You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clahqr.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570
  1. *> \brief \b CLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLAHQR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahqr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahqr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahqr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
  22. * IHIZ, Z, LDZ, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
  26. * LOGICAL WANTT, WANTZ
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX H( LDH, * ), W( * ), Z( LDZ, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CLAHQR is an auxiliary routine called by CHSEQR to update the
  39. *> eigenvalues and Schur decomposition already computed by CHSEQR, by
  40. *> dealing with the Hessenberg submatrix in rows and columns ILO to
  41. *> IHI.
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] WANTT
  48. *> \verbatim
  49. *> WANTT is LOGICAL
  50. *> = .TRUE. : the full Schur form T is required;
  51. *> = .FALSE.: only eigenvalues are required.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] WANTZ
  55. *> \verbatim
  56. *> WANTZ is LOGICAL
  57. *> = .TRUE. : the matrix of Schur vectors Z is required;
  58. *> = .FALSE.: Schur vectors are not required.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The order of the matrix H. N >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] ILO
  68. *> \verbatim
  69. *> ILO is INTEGER
  70. *> \endverbatim
  71. *>
  72. *> \param[in] IHI
  73. *> \verbatim
  74. *> IHI is INTEGER
  75. *> It is assumed that H is already upper triangular in rows and
  76. *> columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1).
  77. *> CLAHQR works primarily with the Hessenberg submatrix in rows
  78. *> and columns ILO to IHI, but applies transformations to all of
  79. *> H if WANTT is .TRUE..
  80. *> 1 <= ILO <= max(1,IHI); IHI <= N.
  81. *> \endverbatim
  82. *>
  83. *> \param[in,out] H
  84. *> \verbatim
  85. *> H is COMPLEX array, dimension (LDH,N)
  86. *> On entry, the upper Hessenberg matrix H.
  87. *> On exit, if INFO is zero and if WANTT is .TRUE., then H
  88. *> is upper triangular in rows and columns ILO:IHI. If INFO
  89. *> is zero and if WANTT is .FALSE., then the contents of H
  90. *> are unspecified on exit. The output state of H in case
  91. *> INF is positive is below under the description of INFO.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LDH
  95. *> \verbatim
  96. *> LDH is INTEGER
  97. *> The leading dimension of the array H. LDH >= max(1,N).
  98. *> \endverbatim
  99. *>
  100. *> \param[out] W
  101. *> \verbatim
  102. *> W is COMPLEX array, dimension (N)
  103. *> The computed eigenvalues ILO to IHI are stored in the
  104. *> corresponding elements of W. If WANTT is .TRUE., the
  105. *> eigenvalues are stored in the same order as on the diagonal
  106. *> of the Schur form returned in H, with W(i) = H(i,i).
  107. *> \endverbatim
  108. *>
  109. *> \param[in] ILOZ
  110. *> \verbatim
  111. *> ILOZ is INTEGER
  112. *> \endverbatim
  113. *>
  114. *> \param[in] IHIZ
  115. *> \verbatim
  116. *> IHIZ is INTEGER
  117. *> Specify the rows of Z to which transformations must be
  118. *> applied if WANTZ is .TRUE..
  119. *> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
  120. *> \endverbatim
  121. *>
  122. *> \param[in,out] Z
  123. *> \verbatim
  124. *> Z is COMPLEX array, dimension (LDZ,N)
  125. *> If WANTZ is .TRUE., on entry Z must contain the current
  126. *> matrix Z of transformations accumulated by CHSEQR, and on
  127. *> exit Z has been updated; transformations are applied only to
  128. *> the submatrix Z(ILOZ:IHIZ,ILO:IHI).
  129. *> If WANTZ is .FALSE., Z is not referenced.
  130. *> \endverbatim
  131. *>
  132. *> \param[in] LDZ
  133. *> \verbatim
  134. *> LDZ is INTEGER
  135. *> The leading dimension of the array Z. LDZ >= max(1,N).
  136. *> \endverbatim
  137. *>
  138. *> \param[out] INFO
  139. *> \verbatim
  140. *> INFO is INTEGER
  141. *> = 0: successful exit
  142. *> > 0: if INFO = i, CLAHQR failed to compute all the
  143. *> eigenvalues ILO to IHI in a total of 30 iterations
  144. *> per eigenvalue; elements i+1:ihi of W contain
  145. *> those eigenvalues which have been successfully
  146. *> computed.
