You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgesvd.f 135 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493
  1. *> \brief <b> DGESVD computes the singular value decomposition (SVD) for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGESVD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesvd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesvd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesvd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT,
  22. * WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBU, JOBVT
  26. * INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION A( LDA, * ), S( * ), U( LDU, * ),
  30. * $ VT( LDVT, * ), WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DGESVD computes the singular value decomposition (SVD) of a real
  40. *> M-by-N matrix A, optionally computing the left and/or right singular
  41. *> vectors. The SVD is written
  42. *>
  43. *> A = U * SIGMA * transpose(V)
  44. *>
  45. *> where SIGMA is an M-by-N matrix which is zero except for its
  46. *> min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
  47. *> V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
  48. *> are the singular values of A; they are real and non-negative, and
  49. *> are returned in descending order. The first min(m,n) columns of
  50. *> U and V are the left and right singular vectors of A.
  51. *>
  52. *> Note that the routine returns V**T, not V.
  53. *> \endverbatim
  54. *
  55. * Arguments:
  56. * ==========
  57. *
  58. *> \param[in] JOBU
  59. *> \verbatim
  60. *> JOBU is CHARACTER*1
  61. *> Specifies options for computing all or part of the matrix U:
  62. *> = 'A': all M columns of U are returned in array U:
  63. *> = 'S': the first min(m,n) columns of U (the left singular
  64. *> vectors) are returned in the array U;
  65. *> = 'O': the first min(m,n) columns of U (the left singular
  66. *> vectors) are overwritten on the array A;
  67. *> = 'N': no columns of U (no left singular vectors) are
  68. *> computed.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] JOBVT
  72. *> \verbatim
  73. *> JOBVT is CHARACTER*1
  74. *> Specifies options for computing all or part of the matrix
  75. *> V**T:
  76. *> = 'A': all N rows of V**T are returned in the array VT;
  77. *> = 'S': the first min(m,n) rows of V**T (the right singular
  78. *> vectors) are returned in the array VT;
  79. *> = 'O': the first min(m,n) rows of V**T (the right singular
  80. *> vectors) are overwritten on the array A;
  81. *> = 'N': no rows of V**T (no right singular vectors) are
  82. *> computed.
  83. *>
  84. *> JOBVT and JOBU cannot both be 'O'.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] M
  88. *> \verbatim
  89. *> M is INTEGER
  90. *> The number of rows of the input matrix A. M >= 0.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] N
  94. *> \verbatim
  95. *> N is INTEGER
  96. *> The number of columns of the input matrix A. N >= 0.
  97. *> \endverbatim
  98. *>
  99. *> \param[in,out] A
  100. *> \verbatim
  101. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  102. *> On entry, the M-by-N matrix A.
  103. *> On exit,
  104. *> if JOBU = 'O', A is overwritten with the first min(m,n)
  105. *> columns of U (the left singular vectors,
  106. *> stored columnwise);
  107. *> if JOBVT = 'O', A is overwritten with the first min(m,n)
  108. *> rows of V**T (the right singular vectors,
  109. *> stored rowwise);
  110. *> if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A
  111. *> are destroyed.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] LDA
  115. *> \verbatim
  116. *> LDA is INTEGER
  117. *> The leading dimension of the array A. LDA >= max(1,M).
  118. *> \endverbatim
  119. *>
  120. *> \param[out] S
  121. *> \verbatim
  122. *> S is DOUBLE PRECISION array, dimension (min(M,N))
  123. *> The singular values of A, sorted so that S(i) >= S(i+1).
  124. *> \endverbatim
  125. *>
  126. *> \param[out] U
  127. *> \verbatim
  128. *> U is DOUBLE PRECISION array, dimension (LDU,UCOL)
  129. *> (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'.
  130. *> If JOBU = 'A', U contains the M-by-M orthogonal matrix U;
  131. *> if JOBU = 'S', U contains the first min(m,n) columns of U
  132. *> (the left singular vectors, stored columnwise);
  133. *> if JOBU = 'N' or 'O', U is not referenced.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] LDU
  137. *> \verbatim
  138. *> LDU is INTEGER
  139. *> The leading dimension of the array U. LDU >= 1; if
  140. *> JOBU = 'S' or 'A', LDU >= M.
  141. *> \endverbatim
  142. *>
  143. *> \param[out] VT
  144. *> \verbatim
  145. *> VT is DOUBLE PRECISION array, dimension (LDVT,N)
  146. *> If JOBVT = 'A', VT contains the N-by-N orthogonal matrix
  147. *> V**T;
  148. *> if JOBVT = 'S', VT contains the first min(m,n) rows of
  149. *> V**T (the right singular vectors, stored rowwise);
  150. *> if JOBVT = 'N' or 'O', VT is not referenced.
  151. *> \endverbatim
  152. *>
  153. *> \param[in] LDVT
  154. *> \verbatim
  155. *> LDVT is INTEGER
  156. *> The leading dimension of the array VT. LDVT >= 1; if
  157. *> JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).
  158. *> \endverbatim
  159. *>
  160. *> \param[out] WORK
  161. *> \verbatim
  162. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  163. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
  164. *> if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged
  165. *> superdiagonal elements of an upper bidiagonal matrix B
  166. *> whose diagonal is in S (not necessarily sorted). B
  167. *> satisfies A = U * B * VT, so it has the same singular values
  168. *> as A, and singular vectors related by U and VT.
  169. *> \endverbatim
  170. *>
  171. *> \param[in] LWORK
  172. *> \verbatim
  173. *> LWORK is INTEGER
  174. *> The dimension of the array WORK.
  175. *> LWORK >= MAX(1,5*MIN(M,N)) for the paths (see comments inside code):
  176. *> - PATH 1 (M much larger than N, JOBU='N')
  177. *> - PATH 1t (N much larger than M, JOBVT='N')
  178. *> LWORK >= MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N)) for the other paths
  179. *> For good performance, LWORK should generally be larger.
  180. *>
  181. *> If LWORK = -1, then a workspace query is assumed; the routine
  182. *> only calculates the optimal size of the WORK array, returns
  183. *> this value as the first entry of the WORK array, and no error
  184. *> message related to LWORK is issued by XERBLA.
  185. *> \endverbatim
  186. *>
  187. *> \param[out] INFO
  188. *> \verbatim
  189. *> INFO is INTEGER
  190. *> = 0: successful exit.
  191. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  192. *> > 0: if DBDSQR did not converge, INFO specifies how many
  193. *> superdiagonals of an intermediate bidiagonal form B
  194. *> did not converge to zero. See the description of WORK
  195. *> above for details.
  196. *> \endverbatim
  197. *
  198. * Authors:
  199. * ========
  200. *
  201. *> \author Univ. of Tennessee
  202. *> \author Univ. of California Berkeley
  203. *> \author Univ. of Colorado Denver
  204. *> \author NAG Ltd.
  205. *
  206. *> \date April 2012
  207. *
  208. *> \ingroup doubleGEsing
  209. *
  210. * =====================================================================
  211. SUBROUTINE DGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU,
  212. $ VT, LDVT, WORK, LWORK, INFO )
  213. *
  214. * -- LAPACK driver routine (version 3.4.1) --
  215. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  216. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  217. * April 2012
  218. *
  219. * .. Scalar Arguments ..
  220. CHARACTER JOBU, JOBVT
  221. INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
  222. * ..
  223. * .. Array Arguments ..
  224. DOUBLE PRECISION A( LDA, * ), S( * ), U( LDU, * ),
  225. $ VT( LDVT, * ), WORK( * )
  226. * ..
  227. *
  228. * =====================================================================
  229. *
  230. * .. Parameters ..
  231. DOUBLE PRECISION ZERO, ONE
  232. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  233. * ..
  234. * .. Local Scalars ..
  235. LOGICAL LQUERY, WNTUA, WNTUAS, WNTUN, WNTUO, WNTUS,
  236. $ WNTVA, WNTVAS, WNTVN, WNTVO, WNTVS
  237. INTEGER BDSPAC, BLK, CHUNK, I, IE, IERR, IR, ISCL,
  238. $ ITAU, ITAUP, ITAUQ, IU, IWORK, LDWRKR, LDWRKU,
  239. $ MAXWRK, MINMN, MINWRK, MNTHR, NCU, NCVT, NRU,
  240. $ NRVT, WRKBL
  241. INTEGER LWORK_DGEQRF, LWORK_DORGQR_N, LWORK_DORGQR_M,
  242. $ LWORK_DGEBRD, LWORK_DORGBR_P, LWORK_DORGBR_Q,
  243. $ LWORK_DGELQF, LWORK_DORGLQ_N, LWORK_DORGLQ_M
  244. DOUBLE PRECISION ANRM, BIGNUM, EPS, SMLNUM
  245. * ..
  246. * .. Local Arrays ..
  247. DOUBLE PRECISION DUM( 1 )
  248. * ..
  249. * .. External Subroutines ..
  250. EXTERNAL DBDSQR, DGEBRD, DGELQF, DGEMM, DGEQRF, DLACPY,
  251. $ DLASCL, DLASET, DORGBR, DORGLQ, DORGQR, DORMBR,
  252. $ XERBLA
  253. * ..
  254. * .. External Functions ..
  255. LOGICAL LSAME
  256. INTEGER ILAENV
  257. DOUBLE PRECISION DLAMCH, DLANGE
  258. EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE
  259. * ..
  260. * .. Intrinsic Functions ..
  261. INTRINSIC MAX, MIN, SQRT
  262. * ..
  263. * .. Executable Statements ..
  264. *
  265. * Test the input arguments
  266. *
  267. INFO = 0
  268. MINMN = MIN( M, N )
  269. WNTUA = LSAME( JOBU, 'A' )
  270. WNTUS = LSAME( JOBU, 'S' )
  271. WNTUAS = WNTUA .OR. WNTUS
  272. WNTUO = LSAME( JOBU, 'O' )
  273. WNTUN = LSAME( JOBU, 'N' )
  274. WNTVA = LSAME( JOBVT, 'A' )
  275. WNTVS = LSAME( JOBVT, 'S' )
  276. WNTVAS = WNTVA .OR. WNTVS
  277. WNTVO = LSAME( JOBVT, 'O' )
  278. WNTVN = LSAME( JOBVT, 'N' )
  279. LQUERY = ( LWORK.EQ.-1 )
  280. *
  281. IF( .NOT.( WNTUA .OR. WNTUS .OR. WNTUO .OR. WNTUN ) ) THEN
  282. INFO = -1
  283. ELSE IF( .NOT.( WNTVA .OR. WNTVS .OR. WNTVO .OR. WNTVN ) .OR.
  284. $ ( WNTVO .AND. WNTUO ) ) THEN
  285. INFO = -2
  286. ELSE IF( M.LT.0 ) THEN
  287. INFO = -3
  288. ELSE IF( N.LT.0 ) THEN
  289. INFO = -4
  290. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  291. INFO = -6
  292. ELSE IF( LDU.LT.1 .OR. ( WNTUAS .AND. LDU.LT.M ) ) THEN
  293. INFO = -9
  294. ELSE IF( LDVT.LT.1 .OR. ( WNTVA .AND. LDVT.LT.N ) .OR.
  295. $ ( WNTVS .AND. LDVT.LT.MINMN ) ) THEN
  296. INFO = -11
  297. END IF
  298. *
  299. * Compute workspace
  300. * (Note: Comments in the code beginning "Workspace:" describe the
  301. * minimal amount of workspace needed at that point in the code,
  302. * as well as the preferred amount for good performance.
