You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clarfb.f 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766
  1. *> \brief \b CLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLARFB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarfb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarfb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarfb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  22. * T, LDT, C, LDC, WORK, LDWORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIRECT, SIDE, STOREV, TRANS
  26. * INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ),
  30. * $ WORK( LDWORK, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CLARFB applies a complex block reflector H or its transpose H**H to a
  40. *> complex M-by-N matrix C, from either the left or the right.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] SIDE
  47. *> \verbatim
  48. *> SIDE is CHARACTER*1
  49. *> = 'L': apply H or H**H from the Left
  50. *> = 'R': apply H or H**H from the Right
  51. *> \endverbatim
  52. *>
  53. *> \param[in] TRANS
  54. *> \verbatim
  55. *> TRANS is CHARACTER*1
  56. *> = 'N': apply H (No transpose)
  57. *> = 'C': apply H**H (Conjugate transpose)
  58. *> \endverbatim
  59. *>
  60. *> \param[in] DIRECT
  61. *> \verbatim
  62. *> DIRECT is CHARACTER*1
  63. *> Indicates how H is formed from a product of elementary
  64. *> reflectors
  65. *> = 'F': H = H(1) H(2) . . . H(k) (Forward)
  66. *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
  67. *> \endverbatim
  68. *>
  69. *> \param[in] STOREV
  70. *> \verbatim
  71. *> STOREV is CHARACTER*1
  72. *> Indicates how the vectors which define the elementary
  73. *> reflectors are stored:
  74. *> = 'C': Columnwise
  75. *> = 'R': Rowwise
  76. *> \endverbatim
  77. *>
  78. *> \param[in] M
  79. *> \verbatim
  80. *> M is INTEGER
  81. *> The number of rows of the matrix C.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] N
  85. *> \verbatim
  86. *> N is INTEGER
  87. *> The number of columns of the matrix C.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] K
  91. *> \verbatim
  92. *> K is INTEGER
  93. *> The order of the matrix T (= the number of elementary
  94. *> reflectors whose product defines the block reflector).
  95. *> \endverbatim
  96. *>
  97. *> \param[in] V
  98. *> \verbatim
  99. *> V is COMPLEX array, dimension
  100. *> (LDV,K) if STOREV = 'C'
  101. *> (LDV,M) if STOREV = 'R' and SIDE = 'L'
  102. *> (LDV,N) if STOREV = 'R' and SIDE = 'R'
  103. *> The matrix V. See Further Details.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDV
  107. *> \verbatim
  108. *> LDV is INTEGER
  109. *> The leading dimension of the array V.
  110. *> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
  111. *> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
  112. *> if STOREV = 'R', LDV >= K.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] T
  116. *> \verbatim
  117. *> T is COMPLEX array, dimension (LDT,K)
  118. *> The triangular K-by-K matrix T in the representation of the
  119. *> block reflector.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] LDT
  123. *> \verbatim
  124. *> LDT is INTEGER
  125. *> The leading dimension of the array T. LDT >= K.
  126. *> \endverbatim
  127. *>
  128. *> \param[in,out] C
  129. *> \verbatim
  130. *> C is COMPLEX array, dimension (LDC,N)
  131. *> On entry, the M-by-N matrix C.
  132. *> On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
  133. *> \endverbatim
  134. *>
  135. *> \param[in] LDC
  136. *> \verbatim
  137. *> LDC is INTEGER
  138. *> The leading dimension of the array C. LDC >= max(1,M).
  139. *> \endverbatim
  140. *>
  141. *> \param[out] WORK
  142. *> \verbatim
  143. *> WORK is COMPLEX array, dimension (LDWORK,K)
  144. *> \endverbatim
  145. *>
  146. *> \param[in] LDWORK
  147. *> \verbatim
  148. *> LDWORK is INTEGER
  149. *> The leading dimension of the array WORK.
  150. *> If SIDE = 'L', LDWORK >= max(1,N);
  151. *> if SIDE = 'R', LDWORK >= max(1,M).
  152. *> \endverbatim
  153. *
  154. * Authors:
  155. * ========
  156. *
  157. *> \author Univ. of Tennessee
  158. *> \author Univ. of California Berkeley
  159. *> \author Univ. of Colorado Denver
  160. *> \author NAG Ltd.
