You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtptrs.f 6.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228
  1. *> \brief \b DTPTRS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DTPTRS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtptrs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtptrs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtptrs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DTPTRS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER DIAG, TRANS, UPLO
  25. * INTEGER INFO, LDB, N, NRHS
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION AP( * ), B( LDB, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DTPTRS solves a triangular system of the form
  38. *>
  39. *> A * X = B or A**T * X = B,
  40. *>
  41. *> where A is a triangular matrix of order N stored in packed format,
  42. *> and B is an N-by-NRHS matrix. A check is made to verify that A is
  43. *> nonsingular.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] UPLO
  50. *> \verbatim
  51. *> UPLO is CHARACTER*1
  52. *> = 'U': A is upper triangular;
  53. *> = 'L': A is lower triangular.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] TRANS
  57. *> \verbatim
  58. *> TRANS is CHARACTER*1
  59. *> Specifies the form of the system of equations:
  60. *> = 'N': A * X = B (No transpose)
  61. *> = 'T': A**T * X = B (Transpose)
  62. *> = 'C': A**H * X = B (Conjugate transpose = Transpose)
  63. *> \endverbatim
  64. *>
  65. *> \param[in] DIAG
  66. *> \verbatim
  67. *> DIAG is CHARACTER*1
  68. *> = 'N': A is non-unit triangular;
  69. *> = 'U': A is unit triangular.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] N
  73. *> \verbatim
  74. *> N is INTEGER
  75. *> The order of the matrix A. N >= 0.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] NRHS
  79. *> \verbatim
  80. *> NRHS is INTEGER
  81. *> The number of right hand sides, i.e., the number of columns
  82. *> of the matrix B. NRHS >= 0.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] AP
  86. *> \verbatim
  87. *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  88. *> The upper or lower triangular matrix A, packed columnwise in
  89. *> a linear array. The j-th column of A is stored in the array
  90. *> AP as follows:
  91. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  92. *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
  93. *> \endverbatim
  94. *>
  95. *> \param[in,out] B
  96. *> \verbatim
  97. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  98. *> On entry, the right hand side matrix B.
  99. *> On exit, if INFO = 0, the solution matrix X.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] LDB
  103. *> \verbatim
  104. *> LDB is INTEGER
  105. *> The leading dimension of the array B. LDB >= max(1,N).
  106. *> \endverbatim
  107. *>
  108. *> \param[out] INFO
  109. *> \verbatim
  110. *> INFO is INTEGER
  111. *> = 0: successful exit
  112. *> < 0: if INFO = -i, the i-th argument had an illegal value
  113. *> > 0: if INFO = i, the i-th diagonal element of A is zero,
  114. *> indicating that the matrix is singular and the
  115. *> solutions X have not been computed.
  116. *> \endverbatim
  117. *
  118. * Authors:
  119. * ========
  120. *
  121. *> \author Univ. of Tennessee
  122. *> \author Univ. of California Berkeley
  123. *> \author Univ. of Colorado Denver
  124. *> \author NAG Ltd.
  125. *
  126. *> \date December 2016
  127. *
  128. *> \ingroup doubleOTHERcomputational
  129. *
  130. * =====================================================================
  131. SUBROUTINE DTPTRS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, INFO )
  132. *
  133. * -- LAPACK computational routine (version 3.7.0) --
  134. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  135. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  136. * December 2016
  137. *
  138. * .. Scalar Arguments ..
  139. CHARACTER DIAG, TRANS, UPLO
  140. INTEGER INFO, LDB, N, NRHS
  141. * ..
  142. * .. Array Arguments ..
  143. DOUBLE PRECISION AP( * ), B( LDB, * )
  144. * ..
  145. *
  146. * =====================================================================
  147. *
  148. * .. Parameters ..
  149. DOUBLE PRECISION ZERO
  150. PARAMETER ( ZERO = 0.0D+0 )
  151. * ..
  152. * .. Local Scalars ..
  153. LOGICAL NOUNIT, UPPER
  154. INTEGER J, JC
  155. * ..
  156. * .. External Functions ..
  157. LOGICAL LSAME
  158. EXTERNAL LSAME
  159. * ..
  160. * .. External Subroutines ..
  161. EXTERNAL DTPSV, XERBLA
  162. * ..
  163. * .. Intrinsic Functions ..
  164. INTRINSIC MAX
  165. * ..
  166. * .. Executable Statements ..
  167. *
  168. * Test the input parameters.
  169. *
  170. INFO = 0
  171. UPPER = LSAME( UPLO, 'U' )
  172. NOUNIT = LSAME( DIAG, 'N' )
  173. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  174. INFO = -1
  175. ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.
  176. $ LSAME( TRANS, 'T' ) .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  177. INFO = -2
  178. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  179. INFO = -3
  180. ELSE IF( N.LT.0 ) THEN
  181. INFO = -4
  182. ELSE IF( NRHS.LT.0 ) THEN
  183. INFO = -5
  184. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  185. INFO = -8
  186. END IF
  187. IF( INFO.NE.0 ) THEN
  188. CALL XERBLA( 'DTPTRS', -INFO )
  189. RETURN
  190. END IF
  191. *
  192. * Quick return if possible
  193. *
  194. IF( N.EQ.0 )
  195. $ RETURN
  196. *
  197. * Check for singularity.
  198. *
  199. IF( NOUNIT ) THEN
  200. IF( UPPER ) THEN
  201. JC = 1
  202. DO 10 INFO = 1, N
  203. IF( AP( JC+INFO-1 ).EQ.ZERO )
  204. $ RETURN
  205. JC = JC + INFO
  206. 10 CONTINUE
  207. ELSE
  208. JC = 1
  209. DO 20 INFO = 1, N
  210. IF( AP( JC ).EQ.ZERO )
  211. $ RETURN
  212. JC = JC + N - INFO + 1
  213. 20 CONTINUE
  214. END IF
  215. END IF
  216. INFO = 0
  217. *
  218. * Solve A * x = b or A**T * x = b.
  219. *
  220. DO 30 J = 1, NRHS
  221. CALL DTPSV( UPLO, TRANS, DIAG, N, AP, B( 1, J ), 1 )
  222. 30 CONTINUE
  223. *
  224. RETURN
  225. *
  226. * End of DTPTRS
  227. *
  228. END