You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssyr2.f 8.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298
  1. *> \brief \b SSYR2
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE SSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
  12. *
  13. * .. Scalar Arguments ..
  14. * REAL ALPHA
  15. * INTEGER INCX,INCY,LDA,N
  16. * CHARACTER UPLO
  17. * ..
  18. * .. Array Arguments ..
  19. * REAL A(LDA,*),X(*),Y(*)
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> SSYR2 performs the symmetric rank 2 operation
  29. *>
  30. *> A := alpha*x*y**T + alpha*y*x**T + A,
  31. *>
  32. *> where alpha is a scalar, x and y are n element vectors and A is an n
  33. *> by n symmetric matrix.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] UPLO
  40. *> \verbatim
  41. *> UPLO is CHARACTER*1
  42. *> On entry, UPLO specifies whether the upper or lower
  43. *> triangular part of the array A is to be referenced as
  44. *> follows:
  45. *>
  46. *> UPLO = 'U' or 'u' Only the upper triangular part of A
  47. *> is to be referenced.
  48. *>
  49. *> UPLO = 'L' or 'l' Only the lower triangular part of A
  50. *> is to be referenced.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] N
  54. *> \verbatim
  55. *> N is INTEGER
  56. *> On entry, N specifies the order of the matrix A.
  57. *> N must be at least zero.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] ALPHA
  61. *> \verbatim
  62. *> ALPHA is REAL
  63. *> On entry, ALPHA specifies the scalar alpha.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] X
  67. *> \verbatim
  68. *> X is REAL array, dimension at least
  69. *> ( 1 + ( n - 1 )*abs( INCX ) ).
  70. *> Before entry, the incremented array X must contain the n
  71. *> element vector x.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] INCX
  75. *> \verbatim
  76. *> INCX is INTEGER
  77. *> On entry, INCX specifies the increment for the elements of
  78. *> X. INCX must not be zero.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] Y
  82. *> \verbatim
  83. *> Y is REAL array, dimension at least
  84. *> ( 1 + ( n - 1 )*abs( INCY ) ).
  85. *> Before entry, the incremented array Y must contain the n
  86. *> element vector y.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] INCY
  90. *> \verbatim
  91. *> INCY is INTEGER
  92. *> On entry, INCY specifies the increment for the elements of
  93. *> Y. INCY must not be zero.
  94. *> \endverbatim
  95. *>
  96. *> \param[in,out] A
  97. *> \verbatim
  98. *> A is REAL array, dimension ( LDA, N )
  99. *> Before entry with UPLO = 'U' or 'u', the leading n by n
  100. *> upper triangular part of the array A must contain the upper
  101. *> triangular part of the symmetric matrix and the strictly
  102. *> lower triangular part of A is not referenced. On exit, the
  103. *> upper triangular part of the array A is overwritten by the
  104. *> upper triangular part of the updated matrix.
  105. *> Before entry with UPLO = 'L' or 'l', the leading n by n
  106. *> lower triangular part of the array A must contain the lower
  107. *> triangular part of the symmetric matrix and the strictly
  108. *> upper triangular part of A is not referenced. On exit, the
  109. *> lower triangular part of the array A is overwritten by the
  110. *> lower triangular part of the updated matrix.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] LDA
  114. *> \verbatim
  115. *> LDA is INTEGER
  116. *> On entry, LDA specifies the first dimension of A as declared
  117. *> in the calling (sub) program. LDA must be at least
  118. *> max( 1, n ).
  119. *> \endverbatim
  120. *
  121. * Authors:
  122. * ========
  123. *
  124. *> \author Univ. of Tennessee
  125. *> \author Univ. of California Berkeley
  126. *> \author Univ. of Colorado Denver
  127. *> \author NAG Ltd.
  128. *
  129. *> \date December 2016
  130. *
  131. *> \ingroup single_blas_level2
  132. *
  133. *> \par Further Details:
  134. * =====================
  135. *>
  136. *> \verbatim
  137. *>
  138. *> Level 2 Blas routine.
  139. *>
  140. *> -- Written on 22-October-1986.
  141. *> Jack Dongarra, Argonne National Lab.
  142. *> Jeremy Du Croz, Nag Central Office.
  143. *> Sven Hammarling, Nag Central Office.
  144. *> Richard Hanson, Sandia National Labs.
