You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaic1.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367
  1. *> \brief \b SLAIC1 applies one step of incremental condition estimation.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLAIC1 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaic1.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaic1.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaic1.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER J, JOB
  25. * REAL C, GAMMA, S, SEST, SESTPR
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL W( J ), X( J )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> SLAIC1 applies one step of incremental condition estimation in
  38. *> its simplest version:
  39. *>
  40. *> Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
  41. *> lower triangular matrix L, such that
  42. *> twonorm(L*x) = sest
  43. *> Then SLAIC1 computes sestpr, s, c such that
  44. *> the vector
  45. *> [ s*x ]
  46. *> xhat = [ c ]
  47. *> is an approximate singular vector of
  48. *> [ L 0 ]
  49. *> Lhat = [ w**T gamma ]
  50. *> in the sense that
  51. *> twonorm(Lhat*xhat) = sestpr.
  52. *>
  53. *> Depending on JOB, an estimate for the largest or smallest singular
  54. *> value is computed.
  55. *>
  56. *> Note that [s c]**T and sestpr**2 is an eigenpair of the system
  57. *>
  58. *> diag(sest*sest, 0) + [alpha gamma] * [ alpha ]
  59. *> [ gamma ]
  60. *>
  61. *> where alpha = x**T*w.
  62. *> \endverbatim
  63. *
  64. * Arguments:
  65. * ==========
  66. *
  67. *> \param[in] JOB
  68. *> \verbatim
  69. *> JOB is INTEGER
  70. *> = 1: an estimate for the largest singular value is computed.
  71. *> = 2: an estimate for the smallest singular value is computed.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] J
  75. *> \verbatim
  76. *> J is INTEGER
  77. *> Length of X and W
  78. *> \endverbatim
  79. *>
  80. *> \param[in] X
  81. *> \verbatim
  82. *> X is REAL array, dimension (J)
  83. *> The j-vector x.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] SEST
  87. *> \verbatim
  88. *> SEST is REAL
  89. *> Estimated singular value of j by j matrix L
  90. *> \endverbatim
  91. *>
  92. *> \param[in] W
  93. *> \verbatim
  94. *> W is REAL array, dimension (J)
  95. *> The j-vector w.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] GAMMA
  99. *> \verbatim
  100. *> GAMMA is REAL
  101. *> The diagonal element gamma.
  102. *> \endverbatim
  103. *>
  104. *> \param[out] SESTPR
  105. *> \verbatim
  106. *> SESTPR is REAL
  107. *> Estimated singular value of (j+1) by (j+1) matrix Lhat.
  108. *> \endverbatim
  109. *>
  110. *> \param[out] S
  111. *> \verbatim
  112. *> S is REAL
  113. *> Sine needed in forming xhat.
  114. *> \endverbatim
  115. *>
  116. *> \param[out] C
  117. *> \verbatim
  118. *> C is REAL
  119. *> Cosine needed in forming xhat.
  120. *> \endverbatim
  121. *
  122. * Authors:
  123. * ========
  124. *
  125. *> \author Univ. of Tennessee
  126. *> \author Univ. of California Berkeley
  127. *> \author Univ. of Colorado Denver
  128. *> \author NAG Ltd.
  129. *
  130. *> \date December 2016
  131. *
  132. *> \ingroup realOTHERauxiliary
  133. *
  134. * =====================================================================
  135. SUBROUTINE SLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
  136. *
  137. * -- LAPACK auxiliary routine (version 3.7.0) --
  138. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  139. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  140. * December 2016
  141. *
  142. * .. Scalar Arguments ..
  143. INTEGER J, JOB
  144. REAL C, GAMMA, S, SEST, SESTPR
  145. * ..
  146. * .. Array Arguments ..
  147. REAL W( J ), X( J )
  148. * ..
  149. *
  150. * =====================================================================
  151. *
  152. * .. Parameters ..
  153. REAL ZERO, ONE, TWO
  154. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
  155. REAL HALF, FOUR
  156. PARAMETER ( HALF = 0.5E0, FOUR = 4.0E0 )
  157. * ..
