You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zunhr_col.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441
  1. *> \brief \b ZUNHR_COL
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZUNHR_COL + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunhr_col.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunhr_col.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunhr_col.f">
  15. *> [TXT]</a>
  16. *>
  17. * Definition:
  18. * ===========
  19. *
  20. * SUBROUTINE ZUNHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
  21. *
  22. * .. Scalar Arguments ..
  23. * INTEGER INFO, LDA, LDT, M, N, NB
  24. * ..
  25. * .. Array Arguments ..
  26. * COMPLEX*16 A( LDA, * ), D( * ), T( LDT, * )
  27. * ..
  28. *
  29. *> \par Purpose:
  30. * =============
  31. *>
  32. *> \verbatim
  33. *>
  34. *> ZUNHR_COL takes an M-by-N complex matrix Q_in with orthonormal columns
  35. *> as input, stored in A, and performs Householder Reconstruction (HR),
  36. *> i.e. reconstructs Householder vectors V(i) implicitly representing
  37. *> another M-by-N matrix Q_out, with the property that Q_in = Q_out*S,
  38. *> where S is an N-by-N diagonal matrix with diagonal entries
  39. *> equal to +1 or -1. The Householder vectors (columns V(i) of V) are
  40. *> stored in A on output, and the diagonal entries of S are stored in D.
  41. *> Block reflectors are also returned in T
  42. *> (same output format as ZGEQRT).
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] M
  49. *> \verbatim
  50. *> M is INTEGER
  51. *> The number of rows of the matrix A. M >= 0.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] N
  55. *> \verbatim
  56. *> N is INTEGER
  57. *> The number of columns of the matrix A. M >= N >= 0.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] NB
  61. *> \verbatim
  62. *> NB is INTEGER
  63. *> The column block size to be used in the reconstruction
  64. *> of Householder column vector blocks in the array A and
  65. *> corresponding block reflectors in the array T. NB >= 1.
  66. *> (Note that if NB > N, then N is used instead of NB
  67. *> as the column block size.)
  68. *> \endverbatim
  69. *>
  70. *> \param[in,out] A
  71. *> \verbatim
  72. *> A is COMPLEX*16 array, dimension (LDA,N)
  73. *>
  74. *> On entry:
  75. *>
  76. *> The array A contains an M-by-N orthonormal matrix Q_in,
  77. *> i.e the columns of A are orthogonal unit vectors.
  78. *>
  79. *> On exit:
  80. *>
  81. *> The elements below the diagonal of A represent the unit
  82. *> lower-trapezoidal matrix V of Householder column vectors
  83. *> V(i). The unit diagonal entries of V are not stored
  84. *> (same format as the output below the diagonal in A from
  85. *> ZGEQRT). The matrix T and the matrix V stored on output
  86. *> in A implicitly define Q_out.
  87. *>
  88. *> The elements above the diagonal contain the factor U
  89. *> of the "modified" LU-decomposition:
  90. *> Q_in - ( S ) = V * U
  91. *> ( 0 )
  92. *> where 0 is a (M-N)-by-(M-N) zero matrix.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDA
  96. *> \verbatim
  97. *> LDA is INTEGER
  98. *> The leading dimension of the array A. LDA >= max(1,M).
  99. *> \endverbatim
  100. *>
  101. *> \param[out] T
  102. *> \verbatim
  103. *> T is COMPLEX*16 array,
  104. *> dimension (LDT, N)
  105. *>
  106. *> Let NOCB = Number_of_output_col_blocks
  107. *> = CEIL(N/NB)
  108. *>
  109. *> On exit, T(1:NB, 1:N) contains NOCB upper-triangular
  110. *> block reflectors used to define Q_out stored in compact
  111. *> form as a sequence of upper-triangular NB-by-NB column
  112. *> blocks (same format as the output T in ZGEQRT).
  113. *> The matrix T and the matrix V stored on output in A
  114. *> implicitly define Q_out. NOTE: The lower triangles
  115. *> below the upper-triangular blcoks will be filled with
  116. *> zeros. See Further Details.
  117. *> \endverbatim
  118. *>
  119. *> \param[in] LDT
  120. *> \verbatim
  121. *> LDT is INTEGER
  122. *> The leading dimension of the array T.
  123. *> LDT >= max(1,min(NB,N)).
