You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clarzt.f 8.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266
  1. *> \brief \b CLARZT forms the triangular factor T of a block reflector H = I - vtvH.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLARZT + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarzt.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarzt.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarzt.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER DIRECT, STOREV
  25. * INTEGER K, LDT, LDV, N
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX T( LDT, * ), TAU( * ), V( LDV, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CLARZT forms the triangular factor T of a complex block reflector
  38. *> H of order > n, which is defined as a product of k elementary
  39. *> reflectors.
  40. *>
  41. *> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
  42. *>
  43. *> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
  44. *>
  45. *> If STOREV = 'C', the vector which defines the elementary reflector
  46. *> H(i) is stored in the i-th column of the array V, and
  47. *>
  48. *> H = I - V * T * V**H
  49. *>
  50. *> If STOREV = 'R', the vector which defines the elementary reflector
  51. *> H(i) is stored in the i-th row of the array V, and
  52. *>
  53. *> H = I - V**H * T * V
  54. *>
  55. *> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
  56. *> \endverbatim
  57. *
  58. * Arguments:
  59. * ==========
  60. *
  61. *> \param[in] DIRECT
  62. *> \verbatim
  63. *> DIRECT is CHARACTER*1
  64. *> Specifies the order in which the elementary reflectors are
  65. *> multiplied to form the block reflector:
  66. *> = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
  67. *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
  68. *> \endverbatim
  69. *>
  70. *> \param[in] STOREV
  71. *> \verbatim
  72. *> STOREV is CHARACTER*1
  73. *> Specifies how the vectors which define the elementary
  74. *> reflectors are stored (see also Further Details):
  75. *> = 'C': columnwise (not supported yet)
  76. *> = 'R': rowwise
  77. *> \endverbatim
  78. *>
  79. *> \param[in] N
  80. *> \verbatim
  81. *> N is INTEGER
  82. *> The order of the block reflector H. N >= 0.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] K
  86. *> \verbatim
  87. *> K is INTEGER
  88. *> The order of the triangular factor T (= the number of
  89. *> elementary reflectors). K >= 1.
  90. *> \endverbatim
  91. *>
  92. *> \param[in,out] V
  93. *> \verbatim
  94. *> V is COMPLEX array, dimension
  95. *> (LDV,K) if STOREV = 'C'
  96. *> (LDV,N) if STOREV = 'R'
  97. *> The matrix V. See further details.
  98. *> \endverbatim
  99. *>
  100. *> \param[in] LDV
  101. *> \verbatim
  102. *> LDV is INTEGER
  103. *> The leading dimension of the array V.
  104. *> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] TAU
  108. *> \verbatim
  109. *> TAU is COMPLEX array, dimension (K)
  110. *> TAU(i) must contain the scalar factor of the elementary
  111. *> reflector H(i).
  112. *> \endverbatim
  113. *>
  114. *> \param[out] T
  115. *> \verbatim
  116. *> T is COMPLEX array, dimension (LDT,K)
  117. *> The k by k triangular factor T of the block reflector.
  118. *> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
  119. *> lower triangular. The rest of the array is not used.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] LDT
  123. *> \verbatim
  124. *> LDT is INTEGER
  125. *> The leading dimension of the array T. LDT >= K.
  126. *> \endverbatim
  127. *
  128. * Authors:
  129. * ========
  130. *
  131. *> \author Univ. of Tennessee
  132. *> \author Univ. of California Berkeley
  133. *> \author Univ. of Colorado Denver
  134. *> \author NAG Ltd.
  135. *
  136. *> \date December 2016
  137. *
  138. *> \ingroup complexOTHERcomputational
  139. *
  140. *> \par Contributors:
  141. * ==================
  142. *>
  143. *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  144. *
  145. *> \par Further Details:
  146. * =====================
  147. *>
  148. *> \verbatim
  149. *>
  150. *> The shape of the matrix V and the storage of the vectors which define
  151. *> the H(i) is best illustrated by the following example with n = 5 and
  152. *> k = 3. The elements equal to 1 are not stored; the corresponding
  153. *> array elements are modified but restored on exit. The rest of the
  154. *> array is not used.
  155. *>
  156. *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
  157. *>
  158. *> ______V_____
  159. *> ( v1 v2 v3 ) / \
  160. *> ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 )
  161. *> V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 )
  162. *> ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 )
  163. *> ( v1 v2 v3 )
  164. *> . . .
  165. *> . . .
  166. *> 1 . .
  167. *> 1 .
  168. *> 1
  169. *>
  170. *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
  171. *>
  172. *> ______V_____
  173. *> 1 / \
  174. *> . 1 ( 1 . . . . v1 v1 v1 v1 v1 )
  175. *> . . 1 ( . 1 . . . v2 v2 v2 v2 v2 )
  176. *> . . . ( . . 1 . . v3 v3 v3 v3 v3 )
  177. *> . . .
  178. *> ( v1 v2 v3 )
  179. *> ( v1 v2 v3 )
  180. *> V = ( v1 v2 v3 )
  181. *> ( v1 v2 v3 )
  182. *> ( v1 v2 v3 )
  183. *> \endverbatim
  184. *>
  185. * =====================================================================
  186. SUBROUTINE CLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
  187. *
  188. * -- LAPACK computational routine (version 3.7.0) --
  189. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  190. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  191. * December 2016
  192. *
  193. * .. Scalar Arguments ..
  194. CHARACTER DIRECT, STOREV
  195. INTEGER K, LDT, LDV, N
  196. * ..
  197. * .. Array Arguments ..
  198. COMPLEX T( LDT, * ), TAU( * ), V( LDV, * )
  199. * ..
  200. *
  201. * =====================================================================
  202. *
  203. * .. Parameters ..
  204. COMPLEX ZERO
  205. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  206. * ..
  207. * .. Local Scalars ..
  208. INTEGER I, INFO, J
  209. * ..
  210. * .. External Subroutines ..
  211. EXTERNAL CGEMV, CLACGV, CTRMV, XERBLA
  212. * ..
  213. * .. External Functions ..
  214. LOGICAL LSAME
  215. EXTERNAL LSAME
  216. * ..
  217. * .. Executable Statements ..
  218. *
  219. * Check for currently supported options
  220. *
  221. INFO = 0
  222. IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
  223. INFO = -1
  224. ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
  225. INFO = -2
  226. END IF
  227. IF( INFO.NE.0 ) THEN
  228. CALL XERBLA( 'CLARZT', -INFO )
  229. RETURN
  230. END IF
  231. *
  232. DO 20 I = K, 1, -1
  233. IF( TAU( I ).EQ.ZERO ) THEN
  234. *
  235. * H(i) = I
  236. *
  237. DO 10 J = I, K
  238. T( J, I ) = ZERO
  239. 10 CONTINUE
  240. ELSE
  241. *
  242. * general case
  243. *
  244. IF( I.LT.K ) THEN
  245. *
  246. * T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)**H
  247. *
  248. CALL CLACGV( N, V( I, 1 ), LDV )
  249. CALL CGEMV( 'No transpose', K-I, N, -TAU( I ),
  250. $ V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO,
  251. $ T( I+1, I ), 1 )
  252. CALL CLACGV( N, V( I, 1 ), LDV )
  253. *
  254. * T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i)
  255. *
  256. CALL CTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
  257. $ T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
  258. END IF
  259. T( I, I ) = TAU( I )
  260. END IF
  261. 20 CONTINUE
  262. RETURN
  263. *
  264. * End of CLARZT
  265. *
  266. END