  303. * NB refers to the optimal block size for the immediately
  304. * following subroutine, as returned by ILAENV.)
  305. *
  306. IF( INFO.EQ.0 ) THEN
  307. MINWRK = 1
  308. MAXWRK = 1
  309. IF( M.GE.N .AND. MINMN.GT.0 ) THEN
  310. *
  311. * Compute space needed for DBDSQR
  312. *
  313. MNTHR = ILAENV( 6, 'DGESVD', JOBU // JOBVT, M, N, 0, 0 )
  314. BDSPAC = 5*N
  315. * Compute space needed for DGEQRF
  316. CALL DGEQRF( M, N, A, LDA, DUM(1), DUM(1), -1, IERR )
  317. LWORK_DGEQRF=DUM(1)
  318. * Compute space needed for DORGQR
  319. CALL DORGQR( M, N, N, A, LDA, DUM(1), DUM(1), -1, IERR )
  320. LWORK_DORGQR_N=DUM(1)
  321. CALL DORGQR( M, M, N, A, LDA, DUM(1), DUM(1), -1, IERR )
  322. LWORK_DORGQR_M=DUM(1)
  323. * Compute space needed for DGEBRD
  324. CALL DGEBRD( N, N, A, LDA, S, DUM(1), DUM(1),
  325. $ DUM(1), DUM(1), -1, IERR )
  326. LWORK_DGEBRD=DUM(1)
  327. * Compute space needed for DORGBR P
  328. CALL DORGBR( 'P', N, N, N, A, LDA, DUM(1),
  329. $ DUM(1), -1, IERR )
  330. LWORK_DORGBR_P=DUM(1)
  331. * Compute space needed for DORGBR Q
  332. CALL DORGBR( 'Q', N, N, N, A, LDA, DUM(1),
  333. $ DUM(1), -1, IERR )
  334. LWORK_DORGBR_Q=DUM(1)
  335. *
  336. IF( M.GE.MNTHR ) THEN
  337. IF( WNTUN ) THEN
  338. *
  339. * Path 1 (M much larger than N, JOBU='N')
  340. *
  341. MAXWRK = N + LWORK_DGEQRF
  342. MAXWRK = MAX( MAXWRK, 3*N+LWORK_DGEBRD )
  343. IF( WNTVO .OR. WNTVAS )
  344. $ MAXWRK = MAX( MAXWRK, 3*N+LWORK_DORGBR_P )
  345. MAXWRK = MAX( MAXWRK, BDSPAC )
  346. MINWRK = MAX( 4*N, BDSPAC )
  347. ELSE IF( WNTUO .AND. WNTVN ) THEN
  348. *
  349. * Path 2 (M much larger than N, JOBU='O', JOBVT='N')
  350. *
  351. WRKBL = N + LWORK_DGEQRF
  352. WRKBL = MAX( WRKBL, N+LWORK_DORGQR_N )
  353. WRKBL = MAX( WRKBL, 3*N+LWORK_DGEBRD )
  354. WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_Q )
  355. WRKBL = MAX( WRKBL, BDSPAC )
  356. MAXWRK = MAX( N*N+WRKBL, N*N+M*N+N )
  357. MINWRK = MAX( 3*N+M, BDSPAC )
  358. ELSE IF( WNTUO .AND. WNTVAS ) THEN
  359. *
  360. * Path 3 (M much larger than N, JOBU='O', JOBVT='S' or
  361. * 'A')
  362. *
  363. WRKBL = N + LWORK_DGEQRF
  364. WRKBL = MAX( WRKBL, N+LWORK_DORGQR_N )
  365. WRKBL = MAX( WRKBL, 3*N+LWORK_DGEBRD )
  366. WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_Q )
  367. WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_P )
  368. WRKBL = MAX( WRKBL, BDSPAC )
  369. MAXWRK = MAX( N*N+WRKBL, N*N+M*N+N )
  370. MINWRK = MAX( 3*N+M, BDSPAC )
  371. ELSE IF( WNTUS .AND. WNTVN ) THEN
  372. *
  373. * Path 4 (M much larger than N, JOBU='S', JOBVT='N')
  374. *
  375. WRKBL = N + LWORK_DGEQRF
  376. WRKBL = MAX( WRKBL, N+LWORK_DORGQR_N )
  377. WRKBL = MAX( WRKBL, 3*N+LWORK_DGEBRD )
  378. WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_Q )
  379. WRKBL = MAX( WRKBL, BDSPAC )
  380. MAXWRK = N*N + WRKBL
  381. MINWRK = MAX( 3*N+M, BDSPAC )
  382. ELSE IF( WNTUS .AND. WNTVO ) THEN
  383. *
  384. * Path 5 (M much larger than N, JOBU='S', JOBVT='O')
  385. *
  386. WRKBL = N + LWORK_DGEQRF
  387. WRKBL = MAX( WRKBL, N+LWORK_DORGQR_N )
  388. WRKBL = MAX( WRKBL, 3*N+LWORK_DGEBRD )
  389. WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_Q )
  390. WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_P )
  391. WRKBL = MAX( WRKBL, BDSPAC )
  392. MAXWRK = 2*N*N + WRKBL
  393. MINWRK = MAX( 3*N+M, BDSPAC )
  394. ELSE IF( WNTUS .AND. WNTVAS ) THEN
  395. *
  396. * Path 6 (M much larger than N, JOBU='S', JOBVT='S' or
  397. * 'A')
  398. *
  399. WRKBL = N + LWORK_DGEQRF
  400. WRKBL = MAX( WRKBL, N+LWORK_DORGQR_N )
  401. WRKBL = MAX( WRKBL, 3*N+LWORK_DGEBRD )
  402. WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_Q )
  403. WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_P )
  404. WRKBL = MAX( WRKBL, BDSPAC )
  405. MAXWRK = N*N + WRKBL
  406. MINWRK = MAX( 3*N+M, BDSPAC )
  407. ELSE IF( WNTUA .AND. WNTVN ) THEN
  408. *
  409. * Path 7 (M much larger than N, JOBU='A', JOBVT='N')
  410. *
  411. WRKBL = N + LWORK_DGEQRF
  412. WRKBL = MAX( WRKBL, N+LWORK_DORGQR_M )
  413. WRKBL = MAX( WRKBL, 3*N+LWORK_DGEBRD )
  414. WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_Q )
  415. WRKBL = MAX( WRKBL, BDSPAC )
  416. MAXWRK = N*N + WRKBL
  417. MINWRK = MAX( 3*N+M, BDSPAC )
  418. ELSE IF( WNTUA .AND. WNTVO ) THEN
  419. *
  420. * Path 8 (M much larger than N, JOBU='A', JOBVT='O')
  421. *
  422. WRKBL = N + LWORK_DGEQRF
  423. WRKBL = MAX( WRKBL, N+LWORK_DORGQR_M )
  424. WRKBL = MAX( WRKBL, 3*N+LWORK_DGEBRD )
  425. WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_Q )
  426. WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_P )
  427. WRKBL = MAX( WRKBL, BDSPAC )
  428. MAXWRK = 2*N*N + WRKBL
  429. MINWRK = MAX( 3*N+M, BDSPAC )
  430. ELSE IF( WNTUA .AND. WNTVAS ) THEN
  431. *
  432. * Path 9 (M much larger than N, JOBU='A', JOBVT='S' or
  433. * 'A')
  434. *
  435. WRKBL = N + LWORK_DGEQRF
  436. WRKBL = MAX( WRKBL, N+LWORK_DORGQR_M )
  437. WRKBL = MAX( WRKBL, 3*N+LWORK_DGEBRD )
  438. WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_Q )
  439. WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_P )
  440. WRKBL = MAX( WRKBL, BDSPAC )
  441. MAXWRK = N*N + WRKBL
  442. MINWRK = MAX( 3*N+M, BDSPAC )
  443. END IF
  444. ELSE
  445. *
  446. * Path 10 (M at least N, but not much larger)
  447. *
  448. CALL DGEBRD( M, N, A, LDA, S, DUM(1), DUM(1),
  449. $ DUM(1), DUM(1), -1, IERR )
  450. LWORK_DGEBRD=DUM(1)
  451. MAXWRK = 3*N + LWORK_DGEBRD
  452. IF( WNTUS .OR. WNTUO ) THEN
  453. CALL DORGBR( 'Q', M, N, N, A, LDA, DUM(1),
  454. $ DUM(1), -1, IERR )
  455. LWORK_DORGBR_Q=DUM(1)
  456. MAXWRK = MAX( MAXWRK, 3*N+LWORK_DORGBR_Q )
  457. END IF
  458. IF( WNTUA ) THEN
  459. CALL DORGBR( 'Q', M, M, N, A, LDA, DUM(1),
  460. $ DUM(1), -1, IERR )
  461. LWORK_DORGBR_Q=DUM(1)
  462. MAXWRK = MAX( MAXWRK, 3*N+LWORK_DORGBR_Q )
  463. END IF
  464. IF( .NOT.WNTVN ) THEN
  465. MAXWRK = MAX( MAXWRK, 3*N+LWORK_DORGBR_P )
  466. END IF
  467. MAXWRK = MAX( MAXWRK, BDSPAC )
  468. MINWRK = MAX( 3*N+M, BDSPAC )
  469. END IF
  470. ELSE IF( MINMN.GT.0 ) THEN
  471. *
  472. * Compute space needed for DBDSQR
  473. *
  474. MNTHR = ILAENV( 6, 'DGESVD', JOBU // JOBVT, M, N, 0, 0 )
  475. BDSPAC = 5*M
  476. * Compute space needed for DGELQF
  477. CALL DGELQF( M, N, A, LDA, DUM(1), DUM(1), -1, IERR )
  478. LWORK_DGELQF=DUM(1)
  479. * Compute space needed for DORGLQ
  480. CALL DORGLQ( N, N, M, DUM(1), N, DUM(1), DUM(1), -1, IERR )
  481. LWORK_DORGLQ_N=DUM(1)
  482. CALL DORGLQ( M, N, M, A, LDA, DUM(1), DUM(1), -1, IERR )
  483. LWORK_DORGLQ_M=DUM(1)
  484. * Compute space needed for DGEBRD
  485. CALL DGEBRD( M, M, A, LDA, S, DUM(1), DUM(1),
  486. $ DUM(1), DUM(1), -1, IERR )
  487. LWORK_DGEBRD=DUM(1)
  488. * Compute space needed for DORGBR P
  489. CALL DORGBR( 'P', M, M, M, A, N, DUM(1),
  490. $ DUM(1), -1, IERR )
  491. LWORK_DORGBR_P=DUM(1)
  492. * Compute space needed for DORGBR Q
  493. CALL DORGBR( 'Q', M, M, M, A, N, DUM(1),
  494. $ DUM(1), -1, IERR )
  495. LWORK_DORGBR_Q=DUM(1)
  496. IF( N.GE.MNTHR ) THEN
  497. IF( WNTVN ) THEN