  161. *
  162. *> \date September 2012
  163. *
  164. *> \ingroup complexOTHERauxiliary
  165. *
  166. *> \par Further Details:
  167. * =====================
  168. *>
  169. *> \verbatim
  170. *>
  171. *> The shape of the matrix V and the storage of the vectors which define
  172. *> the H(i) is best illustrated by the following example with n = 5 and
  173. *> k = 3. The elements equal to 1 are not stored; the corresponding
  174. *> array elements are modified but restored on exit. The rest of the
  175. *> array is not used.
  176. *>
  177. *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
  178. *>
  179. *> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
  180. *> ( v1 1 ) ( 1 v2 v2 v2 )
  181. *> ( v1 v2 1 ) ( 1 v3 v3 )
  182. *> ( v1 v2 v3 )
  183. *> ( v1 v2 v3 )
  184. *>
  185. *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
  186. *>
  187. *> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
  188. *> ( v1 v2 v3 ) ( v2 v2 v2 1 )
  189. *> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
  190. *> ( 1 v3 )
  191. *> ( 1 )
  192. *> \endverbatim
  193. *>
  194. * =====================================================================
  195. SUBROUTINE CLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  196. $ T, LDT, C, LDC, WORK, LDWORK )
  197. *
  198. * -- LAPACK auxiliary routine (version 3.4.2) --
  199. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  200. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  201. * September 2012
  202. *
  203. * .. Scalar Arguments ..
  204. CHARACTER DIRECT, SIDE, STOREV, TRANS
  205. INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  206. * ..
  207. * .. Array Arguments ..
  208. COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ),
  209. $ WORK( LDWORK, * )
  210. * ..
  211. *
  212. * =====================================================================
  213. *
  214. * .. Parameters ..
  215. COMPLEX ONE
  216. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  217. * ..
  218. * .. Local Scalars ..
  219. CHARACTER TRANST
  220. INTEGER I, J, LASTV, LASTC
  221. * ..
  222. * .. External Functions ..
  223. LOGICAL LSAME
  224. INTEGER ILACLR, ILACLC
  225. EXTERNAL LSAME, ILACLR, ILACLC
  226. * ..
  227. * .. External Subroutines ..
  228. EXTERNAL CCOPY, CGEMM, CLACGV, CTRMM
  229. * ..
  230. * .. Intrinsic Functions ..
  231. INTRINSIC CONJG
  232. * ..
  233. * .. Executable Statements ..
  234. *
  235. * Quick return if possible
  236. *
  237. IF( M.LE.0 .OR. N.LE.0 )
  238. $ RETURN
  239. *
  240. IF( LSAME( TRANS, 'N' ) ) THEN
  241. TRANST = 'C'
  242. ELSE
  243. TRANST = 'N'
  244. END IF
  245. *
  246. IF( LSAME( STOREV, 'C' ) ) THEN
  247. *
  248. IF( LSAME( DIRECT, 'F' ) ) THEN
  249. *
  250. * Let V = ( V1 ) (first K rows)
  251. * ( V2 )
  252. * where V1 is unit lower triangular.
  253. *
  254. IF( LSAME( SIDE, 'L' ) ) THEN
  255. *
  256. * Form H * C or H**H * C where C = ( C1 )
  257. * ( C2 )
  258. *
  259. LASTV = MAX( K, ILACLR( M, K, V, LDV ) )
  260. LASTC = ILACLC( LASTV, N, C, LDC )
  261. *
  262. * W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK)
  263. *
