You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsytf2.f 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611
  1. *> \brief \b ZSYTF2 computes the factorization of a real symmetric indefinite matrix, using the diagonal pivoting method (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZSYTF2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytf2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytf2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytf2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZSYTF2( UPLO, N, A, LDA, IPIV, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 A( LDA, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZSYTF2 computes the factorization of a complex symmetric matrix A
  39. *> using the Bunch-Kaufman diagonal pivoting method:
  40. *>
  41. *> A = U*D*U**T or A = L*D*L**T
  42. *>
  43. *> where U (or L) is a product of permutation and unit upper (lower)
  44. *> triangular matrices, U**T is the transpose of U, and D is symmetric and
  45. *> block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
  46. *>
  47. *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] UPLO
  54. *> \verbatim
  55. *> UPLO is CHARACTER*1
  56. *> Specifies whether the upper or lower triangular part of the
  57. *> symmetric matrix A is stored:
  58. *> = 'U': Upper triangular
  59. *> = 'L': Lower triangular
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The order of the matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in,out] A
  69. *> \verbatim
  70. *> A is COMPLEX*16 array, dimension (LDA,N)
  71. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  72. *> n-by-n upper triangular part of A contains the upper
  73. *> triangular part of the matrix A, and the strictly lower
  74. *> triangular part of A is not referenced. If UPLO = 'L', the
  75. *> leading n-by-n lower triangular part of A contains the lower
  76. *> triangular part of the matrix A, and the strictly upper
  77. *> triangular part of A is not referenced.
  78. *>
  79. *> On exit, the block diagonal matrix D and the multipliers used
  80. *> to obtain the factor U or L (see below for further details).
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDA
  84. *> \verbatim
  85. *> LDA is INTEGER
  86. *> The leading dimension of the array A. LDA >= max(1,N).
  87. *> \endverbatim
  88. *>
  89. *> \param[out] IPIV
  90. *> \verbatim
  91. *> IPIV is INTEGER array, dimension (N)
  92. *> Details of the interchanges and the block structure of D.
  93. *>
  94. *> If UPLO = 'U':
  95. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  96. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  97. *>
  98. *> If IPIV(k) = IPIV(k-1) < 0, then rows and columns
  99. *> k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  100. *> is a 2-by-2 diagonal block.
  101. *>
  102. *> If UPLO = 'L':
  103. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  104. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  105. *>
  106. *> If IPIV(k) = IPIV(k+1) < 0, then rows and columns
  107. *> k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
  108. *> is a 2-by-2 diagonal block.
  109. *> \endverbatim
  110. *>
  111. *> \param[out] INFO
  112. *> \verbatim
  113. *> INFO is INTEGER
  114. *> = 0: successful exit
  115. *> < 0: if INFO = -k, the k-th argument had an illegal value
  116. *> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
  117. *> has been completed, but the block diagonal matrix D is
  118. *> exactly singular, and division by zero will occur if it
  119. *> is used to solve a system of equations.
  120. *> \endverbatim
  121. *
  122. * Authors:
  123. * ========
  124. *
  125. *> \author Univ. of Tennessee
  126. *> \author Univ. of California Berkeley
  127. *> \author Univ. of Colorado Denver
  128. *> \author NAG Ltd.
  129. *
  130. *> \date December 2016
  131. *
  132. *> \ingroup complex16SYcomputational
  133. *
  134. *> \par Further Details:
  135. * =====================
  136. *>
  137. *> \verbatim
  138. *>
  139. *> If UPLO = 'U', then A = U*D*U**T, where
  140. *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
  141. *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  142. *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  143. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  144. *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  145. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  146. *>
  147. *> ( I v 0 ) k-s
  148. *> U(k) = ( 0 I 0 ) s
  149. *> ( 0 0 I ) n-k
  150. *> k-s s n-k
  151. *>
  152. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  153. *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  154. *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
  155. *>
  156. *> If UPLO = 'L', then A = L*D*L**T, where
  157. *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  158. *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  159. *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  160. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  161. *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  162. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  163. *>
  164. *> ( I 0 0 ) k-1
  165. *> L(k) = ( 0 I 0 ) s
  166. *> ( 0 v I ) n-k-s+1
  167. *> k-1 s n-k-s+1
  168. *>
  169. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  170. *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  171. *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  172. *> \endverbatim
  173. *
  174. *> \par Contributors:
  175. * ==================
  176. *>
  177. *> \verbatim
  178. *>
  179. *> 09-29-06 - patch from
  180. *> Bobby Cheng, MathWorks
  181. *>
  182. *> Replace l.209 and l.377
  183. *> IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  184. *> by
  185. *> IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  186. *>
  187. *> 1-96 - Based on modifications by J. Lewis, Boeing Computer Services
  188. *> Company
  189. *> \endverbatim
  190. *
  191. * =====================================================================
  192. SUBROUTINE ZSYTF2( UPLO, N, A, LDA, IPIV, INFO )
  193. *
  194. * -- LAPACK computational routine (version 3.7.0) --
  195. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  196. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  197. * December 2016
  198. *
  199. * .. Scalar Arguments ..
