You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgghrd.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361
  1. *> \brief \b DGGHRD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGGHRD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgghrd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgghrd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgghrd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
  22. * LDQ, Z, LDZ, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER COMPQ, COMPZ
  26. * INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  30. * $ Z( LDZ, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DGGHRD reduces a pair of real matrices (A,B) to generalized upper
  40. *> Hessenberg form using orthogonal transformations, where A is a
  41. *> general matrix and B is upper triangular. The form of the
  42. *> generalized eigenvalue problem is
  43. *> A*x = lambda*B*x,
  44. *> and B is typically made upper triangular by computing its QR
  45. *> factorization and moving the orthogonal matrix Q to the left side
  46. *> of the equation.
  47. *>
  48. *> This subroutine simultaneously reduces A to a Hessenberg matrix H:
  49. *> Q**T*A*Z = H
  50. *> and transforms B to another upper triangular matrix T:
  51. *> Q**T*B*Z = T
  52. *> in order to reduce the problem to its standard form
  53. *> H*y = lambda*T*y
  54. *> where y = Z**T*x.
  55. *>
  56. *> The orthogonal matrices Q and Z are determined as products of Givens
  57. *> rotations. They may either be formed explicitly, or they may be
  58. *> postmultiplied into input matrices Q1 and Z1, so that
  59. *>
  60. *> Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T
  61. *>
  62. *> Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T
  63. *>
  64. *> If Q1 is the orthogonal matrix from the QR factorization of B in the
  65. *> original equation A*x = lambda*B*x, then DGGHRD reduces the original
  66. *> problem to generalized Hessenberg form.
  67. *> \endverbatim
  68. *
  69. * Arguments:
  70. * ==========
  71. *
  72. *> \param[in] COMPQ
  73. *> \verbatim
  74. *> COMPQ is CHARACTER*1
  75. *> = 'N': do not compute Q;
  76. *> = 'I': Q is initialized to the unit matrix, and the
  77. *> orthogonal matrix Q is returned;
  78. *> = 'V': Q must contain an orthogonal matrix Q1 on entry,
  79. *> and the product Q1*Q is returned.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] COMPZ
  83. *> \verbatim
  84. *> COMPZ is CHARACTER*1
  85. *> = 'N': do not compute Z;
  86. *> = 'I': Z is initialized to the unit matrix, and the
  87. *> orthogonal matrix Z is returned;
  88. *> = 'V': Z must contain an orthogonal matrix Z1 on entry,
  89. *> and the product Z1*Z is returned.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] N
  93. *> \verbatim
  94. *> N is INTEGER
  95. *> The order of the matrices A and B. N >= 0.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] ILO
  99. *> \verbatim
  100. *> ILO is INTEGER
  101. *> \endverbatim
  102. *>
  103. *> \param[in] IHI
  104. *> \verbatim
  105. *> IHI is INTEGER
  106. *>
  107. *> ILO and IHI mark the rows and columns of A which are to be
  108. *> reduced. It is assumed that A is already upper triangular
  109. *> in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are
  110. *> normally set by a previous call to DGGBAL; otherwise they
  111. *> should be set to 1 and N respectively.
  112. *> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
  113. *> \endverbatim
  114. *>
  115. *> \param[in,out] A
  116. *> \verbatim
  117. *> A is DOUBLE PRECISION array, dimension (LDA, N)
  118. *> On entry, the N-by-N general matrix to be reduced.
  119. *> On exit, the upper triangle and the first subdiagonal of A
  120. *> are overwritten with the upper Hessenberg matrix H, and the
  121. *> rest is set to zero.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDA
  125. *> \verbatim
  126. *> LDA is INTEGER
  127. *> The leading dimension of the array A. LDA >= max(1,N).
  128. *> \endverbatim
  129. *>
  130. *> \param[in,out] B
  131. *> \verbatim
  132. *> B is DOUBLE PRECISION array, dimension (LDB, N)
  133. *> On entry, the N-by-N upper triangular matrix B.
  134. *> On exit, the upper triangular matrix T = Q**T B Z. The
  135. *> elements below the diagonal are set to zero.
