|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280 |
- *> \brief \b CSPR performs the symmetrical rank-1 update of a complex symmetric packed matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CSPR + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cspr.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cspr.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cspr.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CSPR( UPLO, N, ALPHA, X, INCX, AP )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INCX, N
- * COMPLEX ALPHA
- * ..
- * .. Array Arguments ..
- * COMPLEX AP( * ), X( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CSPR performs the symmetric rank 1 operation
- *>
- *> A := alpha*x*x**H + A,
- *>
- *> where alpha is a complex scalar, x is an n element vector and A is an
- *> n by n symmetric matrix, supplied in packed form.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> On entry, UPLO specifies whether the upper or lower
- *> triangular part of the matrix A is supplied in the packed
- *> array AP as follows:
- *>
- *> UPLO = 'U' or 'u' The upper triangular part of A is
- *> supplied in AP.
- *>
- *> UPLO = 'L' or 'l' The lower triangular part of A is
- *> supplied in AP.
- *>
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the order of the matrix A.
- *> N must be at least zero.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is COMPLEX
- *> On entry, ALPHA specifies the scalar alpha.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is COMPLEX array, dimension at least
- *> ( 1 + ( N - 1 )*abs( INCX ) ).
- *> Before entry, the incremented array X must contain the N-
- *> element vector x.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> On entry, INCX specifies the increment for the elements of
- *> X. INCX must not be zero.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in,out] AP
- *> \verbatim
- *> AP is COMPLEX array, dimension at least
- *> ( ( N*( N + 1 ) )/2 ).
- *> Before entry, with UPLO = 'U' or 'u', the array AP must
- *> contain the upper triangular part of the symmetric matrix
- *> packed sequentially, column by column, so that AP( 1 )
- *> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
- *> and a( 2, 2 ) respectively, and so on. On exit, the array
- *> AP is overwritten by the upper triangular part of the
- *> updated matrix.
- *> Before entry, with UPLO = 'L' or 'l', the array AP must
- *> contain the lower triangular part of the symmetric matrix
- *> packed sequentially, column by column, so that AP( 1 )
- *> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
- *> and a( 3, 1 ) respectively, and so on. On exit, the array
- *> AP is overwritten by the lower triangular part of the
- *> updated matrix.
- *> Note that the imaginary parts of the diagonal elements need
- *> not be set, they are assumed to be zero, and on exit they
- *> are set to zero.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complexOTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE CSPR( UPLO, N, ALPHA, X, INCX, AP )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INCX, N
- COMPLEX ALPHA
- * ..
- * .. Array Arguments ..
- COMPLEX AP( * ), X( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ZERO
- PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, INFO, IX, J, JX, K, KK, KX
- COMPLEX TEMP
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = 1
- ELSE IF( N.LT.0 ) THEN
- INFO = 2
- ELSE IF( INCX.EQ.0 ) THEN
- INFO = 5
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CSPR ', INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( ( N.EQ.0 ) .OR. ( ALPHA.EQ.ZERO ) )
- $ RETURN
- *
- * Set the start point in X if the increment is not unity.
- *
- IF( INCX.LE.0 ) THEN
- KX = 1 - ( N-1 )*INCX
- ELSE IF( INCX.NE.1 ) THEN
- KX = 1
- END IF
- *
- * Start the operations. In this version the elements of the array AP
- * are accessed sequentially with one pass through AP.
- *
- KK = 1
- IF( LSAME( UPLO, 'U' ) ) THEN
- *
- * Form A when upper triangle is stored in AP.
- *
- IF( INCX.EQ.1 ) THEN
- DO 20 J = 1, N
- IF( X( J ).NE.ZERO ) THEN
- TEMP = ALPHA*X( J )
- K = KK
- DO 10 I = 1, J - 1
- AP( K ) = AP( K ) + X( I )*TEMP
- K = K + 1
- 10 CONTINUE
- AP( KK+J-1 ) = AP( KK+J-1 ) + X( J )*TEMP
- ELSE
- AP( KK+J-1 ) = AP( KK+J-1 )
- END IF
- KK = KK + J
- 20 CONTINUE
- ELSE
- JX = KX
- DO 40 J = 1, N
- IF( X( JX ).NE.ZERO ) THEN
- TEMP = ALPHA*X( JX )
- IX = KX
- DO 30 K = KK, KK + J - 2
- AP( K ) = AP( K ) + X( IX )*TEMP
- IX = IX + INCX
- 30 CONTINUE
- AP( KK+J-1 ) = AP( KK+J-1 ) + X( JX )*TEMP
- ELSE
- AP( KK+J-1 ) = AP( KK+J-1 )
- END IF
- JX = JX + INCX
- KK = KK + J
- 40 CONTINUE
- END IF
- ELSE
- *
- * Form A when lower triangle is stored in AP.
- *
- IF( INCX.EQ.1 ) THEN
- DO 60 J = 1, N
- IF( X( J ).NE.ZERO ) THEN
- TEMP = ALPHA*X( J )
- AP( KK ) = AP( KK ) + TEMP*X( J )
- K = KK + 1
- DO 50 I = J + 1, N
- AP( K ) = AP( K ) + X( I )*TEMP
- K = K + 1
- 50 CONTINUE
- ELSE
- AP( KK ) = AP( KK )
- END IF
- KK = KK + N - J + 1
- 60 CONTINUE
- ELSE
- JX = KX
- DO 80 J = 1, N
- IF( X( JX ).NE.ZERO ) THEN
- TEMP = ALPHA*X( JX )
- AP( KK ) = AP( KK ) + TEMP*X( JX )
- IX = JX
- DO 70 K = KK + 1, KK + N - J
- IX = IX + INCX
- AP( K ) = AP( K ) + X( IX )*TEMP
- 70 CONTINUE
- ELSE
- AP( KK ) = AP( KK )
- END IF
- JX = JX + INCX
- KK = KK + N - J + 1
- 80 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of CSPR
- *
- END
|