  147. *>
  148. *> If INFO > 0 and WANTT is .FALSE., then on exit,
  149. *> the remaining unconverged eigenvalues are the
  150. *> eigenvalues of the upper Hessenberg matrix
  151. *> rows and columns ILO through INFO of the final,
  152. *> output value of H.
  153. *>
  154. *> If INFO > 0 and WANTT is .TRUE., then on exit
  155. *> (*) (initial value of H)*U = U*(final value of H)
  156. *> where U is an orthogonal matrix. The final
  157. *> value of H is upper Hessenberg and triangular in
  158. *> rows and columns INFO+1 through IHI.
  159. *>
  160. *> If INFO > 0 and WANTZ is .TRUE., then on exit
  161. *> (final value of Z) = (initial value of Z)*U
  162. *> where U is the orthogonal matrix in (*)
  163. *> (regardless of the value of WANTT.)
  164. *> \endverbatim
  165. *
  166. * Authors:
  167. * ========
  168. *
  169. *> \author Univ. of Tennessee
  170. *> \author Univ. of California Berkeley
  171. *> \author Univ. of Colorado Denver
  172. *> \author NAG Ltd.
  173. *
  174. *> \date December 2016
  175. *
  176. *> \ingroup complexOTHERauxiliary
  177. *
  178. *> \par Contributors:
  179. * ==================
  180. *>
  181. *> \verbatim
  182. *>
  183. *> 02-96 Based on modifications by
  184. *> David Day, Sandia National Laboratory, USA
  185. *>
  186. *> 12-04 Further modifications by
  187. *> Ralph Byers, University of Kansas, USA
  188. *> This is a modified version of CLAHQR from LAPACK version 3.0.
  189. *> It is (1) more robust against overflow and underflow and
  190. *> (2) adopts the more conservative Ahues & Tisseur stopping
  191. *> criterion (LAWN 122, 1997).
  192. *> \endverbatim
  193. *>
  194. * =====================================================================
  195. SUBROUTINE CLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
  196. $ IHIZ, Z, LDZ, INFO )
  197. *
  198. * -- LAPACK auxiliary routine (version 3.7.0) --
  199. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  200. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  201. * December 2016
  202. *
  203. * .. Scalar Arguments ..
  204. INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
  205. LOGICAL WANTT, WANTZ
  206. * ..
  207. * .. Array Arguments ..
  208. COMPLEX H( LDH, * ), W( * ), Z( LDZ, * )
  209. * ..
  210. *
  211. * =========================================================
  212. *
  213. * .. Parameters ..
  214. COMPLEX ZERO, ONE
  215. PARAMETER ( ZERO = ( 0.0e0, 0.0e0 ),
  216. $ ONE = ( 1.0e0, 0.0e0 ) )
  217. REAL RZERO, RONE, HALF
  218. PARAMETER ( RZERO = 0.0e0, RONE = 1.0e0, HALF = 0.5e0 )
  219. REAL DAT1
  220. PARAMETER ( DAT1 = 3.0e0 / 4.0e0 )
  221. * ..
  222. * .. Local Scalars ..
  223. COMPLEX CDUM, H11, H11S, H22, SC, SUM, T, T1, TEMP, U,
  224. $ V2, X, Y
  225. REAL AA, AB, BA, BB, H10, H21, RTEMP, S, SAFMAX,
  226. $ SAFMIN, SMLNUM, SX, T2, TST, ULP
  227. INTEGER I, I1, I2, ITS, ITMAX, J, JHI, JLO, K, L, M,
  228. $ NH, NZ
  229. * ..
  230. * .. Local Arrays ..
  231. COMPLEX V( 2 )
  232. * ..
  233. * .. External Functions ..
  234. COMPLEX CLADIV
  235. REAL SLAMCH
  236. EXTERNAL CLADIV, SLAMCH
  237. * ..
  238. * .. External Subroutines ..
  239. EXTERNAL CCOPY, CLARFG, CSCAL, SLABAD
  240. * ..
  241. * .. Statement Functions ..
  242. REAL CABS1
  243. * ..
  244. * .. Intrinsic Functions ..
  245. INTRINSIC ABS, AIMAG, CONJG, MAX, MIN, REAL, SQRT
  246. * ..
  247. * .. Statement Function definitions ..
  248. CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
  249. * ..
  250. * .. Executable Statements ..