  136. *> \endverbatim
  137. *>
  138. *> \param[in] LDB
  139. *> \verbatim
  140. *> LDB is INTEGER
  141. *> The leading dimension of the array B. LDB >= max(1,N).
  142. *> \endverbatim
  143. *>
  144. *> \param[in,out] Q
  145. *> \verbatim
  146. *> Q is DOUBLE PRECISION array, dimension (LDQ, N)
  147. *> On entry, if COMPQ = 'V', the orthogonal matrix Q1,
  148. *> typically from the QR factorization of B.
  149. *> On exit, if COMPQ='I', the orthogonal matrix Q, and if
  150. *> COMPQ = 'V', the product Q1*Q.
  151. *> Not referenced if COMPQ='N'.
  152. *> \endverbatim
  153. *>
  154. *> \param[in] LDQ
  155. *> \verbatim
  156. *> LDQ is INTEGER
  157. *> The leading dimension of the array Q.
  158. *> LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
  159. *> \endverbatim
  160. *>
  161. *> \param[in,out] Z
  162. *> \verbatim
  163. *> Z is DOUBLE PRECISION array, dimension (LDZ, N)
  164. *> On entry, if COMPZ = 'V', the orthogonal matrix Z1.
  165. *> On exit, if COMPZ='I', the orthogonal matrix Z, and if
  166. *> COMPZ = 'V', the product Z1*Z.
  167. *> Not referenced if COMPZ='N'.
  168. *> \endverbatim
  169. *>
  170. *> \param[in] LDZ
  171. *> \verbatim
  172. *> LDZ is INTEGER
  173. *> The leading dimension of the array Z.
  174. *> LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
  175. *> \endverbatim
  176. *>
  177. *> \param[out] INFO
  178. *> \verbatim
  179. *> INFO is INTEGER
  180. *> = 0: successful exit.
  181. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  182. *> \endverbatim
  183. *
  184. * Authors:
  185. * ========
  186. *
  187. *> \author Univ. of Tennessee
  188. *> \author Univ. of California Berkeley
  189. *> \author Univ. of Colorado Denver
  190. *> \author NAG Ltd.
  191. *
  192. *> \date December 2016
  193. *
  194. *> \ingroup doubleOTHERcomputational
  195. *
  196. *> \par Further Details:
  197. * =====================
  198. *>
  199. *> \verbatim
  200. *>
  201. *> This routine reduces A to Hessenberg and B to triangular form by
  202. *> an unblocked reduction, as described in _Matrix_Computations_,
  203. *> by Golub and Van Loan (Johns Hopkins Press.)
  204. *> \endverbatim
  205. *>
  206. * =====================================================================
  207. SUBROUTINE DGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
  208. $ LDQ, Z, LDZ, INFO )
  209. *
  210. * -- LAPACK computational routine (version 3.7.0) --
  211. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  212. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  213. * December 2016
  214. *
  215. * .. Scalar Arguments ..
  216. CHARACTER COMPQ, COMPZ
  217. INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N
  218. * ..
  219. * .. Array Arguments ..
  220. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  221. $ Z( LDZ, * )
  222. * ..
  223. *
  224. * =====================================================================
  225. *
  226. * .. Parameters ..
  227. DOUBLE PRECISION ONE, ZERO
  228. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  229. * ..
  230. * .. Local Scalars ..
  231. LOGICAL ILQ, ILZ
  232. INTEGER ICOMPQ, ICOMPZ, JCOL, JROW
  233. DOUBLE PRECISION C, S, TEMP
  234. * ..
  235. * .. External Functions ..
  236. LOGICAL LSAME
  237. EXTERNAL LSAME
  238. * ..
  239. * .. External Subroutines ..
  240. EXTERNAL DLARTG, DLASET, DROT, XERBLA
  241. * ..
  242. * .. Intrinsic Functions ..
  243. INTRINSIC MAX
  244. * ..
  245. * .. Executable Statements ..