  264. * W := C1**H
  265. *
  266. DO 10 J = 1, K
  267. CALL CCOPY( LASTC, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  268. CALL CLACGV( LASTC, WORK( 1, J ), 1 )
  269. 10 CONTINUE
  270. *
  271. * W := W * V1
  272. *
  273. CALL CTRMM( 'Right', 'Lower', 'No transpose', 'Unit',
  274. $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
  275. IF( LASTV.GT.K ) THEN
  276. *
  277. * W := W + C2**H *V2
  278. *
  279. CALL CGEMM( 'Conjugate transpose', 'No transpose',
  280. $ LASTC, K, LASTV-K, ONE, C( K+1, 1 ), LDC,
  281. $ V( K+1, 1 ), LDV, ONE, WORK, LDWORK )
  282. END IF
  283. *
  284. * W := W * T**H or W * T
  285. *
  286. CALL CTRMM( 'Right', 'Upper', TRANST, 'Non-unit',
  287. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  288. *
  289. * C := C - V * W**H
  290. *
  291. IF( M.GT.K ) THEN
  292. *
  293. * C2 := C2 - V2 * W**H
  294. *
  295. CALL CGEMM( 'No transpose', 'Conjugate transpose',
  296. $ LASTV-K, LASTC, K, -ONE, V( K+1, 1 ), LDV,
  297. $ WORK, LDWORK, ONE, C( K+1, 1 ), LDC )
  298. END IF
  299. *
  300. * W := W * V1**H
  301. *
  302. CALL CTRMM( 'Right', 'Lower', 'Conjugate transpose',
  303. $ 'Unit', LASTC, K, ONE, V, LDV, WORK, LDWORK )
  304. *
  305. * C1 := C1 - W**H
  306. *
  307. DO 30 J = 1, K
  308. DO 20 I = 1, LASTC
  309. C( J, I ) = C( J, I ) - CONJG( WORK( I, J ) )
  310. 20 CONTINUE
  311. 30 CONTINUE
  312. *
  313. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  314. *
  315. * Form C * H or C * H**H where C = ( C1 C2 )
  316. *
  317. LASTV = MAX( K, ILACLR( N, K, V, LDV ) )
  318. LASTC = ILACLR( M, LASTV, C, LDC )
  319. *
  320. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  321. *
  322. * W := C1
  323. *
  324. DO 40 J = 1, K
  325. CALL CCOPY( LASTC, C( 1, J ), 1, WORK( 1, J ), 1 )
  326. 40 CONTINUE
  327. *
  328. * W := W * V1
  329. *
  330. CALL CTRMM( 'Right', 'Lower', 'No transpose', 'Unit',
  331. $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
  332. IF( LASTV.GT.K ) THEN
  333. *
  334. * W := W + C2 * V2
  335. *
  336. CALL CGEMM( 'No transpose', 'No transpose',
  337. $ LASTC, K, LASTV-K,
  338. $ ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV,
  339. $ ONE, WORK, LDWORK )
  340. END IF
  341. *
  342. * W := W * T or W * T**H
  343. *
  344. CALL CTRMM( 'Right', 'Upper', TRANS, 'Non-unit',
  345. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  346. *
  347. * C := C - W * V**H
  348. *
  349. IF( LASTV.GT.K ) THEN
  350. *
  351. * C2 := C2 - W * V2**H
  352. *
  353. CALL CGEMM( 'No transpose', 'Conjugate transpose',
  354. $ LASTC, LASTV-K, K,
  355. $ -ONE, WORK, LDWORK, V( K+1, 1 ), LDV,
  356. $ ONE, C( 1, K+1 ), LDC )
  357. END IF
  358. *
  359. * W := W * V1**H
  360. *
  361. CALL CTRMM( 'Right', 'Lower', 'Conjugate transpose',
  362. $ 'Unit', LASTC, K, ONE, V, LDV, WORK, LDWORK )
  363. *
  364. * C1 := C1 - W
  365. *
  366. DO 60 J = 1, K
  367. DO 50 I = 1, LASTC
  368. C( I, J ) = C( I, J ) - WORK( I, J )
  369. 50 CONTINUE
  370. 60 CONTINUE
  371. END IF
  372. *
  373. ELSE
  374. *
  375. * Let V = ( V1 )
  376. * ( V2 ) (last K rows)
  377. * where V2 is unit upper triangular.