  124. *> \endverbatim
  125. *>
  126. *> \param[out] D
  127. *> \verbatim
  128. *> D is COMPLEX*16 array, dimension min(M,N).
  129. *> The elements can be only plus or minus one.
  130. *>
  131. *> D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where
  132. *> 1 <= i <= min(M,N), and Q_in_i is Q_in after performing
  133. *> i-1 steps of “modified” Gaussian elimination.
  134. *> See Further Details.
  135. *> \endverbatim
  136. *>
  137. *> \param[out] INFO
  138. *> \verbatim
  139. *> INFO is INTEGER
  140. *> = 0: successful exit
  141. *> < 0: if INFO = -i, the i-th argument had an illegal value
  142. *> \endverbatim
  143. *>
  144. *> \par Further Details:
  145. * =====================
  146. *>
  147. *> \verbatim
  148. *>
  149. *> The computed M-by-M unitary factor Q_out is defined implicitly as
  150. *> a product of unitary matrices Q_out(i). Each Q_out(i) is stored in
  151. *> the compact WY-representation format in the corresponding blocks of
  152. *> matrices V (stored in A) and T.
  153. *>
  154. *> The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N
  155. *> matrix A contains the column vectors V(i) in NB-size column
  156. *> blocks VB(j). For example, VB(1) contains the columns
  157. *> V(1), V(2), ... V(NB). NOTE: The unit entries on
  158. *> the diagonal of Y are not stored in A.
  159. *>
  160. *> The number of column blocks is
  161. *>
  162. *> NOCB = Number_of_output_col_blocks = CEIL(N/NB)
  163. *>
  164. *> where each block is of order NB except for the last block, which
  165. *> is of order LAST_NB = N - (NOCB-1)*NB.
  166. *>
  167. *> For example, if M=6, N=5 and NB=2, the matrix V is
  168. *>
  169. *>
  170. *> V = ( VB(1), VB(2), VB(3) ) =
  171. *>
  172. *> = ( 1 )
  173. *> ( v21 1 )
  174. *> ( v31 v32 1 )
  175. *> ( v41 v42 v43 1 )
  176. *> ( v51 v52 v53 v54 1 )
  177. *> ( v61 v62 v63 v54 v65 )
  178. *>
  179. *>
  180. *> For each of the column blocks VB(i), an upper-triangular block
  181. *> reflector TB(i) is computed. These blocks are stored as
  182. *> a sequence of upper-triangular column blocks in the NB-by-N
  183. *> matrix T. The size of each TB(i) block is NB-by-NB, except
  184. *> for the last block, whose size is LAST_NB-by-LAST_NB.
  185. *>
  186. *> For example, if M=6, N=5 and NB=2, the matrix T is
  187. *>
  188. *> T = ( TB(1), TB(2), TB(3) ) =
  189. *>
  190. *> = ( t11 t12 t13 t14 t15 )
  191. *> ( t22 t24 )
  192. *>
  193. *>
  194. *> The M-by-M factor Q_out is given as a product of NOCB
  195. *> unitary M-by-M matrices Q_out(i).
  196. *>
  197. *> Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB),
  198. *>
  199. *> where each matrix Q_out(i) is given by the WY-representation
  200. *> using corresponding blocks from the matrices V and T:
  201. *>
  202. *> Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T,
  203. *>
  204. *> where I is the identity matrix. Here is the formula with matrix
  205. *> dimensions:
  206. *>
  207. *> Q(i){M-by-M} = I{M-by-M} -
  208. *> VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M},
  209. *>
  210. *> where INB = NB, except for the last block NOCB
  211. *> for which INB=LAST_NB.
  212. *>
  213. *> =====
  214. *> NOTE:
  215. *> =====
  216. *>
  217. *> If Q_in is the result of doing a QR factorization
  218. *> B = Q_in * R_in, then:
  219. *>
  220. *> B = (Q_out*S) * R_in = Q_out * (S * R_in) = O_out * R_out.
  221. *>
  222. *> So if one wants to interpret Q_out as the result
  223. *> of the QR factorization of B, then corresponding R_out
  224. *> should be obtained by R_out = S * R_in, i.e. some rows of R_in
  225. *> should be multiplied by -1.
  226. *>
  227. *> For the details of the algorithm, see [1].
  228. *>
  229. *> [1] "Reconstructing Householder vectors from tall-skinny QR",
  230. *> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
  231. *> E. Solomonik, J. Parallel Distrib. Comput.,
  232. *> vol. 85, pp. 3-31, 2015.