  498. *
  499. * Path 1t(N much larger than M, JOBVT='N')
  500. *
  501. MAXWRK = M + LWORK_DGELQF
  502. MAXWRK = MAX( MAXWRK, 3*M+LWORK_DGEBRD )
  503. IF( WNTUO .OR. WNTUAS )
  504. $ MAXWRK = MAX( MAXWRK, 3*M+LWORK_DORGBR_Q )
  505. MAXWRK = MAX( MAXWRK, BDSPAC )
  506. MINWRK = MAX( 4*M, BDSPAC )
  507. ELSE IF( WNTVO .AND. WNTUN ) THEN
  508. *
  509. * Path 2t(N much larger than M, JOBU='N', JOBVT='O')
  510. *
  511. WRKBL = M + LWORK_DGELQF
  512. WRKBL = MAX( WRKBL, M+LWORK_DORGLQ_M )
  513. WRKBL = MAX( WRKBL, 3*M+LWORK_DGEBRD )
  514. WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_P )
  515. WRKBL = MAX( WRKBL, BDSPAC )
  516. MAXWRK = MAX( M*M+WRKBL, M*M+M*N+M )
  517. MINWRK = MAX( 3*M+N, BDSPAC )
  518. ELSE IF( WNTVO .AND. WNTUAS ) THEN
  519. *
  520. * Path 3t(N much larger than M, JOBU='S' or 'A',
  521. * JOBVT='O')
  522. *
  523. WRKBL = M + LWORK_DGELQF
  524. WRKBL = MAX( WRKBL, M+LWORK_DORGLQ_M )
  525. WRKBL = MAX( WRKBL, 3*M+LWORK_DGEBRD )
  526. WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_P )
  527. WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_Q )
  528. WRKBL = MAX( WRKBL, BDSPAC )
  529. MAXWRK = MAX( M*M+WRKBL, M*M+M*N+M )
  530. MINWRK = MAX( 3*M+N, BDSPAC )
  531. ELSE IF( WNTVS .AND. WNTUN ) THEN
  532. *
  533. * Path 4t(N much larger than M, JOBU='N', JOBVT='S')
  534. *
  535. WRKBL = M + LWORK_DGELQF
  536. WRKBL = MAX( WRKBL, M+LWORK_DORGLQ_M )
  537. WRKBL = MAX( WRKBL, 3*M+LWORK_DGEBRD )
  538. WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_P )
  539. WRKBL = MAX( WRKBL, BDSPAC )
  540. MAXWRK = M*M + WRKBL
  541. MINWRK = MAX( 3*M+N, BDSPAC )
  542. ELSE IF( WNTVS .AND. WNTUO ) THEN
  543. *
  544. * Path 5t(N much larger than M, JOBU='O', JOBVT='S')
  545. *
  546. WRKBL = M + LWORK_DGELQF
  547. WRKBL = MAX( WRKBL, M+LWORK_DORGLQ_M )
  548. WRKBL = MAX( WRKBL, 3*M+LWORK_DGEBRD )
  549. WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_P )
  550. WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_Q )
  551. WRKBL = MAX( WRKBL, BDSPAC )
  552. MAXWRK = 2*M*M + WRKBL
  553. MINWRK = MAX( 3*M+N, BDSPAC )
  554. ELSE IF( WNTVS .AND. WNTUAS ) THEN
  555. *
  556. * Path 6t(N much larger than M, JOBU='S' or 'A',
  557. * JOBVT='S')
  558. *
  559. WRKBL = M + LWORK_DGELQF
  560. WRKBL = MAX( WRKBL, M+LWORK_DORGLQ_M )
  561. WRKBL = MAX( WRKBL, 3*M+LWORK_DGEBRD )
  562. WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_P )
  563. WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_Q )
  564. WRKBL = MAX( WRKBL, BDSPAC )
  565. MAXWRK = M*M + WRKBL
  566. MINWRK = MAX( 3*M+N, BDSPAC )
  567. ELSE IF( WNTVA .AND. WNTUN ) THEN
  568. *
  569. * Path 7t(N much larger than M, JOBU='N', JOBVT='A')
  570. *
  571. WRKBL = M + LWORK_DGELQF
  572. WRKBL = MAX( WRKBL, M+LWORK_DORGLQ_N )
  573. WRKBL = MAX( WRKBL, 3*M+LWORK_DGEBRD )
  574. WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_P )
  575. WRKBL = MAX( WRKBL, BDSPAC )
  576. MAXWRK = M*M + WRKBL
  577. MINWRK = MAX( 3*M+N, BDSPAC )
  578. ELSE IF( WNTVA .AND. WNTUO ) THEN
  579. *
  580. * Path 8t(N much larger than M, JOBU='O', JOBVT='A')
  581. *
  582. WRKBL = M + LWORK_DGELQF
  583. WRKBL = MAX( WRKBL, M+LWORK_DORGLQ_N )
  584. WRKBL = MAX( WRKBL, 3*M+LWORK_DGEBRD )
  585. WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_P )
  586. WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_Q )
  587. WRKBL = MAX( WRKBL, BDSPAC )
  588. MAXWRK = 2*M*M + WRKBL
  589. MINWRK = MAX( 3*M+N, BDSPAC )
  590. ELSE IF( WNTVA .AND. WNTUAS ) THEN
  591. *
  592. * Path 9t(N much larger than M, JOBU='S' or 'A',
  593. * JOBVT='A')
  594. *
  595. WRKBL = M + LWORK_DGELQF
  596. WRKBL = MAX( WRKBL, M+LWORK_DORGLQ_N )
  597. WRKBL = MAX( WRKBL, 3*M+LWORK_DGEBRD )
  598. WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_P )
  599. WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_Q )
  600. WRKBL = MAX( WRKBL, BDSPAC )
  601. MAXWRK = M*M + WRKBL
  602. MINWRK = MAX( 3*M+N, BDSPAC )
  603. END IF
  604. ELSE
  605. *
  606. * Path 10t(N greater than M, but not much larger)
  607. *
  608. CALL DGEBRD( M, N, A, LDA, S, DUM(1), DUM(1),
  609. $ DUM(1), DUM(1), -1, IERR )
  610. LWORK_DGEBRD=DUM(1)
  611. MAXWRK = 3*M + LWORK_DGEBRD
  612. IF( WNTVS .OR. WNTVO ) THEN
  613. * Compute space needed for DORGBR P
  614. CALL DORGBR( 'P', M, N, M, A, N, DUM(1),
  615. $ DUM(1), -1, IERR )
  616. LWORK_DORGBR_P=DUM(1)
  617. MAXWRK = MAX( MAXWRK, 3*M+LWORK_DORGBR_P )
  618. END IF
  619. IF( WNTVA ) THEN
  620. CALL DORGBR( 'P', N, N, M, A, N, DUM(1),
  621. $ DUM(1), -1, IERR )
  622. LWORK_DORGBR_P=DUM(1)
  623. MAXWRK = MAX( MAXWRK, 3*M+LWORK_DORGBR_P )
  624. END IF
  625. IF( .NOT.WNTUN ) THEN
  626. MAXWRK = MAX( MAXWRK, 3*M+LWORK_DORGBR_Q )
  627. END IF
  628. MAXWRK = MAX( MAXWRK, BDSPAC )
  629. MINWRK = MAX( 3*M+N, BDSPAC )
  630. END IF
  631. END IF
  632. MAXWRK = MAX( MAXWRK, MINWRK )
  633. WORK( 1 ) = MAXWRK
  634. *
  635. IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  636. INFO = -13
  637. END IF
  638. END IF
  639. *
  640. IF( INFO.NE.0 ) THEN
  641. CALL XERBLA( 'DGESVD', -INFO )
  642. RETURN
  643. ELSE IF( LQUERY ) THEN
  644. RETURN
  645. END IF
  646. *
  647. * Quick return if possible
  648. *
  649. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  650. RETURN
  651. END IF
  652. *
  653. * Get machine constants
  654. *
  655. EPS = DLAMCH( 'P' )
  656. SMLNUM = SQRT( DLAMCH( 'S' ) ) / EPS
  657. BIGNUM = ONE / SMLNUM
  658. *
  659. * Scale A if max element outside range [SMLNUM,BIGNUM]
  660. *
  661. ANRM = DLANGE( 'M', M, N, A, LDA, DUM )
  662. ISCL = 0
  663. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  664. ISCL = 1
  665. CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, IERR )
  666. ELSE IF( ANRM.GT.BIGNUM ) THEN
  667. ISCL = 1
  668. CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, IERR )
  669. END IF
  670. *
  671. IF( M.GE.N ) THEN
  672. *
  673. * A has at least as many rows as columns. If A has sufficiently
  674. * more rows than columns, first reduce using the QR
  675. * decomposition (if sufficient workspace available)
  676. *
  677. IF( M.GE.MNTHR ) THEN
  678. *
  679. IF( WNTUN ) THEN
  680. *
  681. * Path 1 (M much larger than N, JOBU='N')
  682. * No left singular vectors to be computed
  683. *
  684. ITAU = 1
  685. IWORK = ITAU + N
  686. *
  687. * Compute A=Q*R
  688. * (Workspace: need 2*N, prefer N+N*NB)
  689. *
  690. CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
  691. $ LWORK-IWORK+1, IERR )
  692. *
  693. * Zero out below R
  694. *
  695. CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
  696. IE = 1
  697. ITAUQ = IE + N
  698. ITAUP = ITAUQ + N
  699. IWORK = ITAUP + N
  700. *
  701. * Bidiagonalize R in A
  702. * (Workspace: need 4*N, prefer 3*N+2*N*NB)
  703. *
  704. CALL DGEBRD( N, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  705. $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  706. $ IERR )
  707. NCVT = 0
  708. IF( WNTVO .OR. WNTVAS ) THEN
  709. *
  710. * If right singular vectors desired, generate P'.