  378. *
  379. IF( LSAME( SIDE, 'L' ) ) THEN
  380. *
  381. * Form H * C or H**H * C where C = ( C1 )
  382. * ( C2 )
  383. *
  384. LASTC = ILACLC( M, N, C, LDC )
  385. *
  386. * W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK)
  387. *
  388. * W := C2**H
  389. *
  390. DO 70 J = 1, K
  391. CALL CCOPY( LASTC, C( M-K+J, 1 ), LDC,
  392. $ WORK( 1, J ), 1 )
  393. CALL CLACGV( LASTC, WORK( 1, J ), 1 )
  394. 70 CONTINUE
  395. *
  396. * W := W * V2
  397. *
  398. CALL CTRMM( 'Right', 'Upper', 'No transpose', 'Unit',
  399. $ LASTC, K, ONE, V( M-K+1, 1 ), LDV,
  400. $ WORK, LDWORK )
  401. IF( M.GT.K ) THEN
  402. *
  403. * W := W + C1**H*V1
  404. *
  405. CALL CGEMM( 'Conjugate transpose', 'No transpose',
  406. $ LASTC, K, M-K, ONE, C, LDC, V, LDV,
  407. $ ONE, WORK, LDWORK )
  408. END IF
  409. *
  410. * W := W * T**H or W * T
  411. *
  412. CALL CTRMM( 'Right', 'Lower', TRANST, 'Non-unit',
  413. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  414. *
  415. * C := C - V * W**H
  416. *
  417. IF( M.GT.K ) THEN
  418. *
  419. * C1 := C1 - V1 * W**H
  420. *
  421. CALL CGEMM( 'No transpose', 'Conjugate transpose',
  422. $ M-K, LASTC, K, -ONE, V, LDV, WORK, LDWORK,
  423. $ ONE, C, LDC )
  424. END IF
  425. *
  426. * W := W * V2**H
  427. *
  428. CALL CTRMM( 'Right', 'Upper', 'Conjugate transpose',
  429. $ 'Unit', LASTC, K, ONE, V( M-K+1, 1 ), LDV,
  430. $ WORK, LDWORK )
  431. *
  432. * C2 := C2 - W**H
  433. *
  434. DO 90 J = 1, K
  435. DO 80 I = 1, LASTC
  436. C( M-K+J, I ) = C( M-K+J, I ) -
  437. $ CONJG( WORK( I, J ) )
  438. 80 CONTINUE
  439. 90 CONTINUE
  440. *
  441. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  442. *
  443. * Form C * H or C * H**H where C = ( C1 C2 )
  444. *
  445. LASTC = ILACLR( M, N, C, LDC )
  446. *
  447. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  448. *
  449. * W := C2
  450. *
  451. DO 100 J = 1, K
  452. CALL CCOPY( LASTC, C( 1, N-K+J ), 1,
  453. $ WORK( 1, J ), 1 )
  454. 100 CONTINUE
  455. *
  456. * W := W * V2
  457. *
  458. CALL CTRMM( 'Right', 'Upper', 'No transpose', 'Unit',
  459. $ LASTC, K, ONE, V( N-K+1, 1 ), LDV,
  460. $ WORK, LDWORK )
  461. IF( N.GT.K ) THEN
  462. *
  463. * W := W + C1 * V1
  464. *
  465. CALL CGEMM( 'No transpose', 'No transpose',
  466. $ LASTC, K, N-K,
  467. $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
  468. END IF
  469. *
  470. * W := W * T or W * T**H
  471. *
  472. CALL CTRMM( 'Right', 'Lower', TRANS, 'Non-unit',
  473. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  474. *
  475. * C := C - W * V**H
  476. *
  477. IF( N.GT.K ) THEN
  478. *
  479. * C1 := C1 - W * V1**H
  480. *
  481. CALL CGEMM( 'No transpose', 'Conjugate transpose',
  482. $ LASTC, N-K, K, -ONE, WORK, LDWORK, V, LDV,
  483. $ ONE, C, LDC )
  484. END IF
  485. *
  486. * W := W * V2**H
  487. *
  488. CALL CTRMM( 'Right', 'Upper', 'Conjugate transpose',
  489. $ 'Unit', LASTC, K, ONE, V( N-K+1, 1 ), LDV,
  490. $ WORK, LDWORK )
  491. *
  492. * C2 := C2 - W
  493. *
  494. DO 120 J = 1, K
  495. DO 110 I = 1, LASTC
  496. C( I, N-K+J ) = C( I, N-K+J )
  497. $ - WORK( I, J )
  498. 110 CONTINUE
  499. 120 CONTINUE
  500. END IF
  501. END IF
  502. *
  503. ELSE IF( LSAME( STOREV, 'R' ) ) THEN
  504. *
  505. IF( LSAME( DIRECT, 'F' ) ) THEN
  506. *
  507. * Let V = ( V1 V2 ) (V1: first K columns)
  508. * where V1 is unit upper triangular.