  251. *
  252. INFO = 0
  253. *
  254. * Quick return if possible
  255. *
  256. IF( N.EQ.0 )
  257. $ RETURN
  258. IF( ILO.EQ.IHI ) THEN
  259. W( ILO ) = H( ILO, ILO )
  260. RETURN
  261. END IF
  262. *
  263. * ==== clear out the trash ====
  264. DO 10 J = ILO, IHI - 3
  265. H( J+2, J ) = ZERO
  266. H( J+3, J ) = ZERO
  267. 10 CONTINUE
  268. IF( ILO.LE.IHI-2 )
  269. $ H( IHI, IHI-2 ) = ZERO
  270. * ==== ensure that subdiagonal entries are real ====
  271. IF( WANTT ) THEN
  272. JLO = 1
  273. JHI = N
  274. ELSE
  275. JLO = ILO
  276. JHI = IHI
  277. END IF
  278. DO 20 I = ILO + 1, IHI
  279. IF( AIMAG( H( I, I-1 ) ).NE.RZERO ) THEN
  280. * ==== The following redundant normalization
  281. * . avoids problems with both gradual and
  282. * . sudden underflow in ABS(H(I,I-1)) ====
  283. SC = H( I, I-1 ) / CABS1( H( I, I-1 ) )
  284. SC = CONJG( SC ) / ABS( SC )
  285. H( I, I-1 ) = ABS( H( I, I-1 ) )
  286. CALL CSCAL( JHI-I+1, SC, H( I, I ), LDH )
  287. CALL CSCAL( MIN( JHI, I+1 )-JLO+1, CONJG( SC ), H( JLO, I ),
  288. $ 1 )
  289. IF( WANTZ )
  290. $ CALL CSCAL( IHIZ-ILOZ+1, CONJG( SC ), Z( ILOZ, I ), 1 )
  291. END IF
  292. 20 CONTINUE
  293. *
  294. NH = IHI - ILO + 1
  295. NZ = IHIZ - ILOZ + 1
  296. *
  297. * Set machine-dependent constants for the stopping criterion.
  298. *
  299. SAFMIN = SLAMCH( 'SAFE MINIMUM' )
  300. SAFMAX = RONE / SAFMIN
  301. CALL SLABAD( SAFMIN, SAFMAX )
  302. ULP = SLAMCH( 'PRECISION' )
  303. SMLNUM = SAFMIN*( REAL( NH ) / ULP )
  304. *
  305. * I1 and I2 are the indices of the first row and last column of H
  306. * to which transformations must be applied. If eigenvalues only are
  307. * being computed, I1 and I2 are set inside the main loop.
  308. *
  309. IF( WANTT ) THEN
  310. I1 = 1
  311. I2 = N
  312. END IF
  313. *
  314. * ITMAX is the total number of QR iterations allowed.
  315. *
  316. ITMAX = 30 * MAX( 10, NH )
  317. *
  318. * The main loop begins here. I is the loop index and decreases from
  319. * IHI to ILO in steps of 1. Each iteration of the loop works
  320. * with the active submatrix in rows and columns L to I.
  321. * Eigenvalues I+1 to IHI have already converged. Either L = ILO, or
  322. * H(L,L-1) is negligible so that the matrix splits.
  323. *
  324. I = IHI
  325. 30 CONTINUE
  326. IF( I.LT.ILO )
  327. $ GO TO 150
  328. *
  329. * Perform QR iterations on rows and columns ILO to I until a
  330. * submatrix of order 1 splits off at the bottom because a
  331. * subdiagonal element has become negligible.
  332. *
  333. L = ILO
  334. DO 130 ITS = 0, ITMAX
  335. *
  336. * Look for a single small subdiagonal element.
  337. *
  338. DO 40 K = I, L + 1, -1
  339. IF( CABS1( H( K, K-1 ) ).LE.SMLNUM )
  340. $ GO TO 50
  341. TST = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) )
  342. IF( TST.EQ.ZERO ) THEN
  343. IF( K-2.GE.ILO )
  344. $ TST = TST + ABS( REAL( H( K-1, K-2 ) ) )
  345. IF( K+1.LE.IHI )
  346. $ TST = TST + ABS( REAL( H( K+1, K ) ) )
  347. END IF
  348. * ==== The following is a conservative small subdiagonal
  349. * . deflation criterion due to Ahues & Tisseur (LAWN 122,
  350. * . 1997). It has better mathematical foundation and
  351. * . improves accuracy in some examples. ====
  352. IF( ABS( REAL( H( K, K-1 ) ) ).LE.ULP*TST ) THEN
  353. AB = MAX( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) )
  354. BA = MIN( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) )
  355. AA = MAX( CABS1( H( K, K ) ),
  356. $ CABS1( H( K-1, K-1 )-H( K, K ) ) )
  357. BB = MIN( CABS1( H( K, K ) ),
  358. $ CABS1( H( K-1, K-1 )-H( K, K ) ) )
  359. S = AA + AB
  360. IF( BA*( AB / S ).LE.MAX( SMLNUM,
  361. $ ULP*( BB*( AA / S ) ) ) )GO TO 50
  362. END IF
  363. 40 CONTINUE
  364. 50 CONTINUE
  365. L = K
  366. IF( L.GT.ILO ) THEN
  367. *
  368. * H(L,L-1) is negligible
  369. *
  370. H( L, L-1 ) = ZERO
  371. END IF
  372. *
  373. * Exit from loop if a submatrix of order 1 has split off.