  158. * .. Local Scalars ..
  159. REAL ABSALP, ABSEST, ABSGAM, ALPHA, B, COSINE, EPS,
  160. $ NORMA, S1, S2, SINE, T, TEST, TMP, ZETA1, ZETA2
  161. * ..
  162. * .. Intrinsic Functions ..
  163. INTRINSIC ABS, MAX, SIGN, SQRT
  164. * ..
  165. * .. External Functions ..
  166. REAL SDOT, SLAMCH
  167. EXTERNAL SDOT, SLAMCH
  168. * ..
  169. * .. Executable Statements ..
  170. *
  171. EPS = SLAMCH( 'Epsilon' )
  172. ALPHA = SDOT( J, X, 1, W, 1 )
  173. *
  174. ABSALP = ABS( ALPHA )
  175. ABSGAM = ABS( GAMMA )
  176. ABSEST = ABS( SEST )
  177. *
  178. IF( JOB.EQ.1 ) THEN
  179. *
  180. * Estimating largest singular value
  181. *
  182. * special cases
  183. *
  184. IF( SEST.EQ.ZERO ) THEN
  185. S1 = MAX( ABSGAM, ABSALP )
  186. IF( S1.EQ.ZERO ) THEN
  187. S = ZERO
  188. C = ONE
  189. SESTPR = ZERO
  190. ELSE
  191. S = ALPHA / S1
  192. C = GAMMA / S1
  193. TMP = SQRT( S*S+C*C )
  194. S = S / TMP
  195. C = C / TMP
  196. SESTPR = S1*TMP
  197. END IF
  198. RETURN
  199. ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
  200. S = ONE
  201. C = ZERO
  202. TMP = MAX( ABSEST, ABSALP )
  203. S1 = ABSEST / TMP
  204. S2 = ABSALP / TMP
  205. SESTPR = TMP*SQRT( S1*S1+S2*S2 )
  206. RETURN
  207. ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
  208. S1 = ABSGAM
  209. S2 = ABSEST
  210. IF( S1.LE.S2 ) THEN
  211. S = ONE
  212. C = ZERO
  213. SESTPR = S2
  214. ELSE
  215. S = ZERO
  216. C = ONE
  217. SESTPR = S1
  218. END IF
  219. RETURN
  220. ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
  221. S1 = ABSGAM
  222. S2 = ABSALP
  223. IF( S1.LE.S2 ) THEN
  224. TMP = S1 / S2
  225. S = SQRT( ONE+TMP*TMP )
  226. SESTPR = S2*S
  227. C = ( GAMMA / S2 ) / S
  228. S = SIGN( ONE, ALPHA ) / S
  229. ELSE
  230. TMP = S2 / S1
  231. C = SQRT( ONE+TMP*TMP )
  232. SESTPR = S1*C
  233. S = ( ALPHA / S1 ) / C
  234. C = SIGN( ONE, GAMMA ) / C
  235. END IF
  236. RETURN
  237. ELSE
  238. *
  239. * normal case
  240. *
  241. ZETA1 = ALPHA / ABSEST
  242. ZETA2 = GAMMA / ABSEST
  243. *
  244. B = ( ONE-ZETA1*ZETA1-ZETA2*ZETA2 )*HALF
  245. C = ZETA1*ZETA1
  246. IF( B.GT.ZERO ) THEN
  247. T = C / ( B+SQRT( B*B+C ) )
  248. ELSE
  249. T = SQRT( B*B+C ) - B
  250. END IF
  251. *
  252. SINE = -ZETA1 / T
  253. COSINE = -ZETA2 / ( ONE+T )
  254. TMP = SQRT( SINE*SINE+COSINE*COSINE )
  255. S = SINE / TMP
  256. C = COSINE / TMP
  257. SESTPR = SQRT( T+ONE )*ABSEST
  258. RETURN
  259. END IF
  260. *
  261. ELSE IF( JOB.EQ.2 ) THEN
  262. *
  263. * Estimating smallest singular value