  509. *
  510. IF( LSAME( SIDE, 'L' ) ) THEN
  511. *
  512. * Form H * C or H**H * C where C = ( C1 )
  513. * ( C2 )
  514. *
  515. LASTV = MAX( K, ILACLC( K, M, V, LDV ) )
  516. LASTC = ILACLC( LASTV, N, C, LDC )
  517. *
  518. * W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK)
  519. *
  520. * W := C1**H
  521. *
  522. DO 130 J = 1, K
  523. CALL CCOPY( LASTC, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  524. CALL CLACGV( LASTC, WORK( 1, J ), 1 )
  525. 130 CONTINUE
  526. *
  527. * W := W * V1**H
  528. *
  529. CALL CTRMM( 'Right', 'Upper', 'Conjugate transpose',
  530. $ 'Unit', LASTC, K, ONE, V, LDV, WORK, LDWORK )
  531. IF( LASTV.GT.K ) THEN
  532. *
  533. * W := W + C2**H*V2**H
  534. *
  535. CALL CGEMM( 'Conjugate transpose',
  536. $ 'Conjugate transpose', LASTC, K, LASTV-K,
  537. $ ONE, C( K+1, 1 ), LDC, V( 1, K+1 ), LDV,
  538. $ ONE, WORK, LDWORK )
  539. END IF
  540. *
  541. * W := W * T**H or W * T
  542. *
  543. CALL CTRMM( 'Right', 'Upper', TRANST, 'Non-unit',
  544. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  545. *
  546. * C := C - V**H * W**H
  547. *
  548. IF( LASTV.GT.K ) THEN
  549. *
  550. * C2 := C2 - V2**H * W**H
  551. *
  552. CALL CGEMM( 'Conjugate transpose',
  553. $ 'Conjugate transpose', LASTV-K, LASTC, K,
  554. $ -ONE, V( 1, K+1 ), LDV, WORK, LDWORK,
  555. $ ONE, C( K+1, 1 ), LDC )
  556. END IF
  557. *
  558. * W := W * V1
  559. *
  560. CALL CTRMM( 'Right', 'Upper', 'No transpose', 'Unit',
  561. $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
  562. *
  563. * C1 := C1 - W**H
  564. *
  565. DO 150 J = 1, K
  566. DO 140 I = 1, LASTC
  567. C( J, I ) = C( J, I ) - CONJG( WORK( I, J ) )
  568. 140 CONTINUE
  569. 150 CONTINUE
  570. *
  571. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  572. *
  573. * Form C * H or C * H**H where C = ( C1 C2 )
  574. *
  575. LASTV = MAX( K, ILACLC( K, N, V, LDV ) )
  576. LASTC = ILACLR( M, LASTV, C, LDC )
  577. *
  578. * W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK)
  579. *
  580. * W := C1
  581. *
  582. DO 160 J = 1, K
  583. CALL CCOPY( LASTC, C( 1, J ), 1, WORK( 1, J ), 1 )
  584. 160 CONTINUE
  585. *
  586. * W := W * V1**H
  587. *
  588. CALL CTRMM( 'Right', 'Upper', 'Conjugate transpose',
  589. $ 'Unit', LASTC, K, ONE, V, LDV, WORK, LDWORK )
  590. IF( LASTV.GT.K ) THEN
  591. *
  592. * W := W + C2 * V2**H
  593. *
  594. CALL CGEMM( 'No transpose', 'Conjugate transpose',
  595. $ LASTC, K, LASTV-K, ONE, C( 1, K+1 ), LDC,
  596. $ V( 1, K+1 ), LDV, ONE, WORK, LDWORK )
  597. END IF
  598. *
  599. * W := W * T or W * T**H
  600. *
  601. CALL CTRMM( 'Right', 'Upper', TRANS, 'Non-unit',
  602. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  603. *
  604. * C := C - W * V
  605. *
  606. IF( LASTV.GT.K ) THEN
  607. *
  608. * C2 := C2 - W * V2
  609. *
  610. CALL CGEMM( 'No transpose', 'No transpose',
  611. $ LASTC, LASTV-K, K,
  612. $ -ONE, WORK, LDWORK, V( 1, K+1 ), LDV,
  613. $ ONE, C( 1, K+1 ), LDC )
  614. END IF
  615. *
  616. * W := W * V1
  617. *
  618. CALL CTRMM( 'Right', 'Upper', 'No transpose', 'Unit',
  619. $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
  620. *
  621. * C1 := C1 - W
  622. *
  623. DO 180 J = 1, K
  624. DO 170 I = 1, LASTC
  625. C( I, J ) = C( I, J ) - WORK( I, J )
  626. 170 CONTINUE
  627. 180 CONTINUE
  628. *
  629. END IF
  630. *
  631. ELSE
  632. *
  633. * Let V = ( V1 V2 ) (V2: last K columns)
  634. * where V2 is unit lower triangular.
