \param[out] BE
  273. *> \verbatim
  274. *> BE is DOUBLE PRECISION array, dimension
  275. *> (max(min(MVAL(j),NVAL(j))))
  276. *> \endverbatim
  277. *>
  278. *> \param[out] S1
  279. *> \verbatim
  280. *> S1 is DOUBLE PRECISION array, dimension
  281. *> (max(min(MVAL(j),NVAL(j))))
  282. *> \endverbatim
  283. *>
  284. *> \param[out] S2
  285. *> \verbatim
  286. *> S2 is DOUBLE PRECISION array, dimension
  287. *> (max(min(MVAL(j),NVAL(j))))
  288. *> \endverbatim
  289. *>
  290. *> \param[out] X
  291. *> \verbatim
  292. *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  293. *> \endverbatim
  294. *>
  295. *> \param[in] LDX
  296. *> \verbatim
  297. *> LDX is INTEGER
  298. *> The leading dimension of the arrays X, Y, and Z.
  299. *> LDX >= max(1,MMAX)
  300. *> \endverbatim
  301. *>
  302. *> \param[out] Y
  303. *> \verbatim
  304. *> Y is DOUBLE PRECISION array, dimension (LDX,NRHS)
  305. *> \endverbatim
  306. *>
  307. *> \param[out] Z
  308. *> \verbatim
  309. *> Z is DOUBLE PRECISION array, dimension (LDX,NRHS)
  310. *> \endverbatim
  311. *>
  312. *> \param[out] Q
  313. *> \verbatim
  314. *> Q is DOUBLE PRECISION array, dimension (LDQ,MMAX)
  315. *> \endverbatim
  316. *>
  317. *> \param[in] LDQ
  318. *> \verbatim
  319. *> LDQ is INTEGER
  320. *> The leading dimension of the array Q. LDQ >= max(1,MMAX).
  321. *> \endverbatim
  322. *>
  323. *> \param[out] PT
  324. *> \verbatim
  325. *> PT is DOUBLE PRECISION array, dimension (LDPT,NMAX)
  326. *> \endverbatim
  327. *>
  328. *> \param[in] LDPT
  329. *> \verbatim
  330. *> LDPT is INTEGER
  331. *> The leading dimension of the arrays PT, U, and V.
  332. *> LDPT >= max(1, max(min(MVAL(j),NVAL(j)))).
  333. *> \endverbatim
  334. *>
  335. *> \param[out] U
  336. *> \verbatim
  337. *> U is DOUBLE PRECISION array, dimension
  338. *> (LDPT,max(min(MVAL(j),NVAL(j))))
  339. *> \endverbatim
  340. *>
  341. *> \param[out] VT
  342. *> \verbatim
  343. *> VT is DOUBLE PRECISION array, dimension
  344. *> (LDPT,max(min(MVAL(j),NVAL(j))))
  345. *> \endverbatim
  346. *>
  347. *> \param[out] WORK
  348. *> \verbatim
  349. *> WORK is DOUBLE PRECISION array, dimension (LWORK)
  350. *> \endverbatim
  351. *>
  352. *> \param[in] LWORK
  353. *> \verbatim
  354. *> LWORK is INTEGER
  355. *> The number of entries in WORK. This must be at least
  356. *> 3(M+N) and M(M + max(M,N,k) + 1) + N*min(M,N) for all
  357. *> pairs (M,N)=(MM(j),NN(j))
  358. *> \endverbatim
  359. *>
  360. *> \param[out] IWORK
  361. *> \verbatim
  362. *> IWORK is INTEGER array, dimension at least 8*min(M,N)
  363. *> \endverbatim
  364. *>
  365. *> \param[in] NOUT
  366. *> \verbatim
  367. *> NOUT is INTEGER
  368. *> The FORTRAN unit number for printing out error messages
  369. *> (e.g., if a routine returns IINFO not equal to 0.)
  370. *> \endverbatim
  371. *>
  372. *> \param[out] INFO
  373. *> \verbatim
  374. *> INFO is INTEGER
  375. *> If 0, then everything ran OK.
  376. *> -1: NSIZES < 0
  377. *> -2: Some MM(j) < 0
  378. *> -3: Some NN(j) < 0
  379. *> -4: NTYPES < 0
  380. *> -6: NRHS < 0
  381. *> -8: THRESH < 0
  382. *> -11: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ).
  383. *> -17: LDB < 1 or LDB < MMAX.
  384. *> -21: LDQ < 1 or LDQ < MMAX.
  385. *> -23: LDPT< 1 or LDPT< MNMAX.
  386. *> -27: LWORK too small.
  387. *> If DLATMR, SLATMS, DGEBRD, DORGBR, or DBDSQR,
  388. *> returns an error code, the
  389. *> absolute value of it is returned.