  200. CHARACTER UPLO
  201. INTEGER INFO, LDA, N
  202. * ..
  203. * .. Array Arguments ..
  204. INTEGER IPIV( * )
  205. COMPLEX*16 A( LDA, * )
  206. * ..
  207. *
  208. * =====================================================================
  209. *
  210. * .. Parameters ..
  211. DOUBLE PRECISION ZERO, ONE
  212. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  213. DOUBLE PRECISION EIGHT, SEVTEN
  214. PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  215. COMPLEX*16 CONE
  216. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
  217. * ..
  218. * .. Local Scalars ..
  219. LOGICAL UPPER
  220. INTEGER I, IMAX, J, JMAX, K, KK, KP, KSTEP
  221. DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, ROWMAX
  222. COMPLEX*16 D11, D12, D21, D22, R1, T, WK, WKM1, WKP1, Z
  223. * ..
  224. * .. External Functions ..
  225. LOGICAL DISNAN, LSAME
  226. INTEGER IZAMAX
  227. EXTERNAL DISNAN, LSAME, IZAMAX
  228. * ..
  229. * .. External Subroutines ..
  230. EXTERNAL XERBLA, ZSCAL, ZSWAP, ZSYR
  231. * ..
  232. * .. Intrinsic Functions ..
  233. INTRINSIC ABS, DBLE, DIMAG, MAX, SQRT
  234. * ..
  235. * .. Statement Functions ..
  236. DOUBLE PRECISION CABS1
  237. * ..
  238. * .. Statement Function definitions ..
  239. CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  240. * ..
  241. * .. Executable Statements ..
  242. *
  243. * Test the input parameters.
  244. *
  245. INFO = 0
  246. UPPER = LSAME( UPLO, 'U' )
  247. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  248. INFO = -1
  249. ELSE IF( N.LT.0 ) THEN
  250. INFO = -2
  251. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  252. INFO = -4
  253. END IF
  254. IF( INFO.NE.0 ) THEN
  255. CALL XERBLA( 'ZSYTF2', -INFO )
  256. RETURN
  257. END IF
  258. *
  259. * Initialize ALPHA for use in choosing pivot block size.
  260. *
  261. ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  262. *
  263. IF( UPPER ) THEN
  264. *
  265. * Factorize A as U*D*U**T using the upper triangle of A
  266. *
  267. * K is the main loop index, decreasing from N to 1 in steps of
  268. * 1 or 2
  269. *
  270. K = N
  271. 10 CONTINUE
  272. *
  273. * If K < 1, exit from loop
  274. *
  275. IF( K.LT.1 )
  276. $ GO TO 70
  277. KSTEP = 1
  278. *
  279. * Determine rows and columns to be interchanged and whether
  280. * a 1-by-1 or 2-by-2 pivot block will be used
  281. *
  282. ABSAKK = CABS1( A( K, K ) )
  283. *
  284. * IMAX is the row-index of the largest off-diagonal element in
  285. * column K, and COLMAX is its absolute value.
  286. * Determine both COLMAX and IMAX.