  711. * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  712. *
  713. CALL DORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
  714. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  715. NCVT = N
  716. END IF
  717. IWORK = IE + N
  718. *
  719. * Perform bidiagonal QR iteration, computing right
  720. * singular vectors of A in A if desired
  721. * (Workspace: need BDSPAC)
  722. *
  723. CALL DBDSQR( 'U', N, NCVT, 0, 0, S, WORK( IE ), A, LDA,
  724. $ DUM, 1, DUM, 1, WORK( IWORK ), INFO )
  725. *
  726. * If right singular vectors desired in VT, copy them there
  727. *
  728. IF( WNTVAS )
  729. $ CALL DLACPY( 'F', N, N, A, LDA, VT, LDVT )
  730. *
  731. ELSE IF( WNTUO .AND. WNTVN ) THEN
  732. *
  733. * Path 2 (M much larger than N, JOBU='O', JOBVT='N')
  734. * N left singular vectors to be overwritten on A and
  735. * no right singular vectors to be computed
  736. *
  737. IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
  738. *
  739. * Sufficient workspace for a fast algorithm
  740. *
  741. IR = 1
  742. IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+LDA*N ) THEN
  743. *
  744. * WORK(IU) is LDA by N, WORK(IR) is LDA by N
  745. *
  746. LDWRKU = LDA
  747. LDWRKR = LDA
  748. ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+N*N ) THEN
  749. *
  750. * WORK(IU) is LDA by N, WORK(IR) is N by N
  751. *
  752. LDWRKU = LDA
  753. LDWRKR = N
  754. ELSE
  755. *
  756. * WORK(IU) is LDWRKU by N, WORK(IR) is N by N
  757. *
  758. LDWRKU = ( LWORK-N*N-N ) / N
  759. LDWRKR = N
  760. END IF
  761. ITAU = IR + LDWRKR*N
  762. IWORK = ITAU + N
  763. *
  764. * Compute A=Q*R
  765. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  766. *
  767. CALL DGEQRF( M, N, A, LDA, WORK( ITAU ),
  768. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  769. *
  770. * Copy R to WORK(IR) and zero out below it
  771. *
  772. CALL DLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
  773. CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, WORK( IR+1 ),
  774. $ LDWRKR )
  775. *
  776. * Generate Q in A
  777. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  778. *
  779. CALL DORGQR( M, N, N, A, LDA, WORK( ITAU ),
  780. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  781. IE = ITAU
  782. ITAUQ = IE + N
  783. ITAUP = ITAUQ + N
  784. IWORK = ITAUP + N
  785. *
  786. * Bidiagonalize R in WORK(IR)
  787. * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
  788. *
  789. CALL DGEBRD( N, N, WORK( IR ), LDWRKR, S, WORK( IE ),
  790. $ WORK( ITAUQ ), WORK( ITAUP ),
  791. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  792. *
  793. * Generate left vectors bidiagonalizing R
  794. * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
  795. *
  796. CALL DORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
  797. $ WORK( ITAUQ ), WORK( IWORK ),
  798. $ LWORK-IWORK+1, IERR )
  799. IWORK = IE + N
  800. *
  801. * Perform bidiagonal QR iteration, computing left
  802. * singular vectors of R in WORK(IR)
  803. * (Workspace: need N*N+BDSPAC)
  804. *
  805. CALL DBDSQR( 'U', N, 0, N, 0, S, WORK( IE ), DUM, 1,
  806. $ WORK( IR ), LDWRKR, DUM, 1,
  807. $ WORK( IWORK ), INFO )
  808. IU = IE + N
  809. *
  810. * Multiply Q in A by left singular vectors of R in
  811. * WORK(IR), storing result in WORK(IU) and copying to A
  812. * (Workspace: need N*N+2*N, prefer N*N+M*N+N)
  813. *
  814. DO 10 I = 1, M, LDWRKU
  815. CHUNK = MIN( M-I+1, LDWRKU )
  816. CALL DGEMM( 'N', 'N', CHUNK, N, N, ONE, A( I, 1 ),
  817. $ LDA, WORK( IR ), LDWRKR, ZERO,
  818. $ WORK( IU ), LDWRKU )
  819. CALL DLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
  820. $ A( I, 1 ), LDA )
  821. 10 CONTINUE
  822. *
  823. ELSE
  824. *
  825. * Insufficient workspace for a fast algorithm
  826. *
  827. IE = 1
  828. ITAUQ = IE + N
  829. ITAUP = ITAUQ + N
  830. IWORK = ITAUP + N
  831. *
  832. * Bidiagonalize A
  833. * (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB)
  834. *
  835. CALL DGEBRD( M, N, A, LDA, S, WORK( IE ),
  836. $ WORK( ITAUQ ), WORK( ITAUP ),
  837. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  838. *
  839. * Generate left vectors bidiagonalizing A
  840. * (Workspace: need 4*N, prefer 3*N+N*NB)
  841. *
  842. CALL DORGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
  843. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  844. IWORK = IE + N
  845. *
  846. * Perform bidiagonal QR iteration, computing left
  847. * singular vectors of A in A
  848. * (Workspace: need BDSPAC)
  849. *
  850. CALL DBDSQR( 'U', N, 0, M, 0, S, WORK( IE ), DUM, 1,
  851. $ A, LDA, DUM, 1, WORK( IWORK ), INFO )
  852. *
  853. END IF
  854. *
  855. ELSE IF( WNTUO .AND. WNTVAS ) THEN
  856. *
  857. * Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A')
  858. * N left singular vectors to be overwritten on A and
  859. * N right singular vectors to be computed in VT
  860. *
  861. IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
  862. *
  863. * Sufficient workspace for a fast algorithm
  864. *
  865. IR = 1
  866. IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+LDA*N ) THEN
  867. *
  868. * WORK(IU) is LDA by N and WORK(IR) is LDA by N
  869. *
  870. LDWRKU = LDA
  871. LDWRKR = LDA
  872. ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+N*N ) THEN
  873. *
  874. * WORK(IU) is LDA by N and WORK(IR) is N by N
  875. *
  876. LDWRKU = LDA
  877. LDWRKR = N
  878. ELSE
  879. *
  880. * WORK(IU) is LDWRKU by N and WORK(IR) is N by N
  881. *
  882. LDWRKU = ( LWORK-N*N-N ) / N
  883. LDWRKR = N
  884. END IF
  885. ITAU = IR + LDWRKR*N
  886. IWORK = ITAU + N
  887. *
  888. * Compute A=Q*R
  889. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  890. *
  891. CALL DGEQRF( M, N, A, LDA, WORK( ITAU ),
  892. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  893. *
  894. * Copy R to VT, zeroing out below it
  895. *
  896. CALL DLACPY( 'U', N, N, A, LDA, VT, LDVT )
  897. IF( N.GT.1 )
  898. $ CALL DLASET( 'L', N-1, N-1, ZERO, ZERO,
  899. $ VT( 2, 1 ), LDVT )
  900. *
  901. * Generate Q in A
  902. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  903. *
  904. CALL DORGQR( M, N, N, A, LDA, WORK( ITAU ),
  905. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  906. IE = ITAU
  907. ITAUQ = IE + N
  908. ITAUP = ITAUQ + N
  909. IWORK = ITAUP + N
  910. *
  911. * Bidiagonalize R in VT, copying result to WORK(IR)
  912. * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
  913. *
  914. CALL DGEBRD( N, N, VT, LDVT, S, WORK( IE ),
  915. $ WORK( ITAUQ ), WORK( ITAUP ),
  916. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  917. CALL DLACPY( 'L', N, N, VT, LDVT, WORK( IR ), LDWRKR )
  918. *
  919. * Generate left vectors bidiagonalizing R in WORK(IR)
  920. * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
  921. *
  922. CALL DORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
  923. $ WORK( ITAUQ ), WORK( IWORK ),
  924. $ LWORK-IWORK+1, IERR )
  925. *
  926. * Generate right vectors bidiagonalizing R in VT
  927. * (Workspace: need N*N+4*N-1, prefer N*N+3*N+(N-1)*NB)
  928. *
  929. CALL DORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  930. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  931. IWORK = IE + N
  932. *
  933. * Perform bidiagonal QR iteration, computing left
  934. * singular vectors of R in WORK(IR) and computing right
  935. * singular vectors of R in VT
  936. * (Workspace: need N*N+BDSPAC)
  937. *
  938. CALL DBDSQR( 'U', N, N, N, 0, S, WORK( IE ), VT, LDVT,
  939. $ WORK( IR ), LDWRKR, DUM, 1,
  940. $ WORK( IWORK ), INFO )
  941. IU = IE + N
  942. *
  943. * Multiply Q in A by left singular vectors of R in
  944. * WORK(IR), storing result in WORK(IU) and copying to A
  945. * (Workspace: need N*N+2*N, prefer N*N+M*N+N)
  946. *
  947. DO 20 I = 1, M, LDWRKU
  948. CHUNK = MIN( M-I+1, LDWRKU )
  949. CALL DGEMM( 'N', 'N', CHUNK, N, N, ONE, A( I, 1 ),
  950. $ LDA, WORK( IR ), LDWRKR, ZERO,
  951. $ WORK( IU ), LDWRKU )
  952. CALL DLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
  953. $ A( I, 1 ), LDA )
  954. 20 CONTINUE
  955. *
  956. ELSE
  957. *
  958. * Insufficient workspace for a fast algorithm
  959. *
  960. ITAU = 1
  961. IWORK = ITAU + N
  962. *
  963. * Compute A=Q*R
  964. * (Workspace: need 2*N, prefer N+N*NB)
  965. *
  966. CALL DGEQRF( M, N, A, LDA, WORK( ITAU ),
  967. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  968. *
  969. * Copy R to VT, zeroing out below it
  970. *
  971. CALL DLACPY( 'U', N, N, A, LDA, VT, LDVT )
  972. IF( N.GT.1 )
  973. $ CALL DLASET( 'L', N-1, N-1, ZERO, ZERO,
  974. $ VT( 2, 1 ), LDVT )
  975. *
  976. * Generate Q in A
  977. * (Workspace: need 2*N, prefer N+N*NB)
  978. *
  979. CALL DORGQR( M, N, N, A, LDA, WORK( ITAU ),
  980. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  981. IE = ITAU
  982. ITAUQ = IE + N
  983. ITAUP = ITAUQ + N
  984. IWORK = ITAUP + N
  985. *
  986. * Bidiagonalize R in VT
  987. * (Workspace: need 4*N, prefer 3*N+2*N*NB)
  988. *
  989. CALL DGEBRD( N, N, VT, LDVT, S, WORK( IE ),
  990. $ WORK( ITAUQ ), WORK( ITAUP ),
  991. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  992. *
  993. * Multiply Q in A by left vectors bidiagonalizing R
  994. * (Workspace: need 3*N+M, prefer 3*N+M*NB)
  995. *
  996. CALL DORMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