  390. *>
  391. *>-----------------------------------------------------------------------
  392. *>
  393. *> Some Local Variables and Parameters:
  394. *> ---- ----- --------- --- ----------
  395. *>
  396. *> ZERO, ONE Real 0 and 1.
  397. *> MAXTYP The number of types defined.
  398. *> NTEST The number of tests performed, or which can
  399. *> be performed so far, for the current matrix.
  400. *> MMAX Largest value in NN.
  401. *> NMAX Largest value in NN.
  402. *> MNMIN min(MM(j), NN(j)) (the dimension of the bidiagonal
  403. *> matrix.)
  404. *> MNMAX The maximum value of MNMIN for j=1,...,NSIZES.
  405. *> NFAIL The number of tests which have exceeded THRESH
  406. *> COND, IMODE Values to be passed to the matrix generators.
  407. *> ANORM Norm of A; passed to matrix generators.
  408. *>
  409. *> OVFL, UNFL Overflow and underflow thresholds.
  410. *> RTOVFL, RTUNFL Square roots of the previous 2 values.
  411. *> ULP, ULPINV Finest relative precision and its inverse.
  412. *>
  413. *> The following four arrays decode JTYPE:
  414. *> KTYPE(j) The general type (1-10) for type "j".
  415. *> KMODE(j) The MODE value to be passed to the matrix
  416. *> generator for type "j".
  417. *> KMAGN(j) The order of magnitude ( O(1),
  418. *> O(overflow^(1/2) ), O(underflow^(1/2) )
  419. *> \endverbatim
  420. *
  421. * Authors:
  422. * ========
  423. *
  424. *> \author Univ. of Tennessee
  425. *> \author Univ. of California Berkeley
  426. *> \author Univ. of Colorado Denver
  427. *> \author NAG Ltd.
  428. *
  429. *> \date November 2011
  430. *
  431. *> \ingroup double_eig
  432. *
  433. * =====================================================================
  434. SUBROUTINE DCHKBD( NSIZES, MVAL, NVAL, NTYPES, DOTYPE, NRHS,
  435. $ ISEED, THRESH, A, LDA, BD, BE, S1, S2, X, LDX,
  436. $ Y, Z, Q, LDQ, PT, LDPT, U, VT, WORK, LWORK,
  437. $ IWORK, NOUT, INFO )
  438. *
  439. * -- LAPACK test routine (version 3.4.0) --
  440. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  441. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  442. * November 2011
  443. *
  444. * .. Scalar Arguments ..
  445. INTEGER INFO, LDA, LDPT, LDQ, LDX, LWORK, NOUT, NRHS,
  446. $ NSIZES, NTYPES
  447. DOUBLE PRECISION THRESH
  448. * ..
  449. * .. Array Arguments ..
  450. LOGICAL DOTYPE( * )
  451. INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), NVAL( * )
  452. DOUBLE PRECISION A( LDA, * ), BD( * ), BE( * ), PT( LDPT, * ),
  453. $ Q( LDQ, * ), S1( * ), S2( * ), U( LDPT, * ),
  454. $ VT( LDPT, * ), WORK( * ), X( LDX, * ),
  455. $ Y( LDX, * ), Z( LDX, * )
  456. * ..
  457. *
  458. * ======================================================================
  459. *
  460. * .. Parameters ..
  461. DOUBLE PRECISION ZERO, ONE, TWO, HALF
  462. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
  463. $ HALF = 0.5D0 )
  464. INTEGER MAXTYP
  465. PARAMETER ( MAXTYP = 16 )
  466. * ..
  467. * .. Local Scalars ..
  468. LOGICAL BADMM, BADNN, BIDIAG
  469. CHARACTER UPLO
  470. CHARACTER*3 PATH
  471. INTEGER I, IINFO, IMODE, ITYPE, J, JCOL, JSIZE, JTYPE,
  472. $ LOG2UI, M, MINWRK, MMAX, MNMAX, MNMIN, MQ,
  473. $ MTYPES, N, NFAIL, NMAX, NTEST
  474. DOUBLE PRECISION AMNINV, ANORM, COND, OVFL, RTOVFL, RTUNFL,
  475. $ TEMP1, TEMP2, ULP, ULPINV, UNFL
  476. * ..
  477. * .. Local Arrays ..
  478. INTEGER IDUM( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
  479. $ KMODE( MAXTYP ), KTYPE( MAXTYP )
  480. DOUBLE PRECISION DUM( 1 ), DUMMA( 1 ), RESULT( 19 )
  481. * ..
  482. * .. External Functions ..