  246. *
  247. * Decode COMPQ
  248. *
  249. IF( LSAME( COMPQ, 'N' ) ) THEN
  250. ILQ = .FALSE.
  251. ICOMPQ = 1
  252. ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
  253. ILQ = .TRUE.
  254. ICOMPQ = 2
  255. ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
  256. ILQ = .TRUE.
  257. ICOMPQ = 3
  258. ELSE
  259. ICOMPQ = 0
  260. END IF
  261. *
  262. * Decode COMPZ
  263. *
  264. IF( LSAME( COMPZ, 'N' ) ) THEN
  265. ILZ = .FALSE.
  266. ICOMPZ = 1
  267. ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
  268. ILZ = .TRUE.
  269. ICOMPZ = 2
  270. ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
  271. ILZ = .TRUE.
  272. ICOMPZ = 3
  273. ELSE
  274. ICOMPZ = 0
  275. END IF
  276. *
  277. * Test the input parameters.
  278. *
  279. INFO = 0
  280. IF( ICOMPQ.LE.0 ) THEN
  281. INFO = -1
  282. ELSE IF( ICOMPZ.LE.0 ) THEN
  283. INFO = -2
  284. ELSE IF( N.LT.0 ) THEN
  285. INFO = -3
  286. ELSE IF( ILO.LT.1 ) THEN
  287. INFO = -4
  288. ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
  289. INFO = -5
  290. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  291. INFO = -7
  292. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  293. INFO = -9
  294. ELSE IF( ( ILQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
  295. INFO = -11
  296. ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
  297. INFO = -13
  298. END IF
  299. IF( INFO.NE.0 ) THEN
  300. CALL XERBLA( 'DGGHRD', -INFO )
  301. RETURN
  302. END IF
  303. *
  304. * Initialize Q and Z if desired.
  305. *
  306. IF( ICOMPQ.EQ.3 )
  307. $ CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
  308. IF( ICOMPZ.EQ.3 )
  309. $ CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
  310. *
  311. * Quick return if possible
  312. *
  313. IF( N.LE.1 )
  314. $ RETURN
  315. *
  316. * Zero out lower triangle of B
  317. *
  318. DO 20 JCOL = 1, N - 1
  319. DO 10 JROW = JCOL + 1, N
  320. B( JROW, JCOL ) = ZERO
  321. 10 CONTINUE
  322. 20 CONTINUE
  323. *
  324. * Reduce A and B
  325. *
  326. DO 40 JCOL = ILO, IHI - 2
  327. *
  328. DO 30 JROW = IHI, JCOL + 2, -1
  329. *
  330. * Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL)
  331. *
  332. TEMP = A( JROW-1, JCOL )
  333. CALL DLARTG( TEMP, A( JROW, JCOL ), C, S,
  334. $ A( JROW-1, JCOL ) )
  335. A( JROW, JCOL ) = ZERO
  336. CALL DROT( N-JCOL, A( JROW-1, JCOL+1 ), LDA,
  337. $ A( JROW, JCOL+1 ), LDA, C, S )
  338. CALL DROT( N+2-JROW, B( JROW-1, JROW-1 ), LDB,
  339. $ B( JROW, JROW-1 ), LDB, C, S )
  340. IF( ILQ )
  341. $ CALL DROT( N, Q( 1, JROW-1 ), 1, Q( 1, JROW ), 1, C, S )
  342. *
  343. * Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1)
  344. *
  345. TEMP = B( JROW, JROW )
  346. CALL DLARTG( TEMP, B( JROW, JROW-1 ), C, S,
  347. $ B( JROW, JROW ) )
  348. B( JROW, JROW-1 ) = ZERO
  349. CALL DROT( IHI, A( 1, JROW ), 1, A( 1, JROW-1 ), 1, C, S )
  350. CALL DROT( JROW-1, B( 1, JROW ), 1, B( 1, JROW-1 ), 1, C,
  351. $ S )
  352. IF( ILZ )
  353. $ CALL DROT( N, Z( 1, JROW ), 1, Z( 1, JROW-1 ), 1, C, S )
  354. 30 CONTINUE
  355. 40 CONTINUE
  356. *
  357. RETURN
  358. *
  359. * End of DGGHRD
  360. *
  361. END