  997. $ WORK( ITAUQ ), A, LDA, WORK( IWORK ),
  998. $ LWORK-IWORK+1, IERR )
  999. *
  1000. * Generate right vectors bidiagonalizing R in VT
  1001. * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  1002. *
  1003. CALL DORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1004. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1005. IWORK = IE + N
  1006. *
  1007. * Perform bidiagonal QR iteration, computing left
  1008. * singular vectors of A in A and computing right
  1009. * singular vectors of A in VT
  1010. * (Workspace: need BDSPAC)
  1011. *
  1012. CALL DBDSQR( 'U', N, N, M, 0, S, WORK( IE ), VT, LDVT,
  1013. $ A, LDA, DUM, 1, WORK( IWORK ), INFO )
  1014. *
  1015. END IF
  1016. *
  1017. ELSE IF( WNTUS ) THEN
  1018. *
  1019. IF( WNTVN ) THEN
  1020. *
  1021. * Path 4 (M much larger than N, JOBU='S', JOBVT='N')
  1022. * N left singular vectors to be computed in U and
  1023. * no right singular vectors to be computed
  1024. *
  1025. IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
  1026. *
  1027. * Sufficient workspace for a fast algorithm
  1028. *
  1029. IR = 1
  1030. IF( LWORK.GE.WRKBL+LDA*N ) THEN
  1031. *
  1032. * WORK(IR) is LDA by N
  1033. *
  1034. LDWRKR = LDA
  1035. ELSE
  1036. *
  1037. * WORK(IR) is N by N
  1038. *
  1039. LDWRKR = N
  1040. END IF
  1041. ITAU = IR + LDWRKR*N
  1042. IWORK = ITAU + N
  1043. *
  1044. * Compute A=Q*R
  1045. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  1046. *
  1047. CALL DGEQRF( M, N, A, LDA, WORK( ITAU ),
  1048. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1049. *
  1050. * Copy R to WORK(IR), zeroing out below it
  1051. *
  1052. CALL DLACPY( 'U', N, N, A, LDA, WORK( IR ),
  1053. $ LDWRKR )
  1054. CALL DLASET( 'L', N-1, N-1, ZERO, ZERO,
  1055. $ WORK( IR+1 ), LDWRKR )
  1056. *
  1057. * Generate Q in A
  1058. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  1059. *
  1060. CALL DORGQR( M, N, N, A, LDA, WORK( ITAU ),
  1061. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1062. IE = ITAU
  1063. ITAUQ = IE + N
  1064. ITAUP = ITAUQ + N
  1065. IWORK = ITAUP + N
  1066. *
  1067. * Bidiagonalize R in WORK(IR)
  1068. * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
  1069. *
  1070. CALL DGEBRD( N, N, WORK( IR ), LDWRKR, S,
  1071. $ WORK( IE ), WORK( ITAUQ ),
  1072. $ WORK( ITAUP ), WORK( IWORK ),
  1073. $ LWORK-IWORK+1, IERR )
  1074. *
  1075. * Generate left vectors bidiagonalizing R in WORK(IR)
  1076. * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
  1077. *
  1078. CALL DORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
  1079. $ WORK( ITAUQ ), WORK( IWORK ),
  1080. $ LWORK-IWORK+1, IERR )
  1081. IWORK = IE + N
  1082. *
  1083. * Perform bidiagonal QR iteration, computing left
  1084. * singular vectors of R in WORK(IR)
  1085. * (Workspace: need N*N+BDSPAC)
  1086. *
  1087. CALL DBDSQR( 'U', N, 0, N, 0, S, WORK( IE ), DUM,
  1088. $ 1, WORK( IR ), LDWRKR, DUM, 1,
  1089. $ WORK( IWORK ), INFO )
  1090. *
  1091. * Multiply Q in A by left singular vectors of R in
  1092. * WORK(IR), storing result in U
  1093. * (Workspace: need N*N)
  1094. *
  1095. CALL DGEMM( 'N', 'N', M, N, N, ONE, A, LDA,
  1096. $ WORK( IR ), LDWRKR, ZERO, U, LDU )
  1097. *
  1098. ELSE
  1099. *
  1100. * Insufficient workspace for a fast algorithm
  1101. *
  1102. ITAU = 1
  1103. IWORK = ITAU + N
  1104. *
  1105. * Compute A=Q*R, copying result to U
  1106. * (Workspace: need 2*N, prefer N+N*NB)
  1107. *
  1108. CALL DGEQRF( M, N, A, LDA, WORK( ITAU ),
  1109. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1110. CALL DLACPY( 'L', M, N, A, LDA, U, LDU )
  1111. *
  1112. * Generate Q in U
  1113. * (Workspace: need 2*N, prefer N+N*NB)
  1114. *
  1115. CALL DORGQR( M, N, N, U, LDU, WORK( ITAU ),
  1116. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1117. IE = ITAU
  1118. ITAUQ = IE + N
  1119. ITAUP = ITAUQ + N
  1120. IWORK = ITAUP + N
  1121. *
  1122. * Zero out below R in A
  1123. *
  1124. CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ),
  1125. $ LDA )
  1126. *
  1127. * Bidiagonalize R in A
  1128. * (Workspace: need 4*N, prefer 3*N+2*N*NB)
  1129. *
  1130. CALL DGEBRD( N, N, A, LDA, S, WORK( IE ),
  1131. $ WORK( ITAUQ ), WORK( ITAUP ),
  1132. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1133. *
  1134. * Multiply Q in U by left vectors bidiagonalizing R
  1135. * (Workspace: need 3*N+M, prefer 3*N+M*NB)
  1136. *
  1137. CALL DORMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
  1138. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  1139. $ LWORK-IWORK+1, IERR )
  1140. IWORK = IE + N
  1141. *
  1142. * Perform bidiagonal QR iteration, computing left
  1143. * singular vectors of A in U
  1144. * (Workspace: need BDSPAC)
  1145. *
  1146. CALL DBDSQR( 'U', N, 0, M, 0, S, WORK( IE ), DUM,
  1147. $ 1, U, LDU, DUM, 1, WORK( IWORK ),
  1148. $ INFO )
  1149. *
  1150. END IF
  1151. *
  1152. ELSE IF( WNTVO ) THEN
  1153. *
  1154. * Path 5 (M much larger than N, JOBU='S', JOBVT='O')
  1155. * N left singular vectors to be computed in U and
  1156. * N right singular vectors to be overwritten on A
  1157. *
  1158. IF( LWORK.GE.2*N*N+MAX( 4*N, BDSPAC ) ) THEN
  1159. *
  1160. * Sufficient workspace for a fast algorithm
  1161. *
  1162. IU = 1
  1163. IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
  1164. *
  1165. * WORK(IU) is LDA by N and WORK(IR) is LDA by N
  1166. *
  1167. LDWRKU = LDA
  1168. IR = IU + LDWRKU*N
  1169. LDWRKR = LDA
  1170. ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
  1171. *
  1172. * WORK(IU) is LDA by N and WORK(IR) is N by N
  1173. *
  1174. LDWRKU = LDA
  1175. IR = IU + LDWRKU*N
  1176. LDWRKR = N
  1177. ELSE
  1178. *
  1179. * WORK(IU) is N by N and WORK(IR) is N by N
  1180. *
  1181. LDWRKU = N
  1182. IR = IU + LDWRKU*N
  1183. LDWRKR = N
  1184. END IF
  1185. ITAU = IR + LDWRKR*N
  1186. IWORK = ITAU + N
  1187. *
  1188. * Compute A=Q*R
  1189. * (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
  1190. *
  1191. CALL DGEQRF( M, N, A, LDA, WORK( ITAU ),
  1192. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1193. *
  1194. * Copy R to WORK(IU), zeroing out below it
  1195. *
  1196. CALL DLACPY( 'U', N, N, A, LDA, WORK( IU ),
  1197. $ LDWRKU )
  1198. CALL DLASET( 'L', N-1, N-1, ZERO, ZERO,
  1199. $ WORK( IU+1 ), LDWRKU )
  1200. *
  1201. * Generate Q in A
  1202. * (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
  1203. *
  1204. CALL DORGQR( M, N, N, A, LDA, WORK( ITAU ),
  1205. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1206. IE = ITAU
  1207. ITAUQ = IE + N
  1208. ITAUP = ITAUQ + N
  1209. IWORK = ITAUP + N
  1210. *
  1211. * Bidiagonalize R in WORK(IU), copying result to
  1212. * WORK(IR)
  1213. * (Workspace: need 2*N*N+4*N,
  1214. * prefer 2*N*N+3*N+2*N*NB)
  1215. *
  1216. CALL DGEBRD( N, N, WORK( IU ), LDWRKU, S,
  1217. $ WORK( IE ), WORK( ITAUQ ),
  1218. $ WORK( ITAUP ), WORK( IWORK ),
  1219. $ LWORK-IWORK+1, IERR )
  1220. CALL DLACPY( 'U', N, N, WORK( IU ), LDWRKU,
  1221. $ WORK( IR ), LDWRKR )
  1222. *
  1223. * Generate left bidiagonalizing vectors in WORK(IU)
  1224. * (Workspace: need 2*N*N+4*N, prefer 2*N*N+3*N+N*NB)
  1225. *
  1226. CALL DORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
  1227. $ WORK( ITAUQ ), WORK( IWORK ),
  1228. $ LWORK-IWORK+1, IERR )
  1229. *
  1230. * Generate right bidiagonalizing vectors in WORK(IR)
  1231. * (Workspace: need 2*N*N+4*N-1,
  1232. * prefer 2*N*N+3*N+(N-1)*NB)
  1233. *
  1234. CALL DORGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
  1235. $ WORK( ITAUP ), WORK( IWORK ),
  1236. $ LWORK-IWORK+1, IERR )
  1237. IWORK = IE + N
  1238. *
  1239. * Perform bidiagonal QR iteration, computing left
  1240. * singular vectors of R in WORK(IU) and computing
  1241. * right singular vectors of R in WORK(IR)
  1242. * (Workspace: need 2*N*N+BDSPAC)
  1243. *
  1244. CALL DBDSQR( 'U', N, N, N, 0, S, WORK( IE ),
  1245. $ WORK( IR ), LDWRKR, WORK( IU ),
  1246. $ LDWRKU, DUM, 1, WORK( IWORK ), INFO )
  1247. *
  1248. * Multiply Q in A by left singular vectors of R in
  1249. * WORK(IU), storing result in U
  1250. * (Workspace: need N*N)
  1251. *
  1252. CALL DGEMM( 'N', 'N', M, N, N, ONE, A, LDA,
  1253. $ WORK( IU ), LDWRKU, ZERO, U, LDU )
  1254. *
  1255. * Copy right singular vectors of R to A
  1256. * (Workspace: need N*N)
  1257. *
  1258. CALL DLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
  1259. $ LDA )
  1260. *
  1261. ELSE
  1262. *
  1263. * Insufficient workspace for a fast algorithm
  1264. *
  1265. ITAU = 1
  1266. IWORK = ITAU + N
  1267. *
  1268. * Compute A=Q*R, copying result to U
  1269. * (Workspace: need 2*N, prefer N+N*NB)
  1270. *
  1271. CALL DGEQRF( M, N, A, LDA, WORK( ITAU ),
  1272. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1273. CALL DLACPY( 'L', M, N, A, LDA, U, LDU )
  1274. *
  1275. * Generate Q in U
  1276. * (Workspace: need 2*N, prefer N+N*NB)
  1277. *
  1278. CALL DORGQR( M, N, N, U, LDU, WORK( ITAU ),
  1279. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1280. IE = ITAU
  1281. ITAUQ = IE + N
  1282. ITAUP = ITAUQ + N
  1283. IWORK = ITAUP + N
  1284. *
  1285. * Zero out below R in A
  1286. *
  1287. CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ),
  1288. $ LDA )
  1289. *
  1290. * Bidiagonalize R in A