  483. DOUBLE PRECISION DLAMCH, DLARND
  484. EXTERNAL DLAMCH, DLARND
  485. * ..
  486. * .. External Subroutines ..
  487. EXTERNAL ALASUM, DBDSDC, DBDSQR, DBDT01, DBDT02, DBDT03,
  488. $ DCOPY, DGEBRD, DGEMM, DLABAD, DLACPY, DLAHD2,
  489. $ DLASET, DLATMR, DLATMS, DORGBR, DORT01, XERBLA
  490. * ..
  491. * .. Intrinsic Functions ..
  492. INTRINSIC ABS, EXP, INT, LOG, MAX, MIN, SQRT
  493. * ..
  494. * .. Scalars in Common ..
  495. LOGICAL LERR, OK
  496. CHARACTER*32 SRNAMT
  497. INTEGER INFOT, NUNIT
  498. * ..
  499. * .. Common blocks ..
  500. COMMON / INFOC / INFOT, NUNIT, OK, LERR
  501. COMMON / SRNAMC / SRNAMT
  502. * ..
  503. * .. Data statements ..
  504. DATA KTYPE / 1, 2, 5*4, 5*6, 3*9, 10 /
  505. DATA KMAGN / 2*1, 3*1, 2, 3, 3*1, 2, 3, 1, 2, 3, 0 /
  506. DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
  507. $ 0, 0, 0 /
  508. * ..
  509. * .. Executable Statements ..
  510. *
  511. * Check for errors
  512. *
  513. INFO = 0
  514. *
  515. BADMM = .FALSE.
  516. BADNN = .FALSE.
  517. MMAX = 1
  518. NMAX = 1
  519. MNMAX = 1
  520. MINWRK = 1
  521. DO 10 J = 1, NSIZES
  522. MMAX = MAX( MMAX, MVAL( J ) )
  523. IF( MVAL( J ).LT.0 )
  524. $ BADMM = .TRUE.
  525. NMAX = MAX( NMAX, NVAL( J ) )
  526. IF( NVAL( J ).LT.0 )
  527. $ BADNN = .TRUE.
  528. MNMAX = MAX( MNMAX, MIN( MVAL( J ), NVAL( J ) ) )
  529. MINWRK = MAX( MINWRK, 3*( MVAL( J )+NVAL( J ) ),
  530. $ MVAL( J )*( MVAL( J )+MAX( MVAL( J ), NVAL( J ),
  531. $ NRHS )+1 )+NVAL( J )*MIN( NVAL( J ), MVAL( J ) ) )
  532. 10 CONTINUE
  533. *
  534. * Check for errors
  535. *
  536. IF( NSIZES.LT.0 ) THEN
  537. INFO = -1
  538. ELSE IF( BADMM ) THEN
  539. INFO = -2
  540. ELSE IF( BADNN ) THEN
  541. INFO = -3
  542. ELSE IF( NTYPES.LT.0 ) THEN
  543. INFO = -4
  544. ELSE IF( NRHS.LT.0 ) THEN
  545. INFO = -6
  546. ELSE IF( LDA.LT.MMAX ) THEN
  547. INFO = -11
  548. ELSE IF( LDX.LT.MMAX ) THEN
  549. INFO = -17
  550. ELSE IF( LDQ.LT.MMAX ) THEN
  551. INFO = -21
  552. ELSE IF( LDPT.LT.MNMAX ) THEN
  553. INFO = -23
  554. ELSE IF( MINWRK.GT.LWORK ) THEN
  555. INFO = -27
  556. END IF
  557. *
  558. IF( INFO.NE.0 ) THEN
  559. CALL XERBLA( 'DCHKBD', -INFO )
  560. RETURN
  561. END IF
  562. *
  563. * Initialize constants
  564. *
  565. PATH( 1: 1 ) = 'Double precision'
  566. PATH( 2: 3 ) = 'BD'
  567. NFAIL = 0
  568. NTEST = 0
  569. UNFL = DLAMCH( 'Safe minimum' )
  570. OVFL = DLAMCH( 'Overflow' )
  571. CALL DLABAD( UNFL, OVFL )
  572. ULP = DLAMCH( 'Precision' )
  573. ULPINV = ONE / ULP
  574. LOG2UI = INT( LOG( ULPINV ) / LOG( TWO ) )
  575. RTUNFL = SQRT( UNFL )
  576. RTOVFL = SQRT( OVFL )
  577. INFOT = 0
  578. *
  579. * Loop over sizes, types
  580. *
  581. DO 200 JSIZE = 1, NSIZES
  582. M = MVAL( JSIZE )
  583. N = NVAL( JSIZE )
  584. MNMIN = MIN( M, N )
  585. AMNINV = ONE / MAX( M, N, 1 )
  586. *
  587. IF( NSIZES.NE.1 ) THEN
  588. MTYPES = MIN( MAXTYP, NTYPES )
  589. ELSE
  590. MTYPES = MIN( MAXTYP+1, NTYPES )
  591. END IF
  592. *
  593. DO 190 JTYPE = 1, MTYPES
  594. IF( .NOT.DOTYPE( JTYPE ) )
  595. $ GO TO 190
  596. *
  597. DO 20 J = 1, 4
  598. IOLDSD( J ) = ISEED( J )
  599. 20 CONTINUE
  600. *
  601. DO 30 J = 1, 14
  602. RESULT( J ) = -ONE
  603. 30 CONTINUE
  604. *
  605. UPLO = ' '
  606. *
  607. * Compute "A"
  608. *
  609. * Control parameters:
  610. *
  611. * KMAGN KMODE KTYPE
  612. * =1 O(1) clustered 1 zero
  613. * =2 large clustered 2 identity
  614. * =3 small exponential (none)
  615. * =4 arithmetic diagonal, (w/ eigenvalues)
  616. * =5 random symmetric, w/ eigenvalues
  617. * =6 nonsymmetric, w/ singular values
  618. * =7 random diagonal
  619. * =8 random symmetric
  620. * =9 random nonsymmetric
  621. * =10 random bidiagonal (log. distrib.)