  145. *> \endverbatim
  146. *>
  147. * =====================================================================
  148. SUBROUTINE SSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
  149. *
  150. * -- Reference BLAS level2 routine (version 3.7.0) --
  151. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  152. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  153. * December 2016
  154. *
  155. * .. Scalar Arguments ..
  156. REAL ALPHA
  157. INTEGER INCX,INCY,LDA,N
  158. CHARACTER UPLO
  159. * ..
  160. * .. Array Arguments ..
  161. REAL A(LDA,*),X(*),Y(*)
  162. * ..
  163. *
  164. * =====================================================================
  165. *
  166. * .. Parameters ..
  167. REAL ZERO
  168. PARAMETER (ZERO=0.0E+0)
  169. * ..
  170. * .. Local Scalars ..
  171. REAL TEMP1,TEMP2
  172. INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
  173. * ..
  174. * .. External Functions ..
  175. LOGICAL LSAME
  176. EXTERNAL LSAME
  177. * ..
  178. * .. External Subroutines ..
  179. EXTERNAL XERBLA
  180. * ..
  181. * .. Intrinsic Functions ..
  182. INTRINSIC MAX
  183. * ..
  184. *
  185. * Test the input parameters.
  186. *
  187. INFO = 0
  188. IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  189. INFO = 1
  190. ELSE IF (N.LT.0) THEN
  191. INFO = 2
  192. ELSE IF (INCX.EQ.0) THEN
  193. INFO = 5
  194. ELSE IF (INCY.EQ.0) THEN
  195. INFO = 7
  196. ELSE IF (LDA.LT.MAX(1,N)) THEN
  197. INFO = 9
  198. END IF
  199. IF (INFO.NE.0) THEN
  200. CALL XERBLA('SSYR2 ',INFO)
  201. RETURN
  202. END IF
  203. *
  204. * Quick return if possible.
  205. *
  206. IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
  207. *
  208. * Set up the start points in X and Y if the increments are not both
  209. * unity.
  210. *
  211. IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
  212. IF (INCX.GT.0) THEN
  213. KX = 1
  214. ELSE
  215. KX = 1 - (N-1)*INCX
  216. END IF
  217. IF (INCY.GT.0) THEN
  218. KY = 1
  219. ELSE
  220. KY = 1 - (N-1)*INCY
  221. END IF
  222. JX = KX
  223. JY = KY
  224. END IF
  225. *
  226. * Start the operations. In this version the elements of A are
  227. * accessed sequentially with one pass through the triangular part
  228. * of A.
  229. *
  230. IF (LSAME(UPLO,'U')) THEN
  231. *
  232. * Form A when A is stored in the upper triangle.
  233. *
  234. IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  235. DO 20 J = 1,N
  236. IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
  237. TEMP1 = ALPHA*Y(J)
  238. TEMP2 = ALPHA*X(J)
  239. DO 10 I = 1,J
  240. A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
  241. 10 CONTINUE
  242. END IF
  243. 20 CONTINUE
  244. ELSE
  245. DO 40 J = 1,N
  246. IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
  247. TEMP1 = ALPHA*Y(JY)
  248. TEMP2 = ALPHA*X(JX)
  249. IX = KX
  250. IY = KY
  251. DO 30 I = 1,J
  252. A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
  253. IX = IX + INCX
  254. IY = IY + INCY
  255. 30 CONTINUE
  256. END IF
  257. JX = JX + INCX
  258. JY = JY + INCY
  259. 40 CONTINUE
  260. END IF
  261. ELSE
  262. *
  263. * Form A when A is stored in the lower triangle.
  264. *
  265. IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  266. DO 60 J = 1,N
  267. IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
  268. TEMP1 = ALPHA*Y(J)
  269. TEMP2 = ALPHA*X(J)
  270. DO 50 I = J,N
  271. A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
  272. 50 CONTINUE
  273. END IF
  274. 60 CONTINUE
  275. ELSE
  276. DO 80 J = 1,N
  277. IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
  278. TEMP1 = ALPHA*Y(JY)
  279. TEMP2 = ALPHA*X(JX)
  280. IX = JX
  281. IY = JY
  282. DO 70 I = J,N
  283. A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
  284. IX = IX + INCX
  285. IY = IY + INCY
  286. 70 CONTINUE
  287. END IF
  288. JX = JX + INCX
  289. JY = JY + INCY
  290. 80 CONTINUE
  291. END IF
  292. END IF
  293. *
  294. RETURN
  295. *
  296. * End of SSYR2 .
  297. *
  298. END