  287. *
  288. IF( K.GT.1 ) THEN
  289. IMAX = IZAMAX( K-1, A( 1, K ), 1 )
  290. COLMAX = CABS1( A( IMAX, K ) )
  291. ELSE
  292. COLMAX = ZERO
  293. END IF
  294. *
  295. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO .OR. DISNAN(ABSAKK) ) THEN
  296. *
  297. * Column K is zero or underflow, or contains a NaN:
  298. * set INFO and continue
  299. *
  300. IF( INFO.EQ.0 )
  301. $ INFO = K
  302. KP = K
  303. ELSE
  304. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  305. *
  306. * no interchange, use 1-by-1 pivot block
  307. *
  308. KP = K
  309. ELSE
  310. *
  311. * JMAX is the column-index of the largest off-diagonal
  312. * element in row IMAX, and ROWMAX is its absolute value
  313. *
  314. JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
  315. ROWMAX = CABS1( A( IMAX, JMAX ) )
  316. IF( IMAX.GT.1 ) THEN
  317. JMAX = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
  318. ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  319. END IF
  320. *
  321. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  322. *
  323. * no interchange, use 1-by-1 pivot block
  324. *
  325. KP = K
  326. ELSE IF( CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  327. *
  328. * interchange rows and columns K and IMAX, use 1-by-1
  329. * pivot block
  330. *
  331. KP = IMAX
  332. ELSE
  333. *
  334. * interchange rows and columns K-1 and IMAX, use 2-by-2
  335. * pivot block
  336. *
  337. KP = IMAX
  338. KSTEP = 2
  339. END IF
  340. END IF
  341. *
  342. KK = K - KSTEP + 1
  343. IF( KP.NE.KK ) THEN
  344. *
  345. * Interchange rows and columns KK and KP in the leading
  346. * submatrix A(1:k,1:k)
  347. *
  348. CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  349. CALL ZSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
  350. $ LDA )
  351. T = A( KK, KK )
  352. A( KK, KK ) = A( KP, KP )
  353. A( KP, KP ) = T
  354. IF( KSTEP.EQ.2 ) THEN
  355. T = A( K-1, K )
  356. A( K-1, K ) = A( KP, K )
  357. A( KP, K ) = T
  358. END IF
  359. END IF
  360. *
  361. * Update the leading submatrix
  362. *
  363. IF( KSTEP.EQ.1 ) THEN
  364. *
  365. * 1-by-1 pivot block D(k): column k now holds
  366. *
  367. * W(k) = U(k)*D(k)
  368. *
  369. * where U(k) is the k-th column of U
  370. *
  371. * Perform a rank-1 update of A(1:k-1,1:k-1) as
  372. *
  373. * A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
  374. *
  375. R1 = CONE / A( K, K )
  376. CALL ZSYR( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
  377. *
  378. * Store U(k) in column k
  379. *
  380. CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
  381. ELSE
  382. *
  383. * 2-by-2 pivot block D(k): columns k and k-1 now hold
  384. *
  385. * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  386. *
  387. * where U(k) and U(k-1) are the k-th and (k-1)-th columns
  388. * of U
  389. *
  390. * Perform a rank-2 update of A(1:k-2,1:k-2) as
  391. *
  392. * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  393. * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
  394. *
  395. IF( K.GT.2 ) THEN
  396. *
  397. D12 = A( K-1, K )
  398. D22 = A( K-1, K-1 ) / D12
  399. D11 = A( K, K ) / D12
  400. T = CONE / ( D11*D22-CONE )
  401. D12 = T / D12
  402. *
  403. DO 30 J = K - 2, 1, -1
  404. WKM1 = D12*( D11*A( J, K-1 )-A( J, K ) )
  405. WK = D12*( D22*A( J, K )-A( J, K-1 ) )
  406. DO 20 I = J, 1, -1
  407. A( I, J ) = A( I, J ) - A( I, K )*WK -
  408. $ A( I, K-1 )*WKM1
  409. 20 CONTINUE
  410. A( J, K ) = WK
  411. A( J, K-1 ) = WKM1
  412. 30 CONTINUE
  413. *
  414. END IF
  415. *
  416. END IF
  417. END IF
  418. *
  419. * Store details of the interchanges in IPIV
  420. *
  421. IF( KSTEP.EQ.1 ) THEN
  422. IPIV( K ) = KP
  423. ELSE
  424. IPIV( K ) = -KP
  425. IPIV( K-1 ) = -KP
  426. END IF
  427. *
  428. * Decrease K and return to the start of the main loop
  429. *
  430. K = K - KSTEP
  431. GO TO 10
  432. *
  433. ELSE
  434. *
  435. * Factorize A as L*D*L**T using the lower triangle of A
  436. *
  437. * K is the main loop index, increasing from 1 to N in steps of
  438. * 1 or 2
  439. *
  440. K = 1
  441. 40 CONTINUE
  442. *
  443. * If K > N, exit from loop
  444. *
  445. IF( K.GT.N )
  446. $ GO TO 70
  447. KSTEP = 1
  448. *
  449. * Determine rows and columns to be interchanged and whether
  450. * a 1-by-1 or 2-by-2 pivot block will be used
  451. *
  452. ABSAKK = CABS1( A( K, K ) )
  453. *
  454. * IMAX is the row-index of the largest off-diagonal element in
  455. * column K, and COLMAX is its absolute value.
  456. * Determine both COLMAX and IMAX.