  622. *
  623. IF( MTYPES.GT.MAXTYP )
  624. $ GO TO 100
  625. *
  626. ITYPE = KTYPE( JTYPE )
  627. IMODE = KMODE( JTYPE )
  628. *
  629. * Compute norm
  630. *
  631. GO TO ( 40, 50, 60 )KMAGN( JTYPE )
  632. *
  633. 40 CONTINUE
  634. ANORM = ONE
  635. GO TO 70
  636. *
  637. 50 CONTINUE
  638. ANORM = ( RTOVFL*ULP )*AMNINV
  639. GO TO 70
  640. *
  641. 60 CONTINUE
  642. ANORM = RTUNFL*MAX( M, N )*ULPINV
  643. GO TO 70
  644. *
  645. 70 CONTINUE
  646. *
  647. CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
  648. IINFO = 0
  649. COND = ULPINV
  650. *
  651. BIDIAG = .FALSE.
  652. IF( ITYPE.EQ.1 ) THEN
  653. *
  654. * Zero matrix
  655. *
  656. IINFO = 0
  657. *
  658. ELSE IF( ITYPE.EQ.2 ) THEN
  659. *
  660. * Identity
  661. *
  662. DO 80 JCOL = 1, MNMIN
  663. A( JCOL, JCOL ) = ANORM
  664. 80 CONTINUE
  665. *
  666. ELSE IF( ITYPE.EQ.4 ) THEN
  667. *
  668. * Diagonal Matrix, [Eigen]values Specified
  669. *
  670. CALL DLATMS( MNMIN, MNMIN, 'S', ISEED, 'N', WORK, IMODE,
  671. $ COND, ANORM, 0, 0, 'N', A, LDA,
  672. $ WORK( MNMIN+1 ), IINFO )
  673. *
  674. ELSE IF( ITYPE.EQ.5 ) THEN
  675. *
  676. * Symmetric, eigenvalues specified
  677. *
  678. CALL DLATMS( MNMIN, MNMIN, 'S', ISEED, 'S', WORK, IMODE,
  679. $ COND, ANORM, M, N, 'N', A, LDA,
  680. $ WORK( MNMIN+1 ), IINFO )
  681. *
  682. ELSE IF( ITYPE.EQ.6 ) THEN
  683. *
  684. * Nonsymmetric, singular values specified
  685. *
  686. CALL DLATMS( M, N, 'S', ISEED, 'N', WORK, IMODE, COND,
  687. $ ANORM, M, N, 'N', A, LDA, WORK( MNMIN+1 ),
  688. $ IINFO )
  689. *
  690. ELSE IF( ITYPE.EQ.7 ) THEN
  691. *
  692. * Diagonal, random entries
  693. *
  694. CALL DLATMR( MNMIN, MNMIN, 'S', ISEED, 'N', WORK, 6, ONE,
  695. $ ONE, 'T', 'N', WORK( MNMIN+1 ), 1, ONE,
  696. $ WORK( 2*MNMIN+1 ), 1, ONE, 'N', IWORK, 0, 0,
  697. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  698. *
  699. ELSE IF( ITYPE.EQ.8 ) THEN
  700. *
  701. * Symmetric, random entries
  702. *
  703. CALL DLATMR( MNMIN, MNMIN, 'S', ISEED, 'S', WORK, 6, ONE,
  704. $ ONE, 'T', 'N', WORK( MNMIN+1 ), 1, ONE,
  705. $ WORK( M+MNMIN+1 ), 1, ONE, 'N', IWORK, M, N,
  706. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  707. *
  708. ELSE IF( ITYPE.EQ.9 ) THEN
  709. *
  710. * Nonsymmetric, random entries
  711. *
  712. CALL DLATMR( M, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
  713. $ 'T', 'N', WORK( MNMIN+1 ), 1, ONE,
  714. $ WORK( M+MNMIN+1 ), 1, ONE, 'N', IWORK, M, N,
  715. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  716. *
  717. ELSE IF( ITYPE.EQ.10 ) THEN
  718. *
  719. * Bidiagonal, random entries
  720. *
  721. TEMP1 = -TWO*LOG( ULP )
  722. DO 90 J = 1, MNMIN
  723. BD( J ) = EXP( TEMP1*DLARND( 2, ISEED ) )
  724. IF( J.LT.MNMIN )
  725. $ BE( J ) = EXP( TEMP1*DLARND( 2, ISEED ) )