  1291. * (Workspace: need 4*N, prefer 3*N+2*N*NB)
  1292. *
  1293. CALL DGEBRD( N, N, A, LDA, S, WORK( IE ),
  1294. $ WORK( ITAUQ ), WORK( ITAUP ),
  1295. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1296. *
  1297. * Multiply Q in U by left vectors bidiagonalizing R
  1298. * (Workspace: need 3*N+M, prefer 3*N+M*NB)
  1299. *
  1300. CALL DORMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
  1301. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  1302. $ LWORK-IWORK+1, IERR )
  1303. *
  1304. * Generate right vectors bidiagonalizing R in A
  1305. * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  1306. *
  1307. CALL DORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
  1308. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1309. IWORK = IE + N
  1310. *
  1311. * Perform bidiagonal QR iteration, computing left
  1312. * singular vectors of A in U and computing right
  1313. * singular vectors of A in A
  1314. * (Workspace: need BDSPAC)
  1315. *
  1316. CALL DBDSQR( 'U', N, N, M, 0, S, WORK( IE ), A,
  1317. $ LDA, U, LDU, DUM, 1, WORK( IWORK ),
  1318. $ INFO )
  1319. *
  1320. END IF
  1321. *
  1322. ELSE IF( WNTVAS ) THEN
  1323. *
  1324. * Path 6 (M much larger than N, JOBU='S', JOBVT='S'
  1325. * or 'A')
  1326. * N left singular vectors to be computed in U and
  1327. * N right singular vectors to be computed in VT
  1328. *
  1329. IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
  1330. *
  1331. * Sufficient workspace for a fast algorithm
  1332. *
  1333. IU = 1
  1334. IF( LWORK.GE.WRKBL+LDA*N ) THEN
  1335. *
  1336. * WORK(IU) is LDA by N
  1337. *
  1338. LDWRKU = LDA
  1339. ELSE
  1340. *
  1341. * WORK(IU) is N by N
  1342. *
  1343. LDWRKU = N
  1344. END IF
  1345. ITAU = IU + LDWRKU*N
  1346. IWORK = ITAU + N
  1347. *
  1348. * Compute A=Q*R
  1349. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  1350. *
  1351. CALL DGEQRF( M, N, A, LDA, WORK( ITAU ),
  1352. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1353. *
  1354. * Copy R to WORK(IU), zeroing out below it
  1355. *
  1356. CALL DLACPY( 'U', N, N, A, LDA, WORK( IU ),
  1357. $ LDWRKU )
  1358. CALL DLASET( 'L', N-1, N-1, ZERO, ZERO,
  1359. $ WORK( IU+1 ), LDWRKU )
  1360. *
  1361. * Generate Q in A
  1362. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  1363. *
  1364. CALL DORGQR( M, N, N, A, LDA, WORK( ITAU ),
  1365. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1366. IE = ITAU
  1367. ITAUQ = IE + N
  1368. ITAUP = ITAUQ + N
  1369. IWORK = ITAUP + N
  1370. *
  1371. * Bidiagonalize R in WORK(IU), copying result to VT
  1372. * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
  1373. *
  1374. CALL DGEBRD( N, N, WORK( IU ), LDWRKU, S,
  1375. $ WORK( IE ), WORK( ITAUQ ),
  1376. $ WORK( ITAUP ), WORK( IWORK ),
  1377. $ LWORK-IWORK+1, IERR )
  1378. CALL DLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
  1379. $ LDVT )
  1380. *
  1381. * Generate left bidiagonalizing vectors in WORK(IU)
  1382. * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
  1383. *
  1384. CALL DORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
  1385. $ WORK( ITAUQ ), WORK( IWORK ),
  1386. $ LWORK-IWORK+1, IERR )
  1387. *
  1388. * Generate right bidiagonalizing vectors in VT
  1389. * (Workspace: need N*N+4*N-1,
  1390. * prefer N*N+3*N+(N-1)*NB)
  1391. *
  1392. CALL DORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1393. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1394. IWORK = IE + N
  1395. *
  1396. * Perform bidiagonal QR iteration, computing left
  1397. * singular vectors of R in WORK(IU) and computing
  1398. * right singular vectors of R in VT
  1399. * (Workspace: need N*N+BDSPAC)
  1400. *
  1401. CALL DBDSQR( 'U', N, N, N, 0, S, WORK( IE ), VT,
  1402. $ LDVT, WORK( IU ), LDWRKU, DUM, 1,
  1403. $ WORK( IWORK ), INFO )
  1404. *
  1405. * Multiply Q in A by left singular vectors of R in
  1406. * WORK(IU), storing result in U
  1407. * (Workspace: need N*N)
  1408. *
  1409. CALL DGEMM( 'N', 'N', M, N, N, ONE, A, LDA,
  1410. $ WORK( IU ), LDWRKU, ZERO, U, LDU )
  1411. *
  1412. ELSE
  1413. *
  1414. * Insufficient workspace for a fast algorithm
  1415. *
  1416. ITAU = 1
  1417. IWORK = ITAU + N
  1418. *
  1419. * Compute A=Q*R, copying result to U
  1420. * (Workspace: need 2*N, prefer N+N*NB)
  1421. *
  1422. CALL DGEQRF( M, N, A, LDA, WORK( ITAU ),
  1423. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1424. CALL DLACPY( 'L', M, N, A, LDA, U, LDU )
  1425. *
  1426. * Generate Q in U
  1427. * (Workspace: need 2*N, prefer N+N*NB)
  1428. *
  1429. CALL DORGQR( M, N, N, U, LDU, WORK( ITAU ),
  1430. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1431. *
  1432. * Copy R to VT, zeroing out below it
  1433. *
  1434. CALL DLACPY( 'U', N, N, A, LDA, VT, LDVT )
  1435. IF( N.GT.1 )
  1436. $ CALL DLASET( 'L', N-1, N-1, ZERO, ZERO,
  1437. $ VT( 2, 1 ), LDVT )
  1438. IE = ITAU
  1439. ITAUQ = IE + N
  1440. ITAUP = ITAUQ + N
  1441. IWORK = ITAUP + N
  1442. *
  1443. * Bidiagonalize R in VT
  1444. * (Workspace: need 4*N, prefer 3*N+2*N*NB)
  1445. *
  1446. CALL DGEBRD( N, N, VT, LDVT, S, WORK( IE ),
  1447. $ WORK( ITAUQ ), WORK( ITAUP ),
  1448. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1449. *
  1450. * Multiply Q in U by left bidiagonalizing vectors
  1451. * in VT
  1452. * (Workspace: need 3*N+M, prefer 3*N+M*NB)
  1453. *
  1454. CALL DORMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
  1455. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  1456. $ LWORK-IWORK+1, IERR )
  1457. *
  1458. * Generate right bidiagonalizing vectors in VT
  1459. * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  1460. *
  1461. CALL DORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1462. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1463. IWORK = IE + N
  1464. *
  1465. * Perform bidiagonal QR iteration, computing left
  1466. * singular vectors of A in U and computing right
  1467. * singular vectors of A in VT
  1468. * (Workspace: need BDSPAC)
  1469. *
  1470. CALL DBDSQR( 'U', N, N, M, 0, S, WORK( IE ), VT,
  1471. $ LDVT, U, LDU, DUM, 1, WORK( IWORK ),
  1472. $ INFO )
  1473. *
  1474. END IF
  1475. *
  1476. END IF
  1477. *
  1478. ELSE IF( WNTUA ) THEN
  1479. *
  1480. IF( WNTVN ) THEN
  1481. *
  1482. * Path 7 (M much larger than N, JOBU='A', JOBVT='N')
  1483. * M left singular vectors to be computed in U and
  1484. * no right singular vectors to be computed
  1485. *
  1486. IF( LWORK.GE.N*N+MAX( N+M, 4*N, BDSPAC ) ) THEN
  1487. *
  1488. * Sufficient workspace for a fast algorithm
  1489. *
  1490. IR = 1
  1491. IF( LWORK.GE.WRKBL+LDA*N ) THEN
  1492. *
  1493. * WORK(IR) is LDA by N
  1494. *
  1495. LDWRKR = LDA
  1496. ELSE
  1497. *
  1498. * WORK(IR) is N by N
  1499. *
  1500. LDWRKR = N
  1501. END IF
  1502. ITAU = IR + LDWRKR*N
  1503. IWORK = ITAU + N
  1504. *
  1505. * Compute A=Q*R, copying result to U
  1506. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  1507. *
  1508. CALL DGEQRF( M, N, A, LDA, WORK( ITAU ),
  1509. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1510. CALL DLACPY( 'L', M, N, A, LDA, U, LDU )
  1511. *
  1512. * Copy R to WORK(IR), zeroing out below it
  1513. *
  1514. CALL DLACPY( 'U', N, N, A, LDA, WORK( IR ),
  1515. $ LDWRKR )
  1516. CALL DLASET( 'L', N-1, N-1, ZERO, ZERO,
  1517. $ WORK( IR+1 ), LDWRKR )
  1518. *
  1519. * Generate Q in U
  1520. * (Workspace: need N*N+N+M, prefer N*N+N+M*NB)
  1521. *
  1522. CALL DORGQR( M, M, N, U, LDU, WORK( ITAU ),
  1523. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1524. IE = ITAU
  1525. ITAUQ = IE + N
  1526. ITAUP = ITAUQ + N
  1527. IWORK = ITAUP + N
  1528. *
  1529. * Bidiagonalize R in WORK(IR)
  1530. * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
  1531. *
  1532. CALL DGEBRD( N, N, WORK( IR ), LDWRKR, S,
  1533. $ WORK( IE ), WORK( ITAUQ ),
  1534. $ WORK( ITAUP ), WORK( IWORK ),
  1535. $ LWORK-IWORK+1, IERR )
  1536. *
  1537. * Generate left bidiagonalizing vectors in WORK(IR)
  1538. * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
  1539. *
  1540. CALL DORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
  1541. $ WORK( ITAUQ ), WORK( IWORK ),
  1542. $ LWORK-IWORK+1, IERR )
  1543. IWORK = IE + N
  1544. *
  1545. * Perform bidiagonal QR iteration, computing left
  1546. * singular vectors of R in WORK(IR)
  1547. * (Workspace: need N*N+BDSPAC)
  1548. *
  1549. CALL DBDSQR( 'U', N, 0, N, 0, S, WORK( IE ), DUM,
  1550. $ 1, WORK( IR ), LDWRKR, DUM, 1,
  1551. $ WORK( IWORK ), INFO )
  1552. *
  1553. * Multiply Q in U by left singular vectors of R in
  1554. * WORK(IR), storing result in A
  1555. * (Workspace: need N*N)
  1556. *
  1557. CALL DGEMM( 'N', 'N', M, N, N, ONE, U, LDU,
  1558. $ WORK( IR ), LDWRKR, ZERO, A, LDA )
  1559. *
  1560. * Copy left singular vectors of A from A to U
  1561. *
  1562. CALL DLACPY( 'F', M, N, A, LDA, U, LDU )
  1563. *
  1564. ELSE
  1565. *
  1566. * Insufficient workspace for a fast algorithm
  1567. *
  1568. ITAU = 1
  1569. IWORK = ITAU + N
  1570. *
  1571. * Compute A=Q*R, copying result to U
  1572. * (Workspace: need 2*N, prefer N+N*NB)
  1573. *
  1574. CALL DGEQRF( M, N, A, LDA, WORK( ITAU ),
  1575. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1576. CALL DLACPY( 'L', M, N, A, LDA, U, LDU )
  1577. *
  1578. * Generate Q in U