  635. *
  636. IF( LSAME( SIDE, 'L' ) ) THEN
  637. *
  638. * Form H * C or H**H * C where C = ( C1 )
  639. * ( C2 )
  640. *
  641. LASTC = ILACLC( M, N, C, LDC )
  642. *
  643. * W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK)
  644. *
  645. * W := C2**H
  646. *
  647. DO 190 J = 1, K
  648. CALL CCOPY( LASTC, C( M-K+J, 1 ), LDC,
  649. $ WORK( 1, J ), 1 )
  650. CALL CLACGV( LASTC, WORK( 1, J ), 1 )
  651. 190 CONTINUE
  652. *
  653. * W := W * V2**H
  654. *
  655. CALL CTRMM( 'Right', 'Lower', 'Conjugate transpose',
  656. $ 'Unit', LASTC, K, ONE, V( 1, M-K+1 ), LDV,
  657. $ WORK, LDWORK )
  658. IF( M.GT.K ) THEN
  659. *
  660. * W := W + C1**H * V1**H
  661. *
  662. CALL CGEMM( 'Conjugate transpose',
  663. $ 'Conjugate transpose', LASTC, K, M-K,
  664. $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
  665. END IF
  666. *
  667. * W := W * T**H or W * T
  668. *
  669. CALL CTRMM( 'Right', 'Lower', TRANST, 'Non-unit',
  670. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  671. *
  672. * C := C - V**H * W**H
  673. *
  674. IF( M.GT.K ) THEN
  675. *
  676. * C1 := C1 - V1**H * W**H
  677. *
  678. CALL CGEMM( 'Conjugate transpose',
  679. $ 'Conjugate transpose', M-K, LASTC, K,
  680. $ -ONE, V, LDV, WORK, LDWORK, ONE, C, LDC )
  681. END IF
  682. *
  683. * W := W * V2
  684. *
  685. CALL CTRMM( 'Right', 'Lower', 'No transpose', 'Unit',
  686. $ LASTC, K, ONE, V( 1, M-K+1 ), LDV,
  687. $ WORK, LDWORK )
  688. *
  689. * C2 := C2 - W**H
  690. *
  691. DO 210 J = 1, K
  692. DO 200 I = 1, LASTC
  693. C( M-K+J, I ) = C( M-K+J, I ) -
  694. $ CONJG( WORK( I, J ) )
  695. 200 CONTINUE
  696. 210 CONTINUE
  697. *
  698. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  699. *
  700. * Form C * H or C * H**H where C = ( C1 C2 )
  701. *
  702. LASTC = ILACLR( M, N, C, LDC )
  703. *
  704. * W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK)
  705. *
  706. * W := C2
  707. *
  708. DO 220 J = 1, K
  709. CALL CCOPY( LASTC, C( 1, N-K+J ), 1,
  710. $ WORK( 1, J ), 1 )
  711. 220 CONTINUE
  712. *
  713. * W := W * V2**H
  714. *
  715. CALL CTRMM( 'Right', 'Lower', 'Conjugate transpose',
  716. $ 'Unit', LASTC, K, ONE, V( 1, N-K+1 ), LDV,
  717. $ WORK, LDWORK )
  718. IF( N.GT.K ) THEN
  719. *
  720. * W := W + C1 * V1**H
  721. *
  722. CALL CGEMM( 'No transpose', 'Conjugate transpose',
  723. $ LASTC, K, N-K, ONE, C, LDC, V, LDV, ONE,
  724. $ WORK, LDWORK )
  725. END IF
  726. *
  727. * W := W * T or W * T**H
  728. *
  729. CALL CTRMM( 'Right', 'Lower', TRANS, 'Non-unit',
  730. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  731. *
  732. * C := C - W * V
  733. *
  734. IF( N.GT.K ) THEN
  735. *
  736. * C1 := C1 - W * V1
  737. *
  738. CALL CGEMM( 'No transpose', 'No transpose',
  739. $ LASTC, N-K, K, -ONE, WORK, LDWORK, V, LDV,
  740. $ ONE, C, LDC )
  741. END IF
  742. *
  743. * W := W * V2
  744. *
  745. CALL CTRMM( 'Right', 'Lower', 'No transpose', 'Unit',
  746. $ LASTC, K, ONE, V( 1, N-K+1 ), LDV,
  747. $ WORK, LDWORK )
  748. *
  749. * C1 := C1 - W
  750. *
  751. DO 240 J = 1, K
  752. DO 230 I = 1, LASTC
  753. C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  754. 230 CONTINUE
  755. 240 CONTINUE
  756. *
  757. END IF
  758. *
  759. END IF
  760. END IF
  761. *
  762. RETURN
  763. *
  764. * End of CLARFB
  765. *
  766. END