  726. 90 CONTINUE
  727. *
  728. IINFO = 0
  729. BIDIAG = .TRUE.
  730. IF( M.GE.N ) THEN
  731. UPLO = 'U'
  732. ELSE
  733. UPLO = 'L'
  734. END IF
  735. ELSE
  736. IINFO = 1
  737. END IF
  738. *
  739. IF( IINFO.EQ.0 ) THEN
  740. *
  741. * Generate Right-Hand Side
  742. *
  743. IF( BIDIAG ) THEN
  744. CALL DLATMR( MNMIN, NRHS, 'S', ISEED, 'N', WORK, 6,
  745. $ ONE, ONE, 'T', 'N', WORK( MNMIN+1 ), 1,
  746. $ ONE, WORK( 2*MNMIN+1 ), 1, ONE, 'N',
  747. $ IWORK, MNMIN, NRHS, ZERO, ONE, 'NO', Y,
  748. $ LDX, IWORK, IINFO )
  749. ELSE
  750. CALL DLATMR( M, NRHS, 'S', ISEED, 'N', WORK, 6, ONE,
  751. $ ONE, 'T', 'N', WORK( M+1 ), 1, ONE,
  752. $ WORK( 2*M+1 ), 1, ONE, 'N', IWORK, M,
  753. $ NRHS, ZERO, ONE, 'NO', X, LDX, IWORK,
  754. $ IINFO )
  755. END IF
  756. END IF
  757. *
  758. * Error Exit
  759. *
  760. IF( IINFO.NE.0 ) THEN
  761. WRITE( NOUT, FMT = 9998 )'Generator', IINFO, M, N,
  762. $ JTYPE, IOLDSD
  763. INFO = ABS( IINFO )
  764. RETURN
  765. END IF
  766. *
  767. 100 CONTINUE
  768. *
  769. * Call DGEBRD and DORGBR to compute B, Q, and P, do tests.
  770. *
  771. IF( .NOT.BIDIAG ) THEN
  772. *
  773. * Compute transformations to reduce A to bidiagonal form:
  774. * B := Q' * A * P.
  775. *
  776. CALL DLACPY( ' ', M, N, A, LDA, Q, LDQ )
  777. CALL DGEBRD( M, N, Q, LDQ, BD, BE, WORK, WORK( MNMIN+1 ),
  778. $ WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO )
  779. *
  780. * Check error code from DGEBRD.
  781. *
  782. IF( IINFO.NE.0 ) THEN
  783. WRITE( NOUT, FMT = 9998 )'DGEBRD', IINFO, M, N,
  784. $ JTYPE, IOLDSD
  785. INFO = ABS( IINFO )
  786. RETURN
  787. END IF
  788. *
  789. CALL DLACPY( ' ', M, N, Q, LDQ, PT, LDPT )
  790. IF( M.GE.N ) THEN
  791. UPLO = 'U'
  792. ELSE
  793. UPLO = 'L'
  794. END IF
  795. *
  796. * Generate Q
  797. *
  798. MQ = M
  799. IF( NRHS.LE.0 )
  800. $ MQ = MNMIN
  801. CALL DORGBR( 'Q', M, MQ, N, Q, LDQ, WORK,
  802. $ WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO )
  803. *
  804. * Check error code from DORGBR.
  805. *
  806. IF( IINFO.NE.0 ) THEN
  807. WRITE( NOUT, FMT = 9998 )'DORGBR(Q)', IINFO, M, N,
  808. $ JTYPE, IOLDSD
  809. INFO = ABS( IINFO )
  810. RETURN
  811. END IF
  812. *
  813. * Generate P'
  814. *
  815. CALL DORGBR( 'P', MNMIN, N, M, PT, LDPT, WORK( MNMIN+1 ),
  816. $ WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO )
  817. *
  818. * Check error code from DORGBR.