  1579. * (Workspace: need N+M, prefer N+M*NB)
  1580. *
  1581. CALL DORGQR( M, M, N, U, LDU, WORK( ITAU ),
  1582. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1583. IE = ITAU
  1584. ITAUQ = IE + N
  1585. ITAUP = ITAUQ + N
  1586. IWORK = ITAUP + N
  1587. *
  1588. * Zero out below R in A
  1589. *
  1590. CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ),
  1591. $ LDA )
  1592. *
  1593. * Bidiagonalize R in A
  1594. * (Workspace: need 4*N, prefer 3*N+2*N*NB)
  1595. *
  1596. CALL DGEBRD( N, N, A, LDA, S, WORK( IE ),
  1597. $ WORK( ITAUQ ), WORK( ITAUP ),
  1598. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1599. *
  1600. * Multiply Q in U by left bidiagonalizing vectors
  1601. * in A
  1602. * (Workspace: need 3*N+M, prefer 3*N+M*NB)
  1603. *
  1604. CALL DORMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
  1605. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  1606. $ LWORK-IWORK+1, IERR )
  1607. IWORK = IE + N
  1608. *
  1609. * Perform bidiagonal QR iteration, computing left
  1610. * singular vectors of A in U
  1611. * (Workspace: need BDSPAC)
  1612. *
  1613. CALL DBDSQR( 'U', N, 0, M, 0, S, WORK( IE ), DUM,
  1614. $ 1, U, LDU, DUM, 1, WORK( IWORK ),
  1615. $ INFO )
  1616. *
  1617. END IF
  1618. *
  1619. ELSE IF( WNTVO ) THEN
  1620. *
  1621. * Path 8 (M much larger than N, JOBU='A', JOBVT='O')
  1622. * M left singular vectors to be computed in U and
  1623. * N right singular vectors to be overwritten on A
  1624. *
  1625. IF( LWORK.GE.2*N*N+MAX( N+M, 4*N, BDSPAC ) ) THEN
  1626. *
  1627. * Sufficient workspace for a fast algorithm
  1628. *
  1629. IU = 1
  1630. IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
  1631. *
  1632. * WORK(IU) is LDA by N and WORK(IR) is LDA by N
  1633. *
  1634. LDWRKU = LDA
  1635. IR = IU + LDWRKU*N
  1636. LDWRKR = LDA
  1637. ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
  1638. *
  1639. * WORK(IU) is LDA by N and WORK(IR) is N by N
  1640. *
  1641. LDWRKU = LDA
  1642. IR = IU + LDWRKU*N
  1643. LDWRKR = N
  1644. ELSE
  1645. *
  1646. * WORK(IU) is N by N and WORK(IR) is N by N
  1647. *
  1648. LDWRKU = N
  1649. IR = IU + LDWRKU*N
  1650. LDWRKR = N
  1651. END IF
  1652. ITAU = IR + LDWRKR*N
  1653. IWORK = ITAU + N
  1654. *
  1655. * Compute A=Q*R, copying result to U
  1656. * (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
  1657. *
  1658. CALL DGEQRF( M, N, A, LDA, WORK( ITAU ),
  1659. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1660. CALL DLACPY( 'L', M, N, A, LDA, U, LDU )
  1661. *
  1662. * Generate Q in U
  1663. * (Workspace: need 2*N*N+N+M, prefer 2*N*N+N+M*NB)
  1664. *
  1665. CALL DORGQR( M, M, N, U, LDU, WORK( ITAU ),
  1666. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1667. *
  1668. * Copy R to WORK(IU), zeroing out below it
  1669. *
  1670. CALL DLACPY( 'U', N, N, A, LDA, WORK( IU ),
  1671. $ LDWRKU )
  1672. CALL DLASET( 'L', N-1, N-1, ZERO, ZERO,
  1673. $ WORK( IU+1 ), LDWRKU )
  1674. IE = ITAU
  1675. ITAUQ = IE + N
  1676. ITAUP = ITAUQ + N
  1677. IWORK = ITAUP + N
  1678. *
  1679. * Bidiagonalize R in WORK(IU), copying result to
  1680. * WORK(IR)
  1681. * (Workspace: need 2*N*N+4*N,
  1682. * prefer 2*N*N+3*N+2*N*NB)
  1683. *
  1684. CALL DGEBRD( N, N, WORK( IU ), LDWRKU, S,
  1685. $ WORK( IE ), WORK( ITAUQ ),
  1686. $ WORK( ITAUP ), WORK( IWORK ),
  1687. $ LWORK-IWORK+1, IERR )
  1688. CALL DLACPY( 'U', N, N, WORK( IU ), LDWRKU,
  1689. $ WORK( IR ), LDWRKR )
  1690. *
  1691. * Generate left bidiagonalizing vectors in WORK(IU)
  1692. * (Workspace: need 2*N*N+4*N, prefer 2*N*N+3*N+N*NB)
  1693. *
  1694. CALL DORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
  1695. $ WORK( ITAUQ ), WORK( IWORK ),
  1696. $ LWORK-IWORK+1, IERR )
  1697. *
  1698. * Generate right bidiagonalizing vectors in WORK(IR)
  1699. * (Workspace: need 2*N*N+4*N-1,
  1700. * prefer 2*N*N+3*N+(N-1)*NB)
  1701. *
  1702. CALL DORGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
  1703. $ WORK( ITAUP ), WORK( IWORK ),
  1704. $ LWORK-IWORK+1, IERR )
  1705. IWORK = IE + N
  1706. *
  1707. * Perform bidiagonal QR iteration, computing left
  1708. * singular vectors of R in WORK(IU) and computing
  1709. * right singular vectors of R in WORK(IR)
  1710. * (Workspace: need 2*N*N+BDSPAC)
  1711. *
  1712. CALL DBDSQR( 'U', N, N, N, 0, S, WORK( IE ),
  1713. $ WORK( IR ), LDWRKR, WORK( IU ),
  1714. $ LDWRKU, DUM, 1, WORK( IWORK ), INFO )
  1715. *
  1716. * Multiply Q in U by left singular vectors of R in
  1717. * WORK(IU), storing result in A
  1718. * (Workspace: need N*N)
  1719. *
  1720. CALL DGEMM( 'N', 'N', M, N, N, ONE, U, LDU,
  1721. $ WORK( IU ), LDWRKU, ZERO, A, LDA )
  1722. *
  1723. * Copy left singular vectors of A from A to U
  1724. *
  1725. CALL DLACPY( 'F', M, N, A, LDA, U, LDU )
  1726. *
  1727. * Copy right singular vectors of R from WORK(IR) to A
  1728. *
  1729. CALL DLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
  1730. $ LDA )
  1731. *
  1732. ELSE
  1733. *
  1734. * Insufficient workspace for a fast algorithm
  1735. *
  1736. ITAU = 1
  1737. IWORK = ITAU + N
  1738. *
  1739. * Compute A=Q*R, copying result to U
  1740. * (Workspace: need 2*N, prefer N+N*NB)
  1741. *
  1742. CALL DGEQRF( M, N, A, LDA, WORK( ITAU ),
  1743. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1744. CALL DLACPY( 'L', M, N, A, LDA, U, LDU )
  1745. *
  1746. * Generate Q in U
  1747. * (Workspace: need N+M, prefer N+M*NB)
  1748. *
  1749. CALL DORGQR( M, M, N, U, LDU, WORK( ITAU ),
  1750. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1751. IE = ITAU
  1752. ITAUQ = IE + N
  1753. ITAUP = ITAUQ + N
  1754. IWORK = ITAUP + N
  1755. *
  1756. * Zero out below R in A
  1757. *
  1758. CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ),
  1759. $ LDA )
  1760. *
  1761. * Bidiagonalize R in A
  1762. * (Workspace: need 4*N, prefer 3*N+2*N*NB)
  1763. *
  1764. CALL DGEBRD( N, N, A, LDA, S, WORK( IE ),
  1765. $ WORK( ITAUQ ), WORK( ITAUP ),
  1766. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1767. *
  1768. * Multiply Q in U by left bidiagonalizing vectors
  1769. * in A
  1770. * (Workspace: need 3*N+M, prefer 3*N+M*NB)
  1771. *
  1772. CALL DORMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
  1773. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  1774. $ LWORK-IWORK+1, IERR )
  1775. *
  1776. * Generate right bidiagonalizing vectors in A
  1777. * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  1778. *
  1779. CALL DORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
  1780. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1781. IWORK = IE + N
  1782. *
  1783. * Perform bidiagonal QR iteration, computing left
  1784. * singular vectors of A in U and computing right
  1785. * singular vectors of A in A
  1786. * (Workspace: need BDSPAC)
  1787. *
  1788. CALL DBDSQR( 'U', N, N, M, 0, S, WORK( IE ), A,
  1789. $ LDA, U, LDU, DUM, 1, WORK( IWORK ),
  1790. $ INFO )
  1791. *
  1792. END IF
  1793. *
  1794. ELSE IF( WNTVAS ) THEN
  1795. *
  1796. * Path 9 (M much larger than N, JOBU='A', JOBVT='S'
  1797. * or 'A')
  1798. * M left singular vectors to be computed in U and
  1799. * N right singular vectors to be computed in VT
  1800. *
  1801. IF( LWORK.GE.N*N+MAX( N+M, 4*N, BDSPAC ) ) THEN
  1802. *
  1803. * Sufficient workspace for a fast algorithm
  1804. *
  1805. IU = 1
  1806. IF( LWORK.GE.WRKBL+LDA*N ) THEN
  1807. *
  1808. * WORK(IU) is LDA by N
  1809. *
  1810. LDWRKU = LDA
  1811. ELSE
  1812. *
  1813. * WORK(IU) is N by N
  1814. *
  1815. LDWRKU = N
  1816. END IF
  1817. ITAU = IU + LDWRKU*N
  1818. IWORK = ITAU + N
  1819. *
  1820. * Compute A=Q*R, copying result to U
  1821. * (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
  1822. *
  1823. CALL DGEQRF( M, N, A, LDA, WORK( ITAU ),
  1824. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1825. CALL DLACPY( 'L', M, N, A, LDA, U, LDU )
  1826. *
  1827. * Generate Q in U
  1828. * (Workspace: need N*N+N+M, prefer N*N+N+M*NB)
  1829. *
  1830. CALL DORGQR( M, M, N, U, LDU, WORK( ITAU ),
  1831. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1832. *
  1833. * Copy R to WORK(IU), zeroing out below it
  1834. *
  1835. CALL DLACPY( 'U', N, N, A, LDA, WORK( IU ),
  1836. $ LDWRKU )
  1837. CALL DLASET( 'L', N-1, N-1, ZERO, ZERO,
  1838. $ WORK( IU+1 ), LDWRKU )
  1839. IE = ITAU
  1840. ITAUQ = IE + N
  1841. ITAUP = ITAUQ + N
  1842. IWORK = ITAUP + N
  1843. *
  1844. * Bidiagonalize R in WORK(IU), copying result to VT
  1845. * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
  1846. *
  1847. CALL DGEBRD( N, N, WORK( IU ), LDWRKU, S,
  1848. $ WORK( IE ), WORK( ITAUQ ),
  1849. $ WORK( ITAUP ), WORK( IWORK ),
  1850. $ LWORK-IWORK+1, IERR )
  1851. CALL DLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
  1852. $ LDVT )
  1853. *
  1854. * Generate left bidiagonalizing vectors in WORK(IU)
  1855. * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
  1856. *
  1857. CALL DORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
  1858. $ WORK( ITAUQ ), WORK( IWORK ),
  1859. $ LWORK-IWORK+1, IERR )
  1860. *
  1861. * Generate right bidiagonalizing vectors in VT
  1862. * (Workspace: need N*N+4*N-1,
  1863. * prefer N*N+3*N+(N-1)*NB)
  1864. *