  457. *
  458. IF( K.LT.N ) THEN
  459. IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
  460. COLMAX = CABS1( A( IMAX, K ) )
  461. ELSE
  462. COLMAX = ZERO
  463. END IF
  464. *
  465. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO .OR. DISNAN(ABSAKK) ) THEN
  466. *
  467. * Column K is zero or underflow, or contains a NaN:
  468. * set INFO and continue
  469. *
  470. IF( INFO.EQ.0 )
  471. $ INFO = K
  472. KP = K
  473. ELSE
  474. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  475. *
  476. * no interchange, use 1-by-1 pivot block
  477. *
  478. KP = K
  479. ELSE
  480. *
  481. * JMAX is the column-index of the largest off-diagonal
  482. * element in row IMAX, and ROWMAX is its absolute value
  483. *
  484. JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
  485. ROWMAX = CABS1( A( IMAX, JMAX ) )
  486. IF( IMAX.LT.N ) THEN
  487. JMAX = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
  488. ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  489. END IF
  490. *
  491. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  492. *
  493. * no interchange, use 1-by-1 pivot block
  494. *
  495. KP = K
  496. ELSE IF( CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  497. *
  498. * interchange rows and columns K and IMAX, use 1-by-1
  499. * pivot block
  500. *
  501. KP = IMAX
  502. ELSE
  503. *
  504. * interchange rows and columns K+1 and IMAX, use 2-by-2
  505. * pivot block
  506. *
  507. KP = IMAX
  508. KSTEP = 2
  509. END IF
  510. END IF
  511. *
  512. KK = K + KSTEP - 1
  513. IF( KP.NE.KK ) THEN
  514. *
  515. * Interchange rows and columns KK and KP in the trailing
  516. * submatrix A(k:n,k:n)
  517. *
  518. IF( KP.LT.N )
  519. $ CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  520. CALL ZSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  521. $ LDA )
  522. T = A( KK, KK )
  523. A( KK, KK ) = A( KP, KP )
  524. A( KP, KP ) = T
  525. IF( KSTEP.EQ.2 ) THEN
  526. T = A( K+1, K )
  527. A( K+1, K ) = A( KP, K )
  528. A( KP, K ) = T
  529. END IF
  530. END IF
  531. *
  532. * Update the trailing submatrix
  533. *
  534. IF( KSTEP.EQ.1 ) THEN
  535. *
  536. * 1-by-1 pivot block D(k): column k now holds
  537. *
  538. * W(k) = L(k)*D(k)
  539. *
  540. * where L(k) is the k-th column of L
  541. *
  542. IF( K.LT.N ) THEN
  543. *
  544. * Perform a rank-1 update of A(k+1:n,k+1:n) as
  545. *
  546. * A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
  547. *
  548. R1 = CONE / A( K, K )
  549. CALL ZSYR( UPLO, N-K, -R1, A( K+1, K ), 1,
  550. $ A( K+1, K+1 ), LDA )
  551. *
  552. * Store L(k) in column K
  553. *
  554. CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
  555. END IF
  556. ELSE
  557. *
  558. * 2-by-2 pivot block D(k)
  559. *
  560. IF( K.LT.N-1 ) THEN
  561. *
  562. * Perform a rank-2 update of A(k+2:n,k+2:n) as
  563. *
  564. * A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
  565. * = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
  566. *
  567. * where L(k) and L(k+1) are the k-th and (k+1)-th
  568. * columns of L
  569. *
  570. D21 = A( K+1, K )
  571. D11 = A( K+1, K+1 ) / D21
  572. D22 = A( K, K ) / D21
  573. T = CONE / ( D11*D22-CONE )
  574. D21 = T / D21
  575. *
  576. DO 60 J = K + 2, N
  577. WK = D21*( D11*A( J, K )-A( J, K+1 ) )
  578. WKP1 = D21*( D22*A( J, K+1 )-A( J, K ) )
  579. DO 50 I = J, N
  580. A( I, J ) = A( I, J ) - A( I, K )*WK -
  581. $ A( I, K+1 )*WKP1
  582. 50 CONTINUE
  583. A( J, K ) = WK
  584. A( J, K+1 ) = WKP1
  585. 60 CONTINUE
  586. END IF
  587. END IF
  588. END IF
  589. *
  590. * Store details of the interchanges in IPIV
  591. *
  592. IF( KSTEP.EQ.1 ) THEN
  593. IPIV( K ) = KP
  594. ELSE
  595. IPIV( K ) = -KP
  596. IPIV( K+1 ) = -KP
  597. END IF
  598. *
  599. * Increase K and return to the start of the main loop
  600. *
  601. K = K + KSTEP
  602. GO TO 40
  603. *
  604. END IF
  605. *
  606. 70 CONTINUE
  607. RETURN
  608. *
  609. * End of ZSYTF2
  610. *
  611. END