  819. *
  820. IF( IINFO.NE.0 ) THEN
  821. WRITE( NOUT, FMT = 9998 )'DORGBR(P)', IINFO, M, N,
  822. $ JTYPE, IOLDSD
  823. INFO = ABS( IINFO )
  824. RETURN
  825. END IF
  826. *
  827. * Apply Q' to an M by NRHS matrix X: Y := Q' * X.
  828. *
  829. CALL DGEMM( 'Transpose', 'No transpose', M, NRHS, M, ONE,
  830. $ Q, LDQ, X, LDX, ZERO, Y, LDX )
  831. *
  832. * Test 1: Check the decomposition A := Q * B * PT
  833. * 2: Check the orthogonality of Q
  834. * 3: Check the orthogonality of PT
  835. *
  836. CALL DBDT01( M, N, 1, A, LDA, Q, LDQ, BD, BE, PT, LDPT,
  837. $ WORK, RESULT( 1 ) )
  838. CALL DORT01( 'Columns', M, MQ, Q, LDQ, WORK, LWORK,
  839. $ RESULT( 2 ) )
  840. CALL DORT01( 'Rows', MNMIN, N, PT, LDPT, WORK, LWORK,
  841. $ RESULT( 3 ) )
  842. END IF
  843. *
  844. * Use DBDSQR to form the SVD of the bidiagonal matrix B:
  845. * B := U * S1 * VT, and compute Z = U' * Y.
  846. *
  847. CALL DCOPY( MNMIN, BD, 1, S1, 1 )
  848. IF( MNMIN.GT.0 )
  849. $ CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
  850. CALL DLACPY( ' ', M, NRHS, Y, LDX, Z, LDX )
  851. CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, U, LDPT )
  852. CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, VT, LDPT )
  853. *
  854. CALL DBDSQR( UPLO, MNMIN, MNMIN, MNMIN, NRHS, S1, WORK, VT,
  855. $ LDPT, U, LDPT, Z, LDX, WORK( MNMIN+1 ), IINFO )
  856. *
  857. * Check error code from DBDSQR.
  858. *
  859. IF( IINFO.NE.0 ) THEN
  860. WRITE( NOUT, FMT = 9998 )'DBDSQR(vects)', IINFO, M, N,
  861. $ JTYPE, IOLDSD
  862. INFO = ABS( IINFO )
  863. IF( IINFO.LT.0 ) THEN
  864. RETURN
  865. ELSE
  866. RESULT( 4 ) = ULPINV
  867. GO TO 170
  868. END IF
  869. END IF
  870. *
  871. * Use DBDSQR to compute only the singular values of the
  872. * bidiagonal matrix B; U, VT, and Z should not be modified.
  873. *
  874. CALL DCOPY( MNMIN, BD, 1, S2, 1 )
  875. IF( MNMIN.GT.0 )
  876. $ CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
  877. *
  878. CALL DBDSQR( UPLO, MNMIN, 0, 0, 0, S2, WORK, VT, LDPT, U,
  879. $ LDPT, Z, LDX, WORK( MNMIN+1 ), IINFO )
  880. *
  881. * Check error code from DBDSQR.