  374. *
  375. IF( L.GE.I )
  376. $ GO TO 140
  377. *
  378. * Now the active submatrix is in rows and columns L to I. If
  379. * eigenvalues only are being computed, only the active submatrix
  380. * need be transformed.
  381. *
  382. IF( .NOT.WANTT ) THEN
  383. I1 = L
  384. I2 = I
  385. END IF
  386. *
  387. IF( ITS.EQ.10 ) THEN
  388. *
  389. * Exceptional shift.
  390. *
  391. S = DAT1*ABS( REAL( H( L+1, L ) ) )
  392. T = S + H( L, L )
  393. ELSE IF( ITS.EQ.20 ) THEN
  394. *
  395. * Exceptional shift.
  396. *
  397. S = DAT1*ABS( REAL( H( I, I-1 ) ) )
  398. T = S + H( I, I )
  399. ELSE
  400. *
  401. * Wilkinson's shift.
  402. *
  403. T = H( I, I )
  404. U = SQRT( H( I-1, I ) )*SQRT( H( I, I-1 ) )
  405. S = CABS1( U )
  406. IF( S.NE.RZERO ) THEN
  407. X = HALF*( H( I-1, I-1 )-T )
  408. SX = CABS1( X )
  409. S = MAX( S, CABS1( X ) )
  410. Y = S*SQRT( ( X / S )**2+( U / S )**2 )
  411. IF( SX.GT.RZERO ) THEN
  412. IF( REAL( X / SX )*REAL( Y )+AIMAG( X / SX )*
  413. $ AIMAG( Y ).LT.RZERO )Y = -Y
  414. END IF
  415. T = T - U*CLADIV( U, ( X+Y ) )
  416. END IF
  417. END IF
  418. *
  419. * Look for two consecutive small subdiagonal elements.
  420. *
  421. DO 60 M = I - 1, L + 1, -1
  422. *
  423. * Determine the effect of starting the single-shift QR
  424. * iteration at row M, and see if this would make H(M,M-1)
  425. * negligible.
  426. *
  427. H11 = H( M, M )
  428. H22 = H( M+1, M+1 )
  429. H11S = H11 - T
  430. H21 = REAL( H( M+1, M ) )
  431. S = CABS1( H11S ) + ABS( H21 )
  432. H11S = H11S / S
  433. H21 = H21 / S
  434. V( 1 ) = H11S
  435. V( 2 ) = H21
  436. H10 = REAL( H( M, M-1 ) )
  437. IF( ABS( H10 )*ABS( H21 ).LE.ULP*
  438. $ ( CABS1( H11S )*( CABS1( H11 )+CABS1( H22 ) ) ) )
  439. $ GO TO 70
  440. 60 CONTINUE
  441. H11 = H( L, L )
  442. H22 = H( L+1, L+1 )
  443. H11S = H11 - T
  444. H21 = REAL( H( L+1, L ) )
  445. S = CABS1( H11S ) + ABS( H21 )
  446. H11S = H11S / S
  447. H21 = H21 / S
  448. V( 1 ) = H11S
  449. V( 2 ) = H21
  450. 70 CONTINUE
  451. *
  452. * Single-shift QR step
  453. *
  454. DO 120 K = M, I - 1
  455. *
  456. * The first iteration of this loop determines a reflection G
  457. * from the vector V and applies it from left and right to H,
  458. * thus creating a nonzero bulge below the subdiagonal.
  459. *
  460. * Each subsequent iteration determines a reflection G to
  461. * restore the Hessenberg form in the (K-1)th column, and thus
  462. * chases the bulge one step toward the bottom of the active
  463. * submatrix.
  464. *
  465. * V(2) is always real before the call to CLARFG, and hence
  466. * after the call T2 ( = T1*V(2) ) is also real.