  264. *
  265. * special cases
  266. *
  267. IF( SEST.EQ.ZERO ) THEN
  268. SESTPR = ZERO
  269. IF( MAX( ABSGAM, ABSALP ).EQ.ZERO ) THEN
  270. SINE = ONE
  271. COSINE = ZERO
  272. ELSE
  273. SINE = -GAMMA
  274. COSINE = ALPHA
  275. END IF
  276. S1 = MAX( ABS( SINE ), ABS( COSINE ) )
  277. S = SINE / S1
  278. C = COSINE / S1
  279. TMP = SQRT( S*S+C*C )
  280. S = S / TMP
  281. C = C / TMP
  282. RETURN
  283. ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
  284. S = ZERO
  285. C = ONE
  286. SESTPR = ABSGAM
  287. RETURN
  288. ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
  289. S1 = ABSGAM
  290. S2 = ABSEST
  291. IF( S1.LE.S2 ) THEN
  292. S = ZERO
  293. C = ONE
  294. SESTPR = S1
  295. ELSE
  296. S = ONE
  297. C = ZERO
  298. SESTPR = S2
  299. END IF
  300. RETURN
  301. ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
  302. S1 = ABSGAM
  303. S2 = ABSALP
  304. IF( S1.LE.S2 ) THEN
  305. TMP = S1 / S2
  306. C = SQRT( ONE+TMP*TMP )
  307. SESTPR = ABSEST*( TMP / C )
  308. S = -( GAMMA / S2 ) / C
  309. C = SIGN( ONE, ALPHA ) / C
  310. ELSE
  311. TMP = S2 / S1
  312. S = SQRT( ONE+TMP*TMP )
  313. SESTPR = ABSEST / S
  314. C = ( ALPHA / S1 ) / S
  315. S = -SIGN( ONE, GAMMA ) / S
  316. END IF
  317. RETURN
  318. ELSE
  319. *
  320. * normal case
  321. *
  322. ZETA1 = ALPHA / ABSEST
  323. ZETA2 = GAMMA / ABSEST
  324. *
  325. NORMA = MAX( ONE+ZETA1*ZETA1+ABS( ZETA1*ZETA2 ),
  326. $ ABS( ZETA1*ZETA2 )+ZETA2*ZETA2 )
  327. *
  328. * See if root is closer to zero or to ONE
  329. *
  330. TEST = ONE + TWO*( ZETA1-ZETA2 )*( ZETA1+ZETA2 )
  331. IF( TEST.GE.ZERO ) THEN
  332. *
  333. * root is close to zero, compute directly
  334. *
  335. B = ( ZETA1*ZETA1+ZETA2*ZETA2+ONE )*HALF
  336. C = ZETA2*ZETA2
  337. T = C / ( B+SQRT( ABS( B*B-C ) ) )
  338. SINE = ZETA1 / ( ONE-T )
  339. COSINE = -ZETA2 / T
  340. SESTPR = SQRT( T+FOUR*EPS*EPS*NORMA )*ABSEST
  341. ELSE
  342. *
  343. * root is closer to ONE, shift by that amount
  344. *
  345. B = ( ZETA2*ZETA2+ZETA1*ZETA1-ONE )*HALF
  346. C = ZETA1*ZETA1
  347. IF( B.GE.ZERO ) THEN
  348. T = -C / ( B+SQRT( B*B+C ) )
  349. ELSE
  350. T = B - SQRT( B*B+C )
  351. END IF
  352. SINE = -ZETA1 / T
  353. COSINE = -ZETA2 / ( ONE+T )
  354. SESTPR = SQRT( ONE+T+FOUR*EPS*EPS*NORMA )*ABSEST
  355. END IF
  356. TMP = SQRT( SINE*SINE+COSINE*COSINE )
  357. S = SINE / TMP
  358. C = COSINE / TMP
  359. RETURN
  360. *
  361. END IF
  362. END IF
  363. RETURN
  364. *
  365. * End of SLAIC1
  366. *
  367. END