  882. *
  883. IF( IINFO.NE.0 ) THEN
  884. WRITE( NOUT, FMT = 9998 )'DBDSQR(values)', IINFO, M, N,
  885. $ JTYPE, IOLDSD
  886. INFO = ABS( IINFO )
  887. IF( IINFO.LT.0 ) THEN
  888. RETURN
  889. ELSE
  890. RESULT( 9 ) = ULPINV
  891. GO TO 170
  892. END IF
  893. END IF
  894. *
  895. * Test 4: Check the decomposition B := U * S1 * VT
  896. * 5: Check the computation Z := U' * Y
  897. * 6: Check the orthogonality of U
  898. * 7: Check the orthogonality of VT
  899. *
  900. CALL DBDT03( UPLO, MNMIN, 1, BD, BE, U, LDPT, S1, VT, LDPT,
  901. $ WORK, RESULT( 4 ) )
  902. CALL DBDT02( MNMIN, NRHS, Y, LDX, Z, LDX, U, LDPT, WORK,
  903. $ RESULT( 5 ) )
  904. CALL DORT01( 'Columns', MNMIN, MNMIN, U, LDPT, WORK, LWORK,
  905. $ RESULT( 6 ) )
  906. CALL DORT01( 'Rows', MNMIN, MNMIN, VT, LDPT, WORK, LWORK,
  907. $ RESULT( 7 ) )
  908. *
  909. * Test 8: Check that the singular values are sorted in
  910. * non-increasing order and are non-negative
  911. *
  912. RESULT( 8 ) = ZERO
  913. DO 110 I = 1, MNMIN - 1
  914. IF( S1( I ).LT.S1( I+1 ) )
  915. $ RESULT( 8 ) = ULPINV
  916. IF( S1( I ).LT.ZERO )
  917. $ RESULT( 8 ) = ULPINV
  918. 110 CONTINUE
  919. IF( MNMIN.GE.1 ) THEN
  920. IF( S1( MNMIN ).LT.ZERO )
  921. $ RESULT( 8 ) = ULPINV
  922. END IF
  923. *
  924. * Test 9: Compare DBDSQR with and without singular vectors
  925. *
  926. TEMP2 = ZERO
  927. *
  928. DO 120 J = 1, MNMIN
  929. TEMP1 = ABS( S1( J )-S2( J ) ) /
  930. $ MAX( SQRT( UNFL )*MAX( S1( 1 ), ONE ),
  931. $ ULP*MAX( ABS( S1( J ) ), ABS( S2( J ) ) ) )
  932. TEMP2 = MAX( TEMP1, TEMP2 )
  933. 120 CONTINUE
  934. *
  935. RESULT( 9 ) = TEMP2
  936. *
  937. * Test 10: Sturm sequence test of singular values
  938. * Go up by factors of two until it succeeds
  939. *
  940. TEMP1 = THRESH*( HALF-ULP )
  941. *
  942. DO 130 J = 0, LOG2UI
  943. * CALL DSVDCH( MNMIN, BD, BE, S1, TEMP1, IINFO )
  944. IF( IINFO.EQ.0 )
  945. $ GO TO 140
  946. TEMP1 = TEMP1*TWO
  947. 130 CONTINUE
  948. *
  949. 140 CONTINUE
  950. RESULT( 10 ) = TEMP1
  951. *
  952. * Use DBDSQR to form the decomposition A := (QU) S (VT PT)
  953. * from the bidiagonal form A := Q B PT.
  954. *
  955. IF( .NOT.BIDIAG ) THEN
  956. CALL DCOPY( MNMIN, BD, 1, S2, 1 )
  957. IF( MNMIN.GT.0 )
  958. $ CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
  959. *
  960. CALL DBDSQR( UPLO, MNMIN, N, M, NRHS, S2, WORK, PT, LDPT,
  961. $ Q, LDQ, Y, LDX, WORK( MNMIN+1 ), IINFO )
  962. *
  963. * Test 11: Check the decomposition A := Q*U * S2 * VT*PT
  964. * 12: Check the computation Z := U' * Q' * X
  965. * 13: Check the orthogonality of Q*U
  966. * 14: Check the orthogonality of VT*PT
  967. *
  968. CALL DBDT01( M, N, 0, A, LDA, Q, LDQ, S2, DUMMA, PT,
  969. $ LDPT, WORK, RESULT( 11 ) )
  970. CALL DBDT02( M, NRHS, X, LDX, Y, LDX, Q, LDQ, WORK,
  971. $ RESULT( 12 ) )
  972. CALL DORT01( 'Columns', M, MQ, Q, LDQ, WORK, LWORK,
  973. $ RESULT( 13 ) )
  974. CALL DORT01( 'Rows', MNMIN, N, PT, LDPT, WORK, LWORK,
  975. $ RESULT( 14 ) )
  976. END IF
  977. *
  978. * Use DBDSDC to form the SVD of the bidiagonal matrix B:
  979. * B := U * S1 * VT
  980. *
  981. CALL DCOPY( MNMIN, BD, 1, S1, 1 )
  982. IF( MNMIN.GT.0 )
  983. $ CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
  984. CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, U, LDPT )
  985. CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, VT, LDPT )
  986. *
  987. CALL DBDSDC( UPLO, 'I', MNMIN, S1, WORK, U, LDPT, VT, LDPT,
  988. $ DUM, IDUM, WORK( MNMIN+1 ), IWORK, IINFO )
  989. *
  990. * Check error code from DBDSDC.
  991. *
  992. IF( IINFO.NE.0 ) THEN
  993. WRITE( NOUT, FMT = 9998 )'DBDSDC(vects)', IINFO, M, N,
  994. $ JTYPE, IOLDSD
  995. INFO = ABS( IINFO )
  996. IF( IINFO.LT.0 ) THEN
  997. RETURN
  998. ELSE
  999. RESULT( 15 ) = ULPINV
  1000. GO TO 170
  1001. END IF
  1002. END IF
  1003. *
  1004. * Use DBDSDC to compute only the singular values of the
  1005. * bidiagonal matrix B; U and VT should not be modified.