  233. *> \endverbatim
  234. *>
  235. * Authors:
  236. * ========
  237. *
  238. *> \author Univ. of Tennessee
  239. *> \author Univ. of California Berkeley
  240. *> \author Univ. of Colorado Denver
  241. *> \author NAG Ltd.
  242. *
  243. *> \date November 2019
  244. *
  245. *> \ingroup complex16OTHERcomputational
  246. *
  247. *> \par Contributors:
  248. * ==================
  249. *>
  250. *> \verbatim
  251. *>
  252. *> November 2019, Igor Kozachenko,
  253. *> Computer Science Division,
  254. *> University of California, Berkeley
  255. *>
  256. *> \endverbatim
  257. *
  258. * =====================================================================
  259. SUBROUTINE ZUNHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
  260. IMPLICIT NONE
  261. *
  262. * -- LAPACK computational routine (version 3.9.0) --
  263. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  264. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  265. * November 2019
  266. *
  267. * .. Scalar Arguments ..
  268. INTEGER INFO, LDA, LDT, M, N, NB
  269. * ..
  270. * .. Array Arguments ..
  271. COMPLEX*16 A( LDA, * ), D( * ), T( LDT, * )
  272. * ..
  273. *
  274. * =====================================================================
  275. *
  276. * .. Parameters ..
  277. COMPLEX*16 CONE, CZERO
  278. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
  279. $ CZERO = ( 0.0D+0, 0.0D+0 ) )
  280. * ..
  281. * .. Local Scalars ..
  282. INTEGER I, IINFO, J, JB, JBTEMP1, JBTEMP2, JNB,
  283. $ NPLUSONE
  284. * ..
  285. * .. External Subroutines ..
  286. EXTERNAL ZCOPY, ZLAUNHR_COL_GETRFNP, ZSCAL, ZTRSM,
  287. $ XERBLA
  288. * ..
  289. * .. Intrinsic Functions ..
  290. INTRINSIC MAX, MIN
  291. * ..
  292. * .. Executable Statements ..
  293. *
  294. * Test the input parameters
  295. *
  296. INFO = 0
  297. IF( M.LT.0 ) THEN
  298. INFO = -1
  299. ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
  300. INFO = -2
  301. ELSE IF( NB.LT.1 ) THEN
  302. INFO = -3
  303. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  304. INFO = -5
  305. ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
  306. INFO = -7
  307. END IF
  308. *
  309. * Handle error in the input parameters.
  310. *
  311. IF( INFO.NE.0 ) THEN
  312. CALL XERBLA( 'ZUNHR_COL', -INFO )
  313. RETURN
  314. END IF
  315. *
  316. * Quick return if possible
  317. *
  318. IF( MIN( M, N ).EQ.0 ) THEN
  319. RETURN
  320. END IF
  321. *
  322. * On input, the M-by-N matrix A contains the unitary
  323. * M-by-N matrix Q_in.
  324. *
  325. * (1) Compute the unit lower-trapezoidal V (ones on the diagonal
  326. * are not stored) by performing the "modified" LU-decomposition.
  327. *
  328. * Q_in - ( S ) = V * U = ( V1 ) * U,
  329. * ( 0 ) ( V2 )
  330. *
  331. * where 0 is an (M-N)-by-N zero matrix.
  332. *
  333. * (1-1) Factor V1 and U.
  334. CALL ZLAUNHR_COL_GETRFNP( N, N, A, LDA, D, IINFO )
  335. *
  336. * (1-2) Solve for V2.
  337. *
  338. IF( M.GT.N ) THEN
  339. CALL ZTRSM( 'R', 'U', 'N', 'N', M-N, N, CONE, A, LDA,
  340. $ A( N+1, 1 ), LDA )
  341. END IF
  342. *
  343. * (2) Reconstruct the block reflector T stored in T(1:NB, 1:N)
  344. * as a sequence of upper-triangular blocks with NB-size column
  345. * blocking.
  346. *
  347. * Loop over the column blocks of size NB of the array A(1:M,1:N)
  348. * and the array T(1:NB,1:N), JB is the column index of a column
  349. * block, JNB is the column block size at each step JB.
  350. *
  351. NPLUSONE = N + 1
  352. DO JB = 1, N, NB
  353. *
  354. * (2-0) Determine the column block size JNB.