  467. *
  468. IF( K.GT.M )
  469. $ CALL CCOPY( 2, H( K, K-1 ), 1, V, 1 )
  470. CALL CLARFG( 2, V( 1 ), V( 2 ), 1, T1 )
  471. IF( K.GT.M ) THEN
  472. H( K, K-1 ) = V( 1 )
  473. H( K+1, K-1 ) = ZERO
  474. END IF
  475. V2 = V( 2 )
  476. T2 = REAL( T1*V2 )
  477. *
  478. * Apply G from the left to transform the rows of the matrix
  479. * in columns K to I2.
  480. *
  481. DO 80 J = K, I2
  482. SUM = CONJG( T1 )*H( K, J ) + T2*H( K+1, J )
  483. H( K, J ) = H( K, J ) - SUM
  484. H( K+1, J ) = H( K+1, J ) - SUM*V2
  485. 80 CONTINUE
  486. *
  487. * Apply G from the right to transform the columns of the
  488. * matrix in rows I1 to min(K+2,I).
  489. *
  490. DO 90 J = I1, MIN( K+2, I )
  491. SUM = T1*H( J, K ) + T2*H( J, K+1 )
  492. H( J, K ) = H( J, K ) - SUM
  493. H( J, K+1 ) = H( J, K+1 ) - SUM*CONJG( V2 )
  494. 90 CONTINUE
  495. *
  496. IF( WANTZ ) THEN
  497. *
  498. * Accumulate transformations in the matrix Z
  499. *
  500. DO 100 J = ILOZ, IHIZ
  501. SUM = T1*Z( J, K ) + T2*Z( J, K+1 )
  502. Z( J, K ) = Z( J, K ) - SUM
  503. Z( J, K+1 ) = Z( J, K+1 ) - SUM*CONJG( V2 )
  504. 100 CONTINUE
  505. END IF
  506. *
  507. IF( K.EQ.M .AND. M.GT.L ) THEN
  508. *
  509. * If the QR step was started at row M > L because two
  510. * consecutive small subdiagonals were found, then extra
  511. * scaling must be performed to ensure that H(M,M-1) remains
  512. * real.
  513. *
  514. TEMP = ONE - T1
  515. TEMP = TEMP / ABS( TEMP )
  516. H( M+1, M ) = H( M+1, M )*CONJG( TEMP )
  517. IF( M+2.LE.I )
  518. $ H( M+2, M+1 ) = H( M+2, M+1 )*TEMP
  519. DO 110 J = M, I
  520. IF( J.NE.M+1 ) THEN
  521. IF( I2.GT.J )
  522. $ CALL CSCAL( I2-J, TEMP, H( J, J+1 ), LDH )
  523. CALL CSCAL( J-I1, CONJG( TEMP ), H( I1, J ), 1 )
  524. IF( WANTZ ) THEN
  525. CALL CSCAL( NZ, CONJG( TEMP ), Z( ILOZ, J ), 1 )
  526. END IF
  527. END IF
  528. 110 CONTINUE
  529. END IF
  530. 120 CONTINUE
  531. *
  532. * Ensure that H(I,I-1) is real.
  533. *
  534. TEMP = H( I, I-1 )
  535. IF( AIMAG( TEMP ).NE.RZERO ) THEN
  536. RTEMP = ABS( TEMP )
  537. H( I, I-1 ) = RTEMP
  538. TEMP = TEMP / RTEMP
  539. IF( I2.GT.I )
  540. $ CALL CSCAL( I2-I, CONJG( TEMP ), H( I, I+1 ), LDH )
  541. CALL CSCAL( I-I1, TEMP, H( I1, I ), 1 )
  542. IF( WANTZ ) THEN
  543. CALL CSCAL( NZ, TEMP, Z( ILOZ, I ), 1 )
  544. END IF
  545. END IF
  546. *
  547. 130 CONTINUE
  548. *
  549. * Failure to converge in remaining number of iterations
  550. *
  551. INFO = I
  552. RETURN
  553. *
  554. 140 CONTINUE
  555. *
  556. * H(I,I-1) is negligible: one eigenvalue has converged.
  557. *
  558. W( I ) = H( I, I )
  559. *
  560. * return to start of the main loop with new value of I.
  561. *
  562. I = L - 1
  563. GO TO 30
  564. *
  565. 150 CONTINUE
  566. RETURN
  567. *
  568. * End of CLAHQR
  569. *
  570. END