  1006. *
  1007. CALL DCOPY( MNMIN, BD, 1, S2, 1 )
  1008. IF( MNMIN.GT.0 )
  1009. $ CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
  1010. *
  1011. CALL DBDSDC( UPLO, 'N', MNMIN, S2, WORK, DUM, 1, DUM, 1,
  1012. $ DUM, IDUM, WORK( MNMIN+1 ), IWORK, IINFO )
  1013. *
  1014. * Check error code from DBDSDC.
  1015. *
  1016. IF( IINFO.NE.0 ) THEN
  1017. WRITE( NOUT, FMT = 9998 )'DBDSDC(values)', IINFO, M, N,
  1018. $ JTYPE, IOLDSD
  1019. INFO = ABS( IINFO )
  1020. IF( IINFO.LT.0 ) THEN
  1021. RETURN
  1022. ELSE
  1023. RESULT( 18 ) = ULPINV
  1024. GO TO 170
  1025. END IF
  1026. END IF
  1027. *
  1028. * Test 15: Check the decomposition B := U * S1 * VT
  1029. * 16: Check the orthogonality of U
  1030. * 17: Check the orthogonality of VT
  1031. *
  1032. CALL DBDT03( UPLO, MNMIN, 1, BD, BE, U, LDPT, S1, VT, LDPT,
  1033. $ WORK, RESULT( 15 ) )
  1034. CALL DORT01( 'Columns', MNMIN, MNMIN, U, LDPT, WORK, LWORK,
  1035. $ RESULT( 16 ) )
  1036. CALL DORT01( 'Rows', MNMIN, MNMIN, VT, LDPT, WORK, LWORK,
  1037. $ RESULT( 17 ) )
  1038. *
  1039. * Test 18: Check that the singular values are sorted in
  1040. * non-increasing order and are non-negative
  1041. *
  1042. RESULT( 18 ) = ZERO
  1043. DO 150 I = 1, MNMIN - 1
  1044. IF( S1( I ).LT.S1( I+1 ) )
  1045. $ RESULT( 18 ) = ULPINV
  1046. IF( S1( I ).LT.ZERO )
  1047. $ RESULT( 18 ) = ULPINV
  1048. 150 CONTINUE
  1049. IF( MNMIN.GE.1 ) THEN
  1050. IF( S1( MNMIN ).LT.ZERO )
  1051. $ RESULT( 18 ) = ULPINV
  1052. END IF
  1053. *
  1054. * Test 19: Compare DBDSQR with and without singular vectors
  1055. *
  1056. TEMP2 = ZERO
  1057. *
  1058. DO 160 J = 1, MNMIN
  1059. TEMP1 = ABS( S1( J )-S2( J ) ) /
  1060. $ MAX( SQRT( UNFL )*MAX( S1( 1 ), ONE ),
  1061. $ ULP*MAX( ABS( S1( 1 ) ), ABS( S2( 1 ) ) ) )
  1062. TEMP2 = MAX( TEMP1, TEMP2 )
  1063. 160 CONTINUE
  1064. *
  1065. RESULT( 19 ) = TEMP2
  1066. *
  1067. * End of Loop -- Check for RESULT(j) > THRESH
  1068. *
  1069. 170 CONTINUE
  1070. DO 180 J = 1, 19
  1071. IF( RESULT( J ).GE.THRESH ) THEN
  1072. IF( NFAIL.EQ.0 )
  1073. $ CALL DLAHD2( NOUT, PATH )
  1074. WRITE( NOUT, FMT = 9999 )M, N, JTYPE, IOLDSD, J,
  1075. $ RESULT( J )
  1076. NFAIL = NFAIL + 1
  1077. END IF
  1078. 180 CONTINUE
  1079. IF( .NOT.BIDIAG ) THEN
  1080. NTEST = NTEST + 19
  1081. ELSE
  1082. NTEST = NTEST + 5
  1083. END IF
  1084. *
  1085. 190 CONTINUE
  1086. 200 CONTINUE
  1087. *
  1088. * Summary
  1089. *
  1090. CALL ALASUM( PATH, NOUT, NFAIL, NTEST, 0 )
  1091. *
  1092. RETURN
  1093. *
  1094. * End of DCHKBD
  1095. *
  1096. 9999 FORMAT( ' M=', I5, ', N=', I5, ', type ', I2, ', seed=',
  1097. $ 4( I4, ',' ), ' test(', I2, ')=', G11.4 )
  1098. 9998 FORMAT( ' DCHKBD: ', A, ' returned INFO=', I6, '.', / 9X, 'M=',
  1099. $ I6, ', N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ),
  1100. $ I5, ')' )
  1101. *
  1102. END