  355. *
  356. JNB = MIN( NPLUSONE-JB, NB )
  357. *
  358. * (2-1) Copy the upper-triangular part of the current JNB-by-JNB
  359. * diagonal block U(JB) (of the N-by-N matrix U) stored
  360. * in A(JB:JB+JNB-1,JB:JB+JNB-1) into the upper-triangular part
  361. * of the current JNB-by-JNB block T(1:JNB,JB:JB+JNB-1)
  362. * column-by-column, total JNB*(JNB+1)/2 elements.
  363. *
  364. JBTEMP1 = JB - 1
  365. DO J = JB, JB+JNB-1
  366. CALL ZCOPY( J-JBTEMP1, A( JB, J ), 1, T( 1, J ), 1 )
  367. END DO
  368. *
  369. * (2-2) Perform on the upper-triangular part of the current
  370. * JNB-by-JNB diagonal block U(JB) (of the N-by-N matrix U) stored
  371. * in T(1:JNB,JB:JB+JNB-1) the following operation in place:
  372. * (-1)*U(JB)*S(JB), i.e the result will be stored in the upper-
  373. * triangular part of T(1:JNB,JB:JB+JNB-1). This multiplication
  374. * of the JNB-by-JNB diagonal block U(JB) by the JNB-by-JNB
  375. * diagonal block S(JB) of the N-by-N sign matrix S from the
  376. * right means changing the sign of each J-th column of the block
  377. * U(JB) according to the sign of the diagonal element of the block
  378. * S(JB), i.e. S(J,J) that is stored in the array element D(J).
  379. *
  380. DO J = JB, JB+JNB-1
  381. IF( D( J ).EQ.CONE ) THEN
  382. CALL ZSCAL( J-JBTEMP1, -CONE, T( 1, J ), 1 )
  383. END IF
  384. END DO
  385. *
  386. * (2-3) Perform the triangular solve for the current block
  387. * matrix X(JB):
  388. *
  389. * X(JB) * (A(JB)**T) = B(JB), where:
  390. *
  391. * A(JB)**T is a JNB-by-JNB unit upper-triangular
  392. * coefficient block, and A(JB)=V1(JB), which
  393. * is a JNB-by-JNB unit lower-triangular block
  394. * stored in A(JB:JB+JNB-1,JB:JB+JNB-1).
  395. * The N-by-N matrix V1 is the upper part
  396. * of the M-by-N lower-trapezoidal matrix V
  397. * stored in A(1:M,1:N);
  398. *
  399. * B(JB) is a JNB-by-JNB upper-triangular right-hand
  400. * side block, B(JB) = (-1)*U(JB)*S(JB), and
  401. * B(JB) is stored in T(1:JNB,JB:JB+JNB-1);
  402. *
  403. * X(JB) is a JNB-by-JNB upper-triangular solution
  404. * block, X(JB) is the upper-triangular block
  405. * reflector T(JB), and X(JB) is stored
  406. * in T(1:JNB,JB:JB+JNB-1).
  407. *
  408. * In other words, we perform the triangular solve for the
  409. * upper-triangular block T(JB):
  410. *
  411. * T(JB) * (V1(JB)**T) = (-1)*U(JB)*S(JB).
  412. *
  413. * Even though the blocks X(JB) and B(JB) are upper-
  414. * triangular, the routine ZTRSM will access all JNB**2
  415. * elements of the square T(1:JNB,JB:JB+JNB-1). Therefore,
  416. * we need to set to zero the elements of the block
  417. * T(1:JNB,JB:JB+JNB-1) below the diagonal before the call
  418. * to ZTRSM.
  419. *
  420. * (2-3a) Set the elements to zero.
  421. *
  422. JBTEMP2 = JB - 2
  423. DO J = JB, JB+JNB-2
  424. DO I = J-JBTEMP2, NB
  425. T( I, J ) = CZERO
  426. END DO
  427. END DO
  428. *
  429. * (2-3b) Perform the triangular solve.
  430. *
  431. CALL ZTRSM( 'R', 'L', 'C', 'U', JNB, JNB, CONE,
  432. $ A( JB, JB ), LDA, T( 1, JB ), LDT )
  433. *
  434. END DO
  435. *
  436. RETURN
  437. *
  438. * End of ZUNHR_COL
  439. *
  440. END