  1865. CALL DORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1866. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1867. IWORK = IE + N
  1868. *
  1869. * Perform bidiagonal QR iteration, computing left
  1870. * singular vectors of R in WORK(IU) and computing
  1871. * right singular vectors of R in VT
  1872. * (Workspace: need N*N+BDSPAC)
  1873. *
  1874. CALL DBDSQR( 'U', N, N, N, 0, S, WORK( IE ), VT,
  1875. $ LDVT, WORK( IU ), LDWRKU, DUM, 1,
  1876. $ WORK( IWORK ), INFO )
  1877. *
  1878. * Multiply Q in U by left singular vectors of R in
  1879. * WORK(IU), storing result in A
  1880. * (Workspace: need N*N)
  1881. *
  1882. CALL DGEMM( 'N', 'N', M, N, N, ONE, U, LDU,
  1883. $ WORK( IU ), LDWRKU, ZERO, A, LDA )
  1884. *
  1885. * Copy left singular vectors of A from A to U
  1886. *
  1887. CALL DLACPY( 'F', M, N, A, LDA, U, LDU )
  1888. *
  1889. ELSE
  1890. *
  1891. * Insufficient workspace for a fast algorithm
  1892. *
  1893. ITAU = 1
  1894. IWORK = ITAU + N
  1895. *
  1896. * Compute A=Q*R, copying result to U
  1897. * (Workspace: need 2*N, prefer N+N*NB)
  1898. *
  1899. CALL DGEQRF( M, N, A, LDA, WORK( ITAU ),
  1900. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1901. CALL DLACPY( 'L', M, N, A, LDA, U, LDU )
  1902. *
  1903. * Generate Q in U
  1904. * (Workspace: need N+M, prefer N+M*NB)
  1905. *
  1906. CALL DORGQR( M, M, N, U, LDU, WORK( ITAU ),
  1907. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1908. *
  1909. * Copy R from A to VT, zeroing out below it
  1910. *
  1911. CALL DLACPY( 'U', N, N, A, LDA, VT, LDVT )
  1912. IF( N.GT.1 )
  1913. $ CALL DLASET( 'L', N-1, N-1, ZERO, ZERO,
  1914. $ VT( 2, 1 ), LDVT )
  1915. IE = ITAU
  1916. ITAUQ = IE + N
  1917. ITAUP = ITAUQ + N
  1918. IWORK = ITAUP + N
  1919. *
  1920. * Bidiagonalize R in VT
  1921. * (Workspace: need 4*N, prefer 3*N+2*N*NB)
  1922. *
  1923. CALL DGEBRD( N, N, VT, LDVT, S, WORK( IE ),
  1924. $ WORK( ITAUQ ), WORK( ITAUP ),
  1925. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1926. *
  1927. * Multiply Q in U by left bidiagonalizing vectors
  1928. * in VT
  1929. * (Workspace: need 3*N+M, prefer 3*N+M*NB)
  1930. *
  1931. CALL DORMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
  1932. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  1933. $ LWORK-IWORK+1, IERR )
  1934. *
  1935. * Generate right bidiagonalizing vectors in VT
  1936. * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  1937. *
  1938. CALL DORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1939. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1940. IWORK = IE + N
  1941. *
  1942. * Perform bidiagonal QR iteration, computing left
  1943. * singular vectors of A in U and computing right
  1944. * singular vectors of A in VT
  1945. * (Workspace: need BDSPAC)
  1946. *
  1947. CALL DBDSQR( 'U', N, N, M, 0, S, WORK( IE ), VT,
  1948. $ LDVT, U, LDU, DUM, 1, WORK( IWORK ),
  1949. $ INFO )
  1950. *
  1951. END IF
  1952. *
  1953. END IF
  1954. *
  1955. END IF
  1956. *
  1957. ELSE
  1958. *
  1959. * M .LT. MNTHR
  1960. *
  1961. * Path 10 (M at least N, but not much larger)
  1962. * Reduce to bidiagonal form without QR decomposition
  1963. *
  1964. IE = 1
  1965. ITAUQ = IE + N
  1966. ITAUP = ITAUQ + N
  1967. IWORK = ITAUP + N
  1968. *
  1969. * Bidiagonalize A
  1970. * (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB)
  1971. *
  1972. CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  1973. $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  1974. $ IERR )
  1975. IF( WNTUAS ) THEN
  1976. *
  1977. * If left singular vectors desired in U, copy result to U
  1978. * and generate left bidiagonalizing vectors in U
  1979. * (Workspace: need 3*N+NCU, prefer 3*N+NCU*NB)
  1980. *
  1981. CALL DLACPY( 'L', M, N, A, LDA, U, LDU )
  1982. IF( WNTUS )
  1983. $ NCU = N
  1984. IF( WNTUA )
  1985. $ NCU = M
  1986. CALL DORGBR( 'Q', M, NCU, N, U, LDU, WORK( ITAUQ ),
  1987. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1988. END IF
  1989. IF( WNTVAS ) THEN
  1990. *
  1991. * If right singular vectors desired in VT, copy result to
  1992. * VT and generate right bidiagonalizing vectors in VT
  1993. * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  1994. *
  1995. CALL DLACPY( 'U', N, N, A, LDA, VT, LDVT )
  1996. CALL DORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1997. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1998. END IF
  1999. IF( WNTUO ) THEN
  2000. *
  2001. * If left singular vectors desired in A, generate left
  2002. * bidiagonalizing vectors in A
  2003. * (Workspace: need 4*N, prefer 3*N+N*NB)
  2004. *
  2005. CALL DORGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
  2006. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2007. END IF
  2008. IF( WNTVO ) THEN
  2009. *
  2010. * If right singular vectors desired in A, generate right
  2011. * bidiagonalizing vectors in A
  2012. * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  2013. *
  2014. CALL DORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
  2015. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2016. END IF
  2017. IWORK = IE + N
  2018. IF( WNTUAS .OR. WNTUO )
  2019. $ NRU = M
  2020. IF( WNTUN )
  2021. $ NRU = 0
  2022. IF( WNTVAS .OR. WNTVO )
  2023. $ NCVT = N
  2024. IF( WNTVN )
  2025. $ NCVT = 0
  2026. IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
  2027. *
  2028. * Perform bidiagonal QR iteration, if desired, computing
  2029. * left singular vectors in U and computing right singular
  2030. * vectors in VT
  2031. * (Workspace: need BDSPAC)
  2032. *
  2033. CALL DBDSQR( 'U', N, NCVT, NRU, 0, S, WORK( IE ), VT,
  2034. $ LDVT, U, LDU, DUM, 1, WORK( IWORK ), INFO )
  2035. ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
  2036. *
  2037. * Perform bidiagonal QR iteration, if desired, computing
  2038. * left singular vectors in U and computing right singular
  2039. * vectors in A
  2040. * (Workspace: need BDSPAC)
  2041. *
  2042. CALL DBDSQR( 'U', N, NCVT, NRU, 0, S, WORK( IE ), A, LDA,
  2043. $ U, LDU, DUM, 1, WORK( IWORK ), INFO )
  2044. ELSE
  2045. *
  2046. * Perform bidiagonal QR iteration, if desired, computing
  2047. * left singular vectors in A and computing right singular
  2048. * vectors in VT
  2049. * (Workspace: need BDSPAC)
  2050. *
  2051. CALL DBDSQR( 'U', N, NCVT, NRU, 0, S, WORK( IE ), VT,
  2052. $ LDVT, A, LDA, DUM, 1, WORK( IWORK ), INFO )
  2053. END IF
  2054. *
  2055. END IF
  2056. *
  2057. ELSE
  2058. *
  2059. * A has more columns than rows. If A has sufficiently more
  2060. * columns than rows, first reduce using the LQ decomposition (if
  2061. * sufficient workspace available)
  2062. *
  2063. IF( N.GE.MNTHR ) THEN
  2064. *
  2065. IF( WNTVN ) THEN
  2066. *
  2067. * Path 1t(N much larger than M, JOBVT='N')
  2068. * No right singular vectors to be computed
  2069. *
  2070. ITAU = 1
  2071. IWORK = ITAU + M
  2072. *
  2073. * Compute A=L*Q
  2074. * (Workspace: need 2*M, prefer M+M*NB)
  2075. *
  2076. CALL DGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
  2077. $ LWORK-IWORK+1, IERR )
  2078. *
  2079. * Zero out above L
  2080. *
  2081. CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ), LDA )
  2082. IE = 1
  2083. ITAUQ = IE + M
  2084. ITAUP = ITAUQ + M
  2085. IWORK = ITAUP + M
  2086. *
  2087. * Bidiagonalize L in A
  2088. * (Workspace: need 4*M, prefer 3*M+2*M*NB)
  2089. *
  2090. CALL DGEBRD( M, M, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  2091. $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  2092. $ IERR )
  2093. IF( WNTUO .OR. WNTUAS ) THEN
  2094. *
  2095. * If left singular vectors desired, generate Q
  2096. * (Workspace: need 4*M, prefer 3*M+M*NB)
  2097. *
  2098. CALL DORGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
  2099. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2100. END IF
  2101. IWORK = IE + M
  2102. NRU = 0
  2103. IF( WNTUO .OR. WNTUAS )
  2104. $ NRU = M
  2105. *
  2106. * Perform bidiagonal QR iteration, computing left singular
  2107. * vectors of A in A if desired
  2108. * (Workspace: need BDSPAC)
  2109. *
  2110. CALL DBDSQR( 'U', M, 0, NRU, 0, S, WORK( IE ), DUM, 1, A,
  2111. $ LDA, DUM, 1, WORK( IWORK ), INFO )
  2112. *
  2113. * If left singular vectors desired in U, copy them there
  2114. *
  2115. IF( WNTUAS )
  2116. $ CALL DLACPY( 'F', M, M, A, LDA, U, LDU )
  2117. *
  2118. ELSE IF( WNTVO .AND. WNTUN ) THEN
  2119. *
  2120. * Path 2t(N much larger than M, JOBU='N', JOBVT='O')
  2121. * M right singular vectors to be overwritten on A and
  2122. * no left singular vectors to be computed
  2123. *
  2124. IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN
  2125. *
  2126. * Sufficient workspace for a fast algorithm
  2127. *
  2128. IR = 1
  2129. IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+LDA*M ) THEN
  2130. *
  2131. * WORK(IU) is LDA by N and WORK(IR) is LDA by M
  2132. *
  2133. LDWRKU = LDA
  2134. CHUNK = N
  2135. LDWRKR = LDA
  2136. ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+M*M ) THEN
  2137. *
  2138. * WORK(IU) is LDA by N and WORK(IR) is M by M
  2139. *
  2140. LDWRKU = LDA
  2141. CHUNK = N
  2142. LDWRKR = M
  2143. ELSE
  2144. *
  2145. * WORK(IU) is M by CHUNK and WORK(IR) is M by M
  2146. *
  2147. LDWRKU = M
  2148. CHUNK = ( LWORK-M*M-M ) / M
  2149. LDWRKR = M
  2150. END IF
  2151. ITAU = IR + LDWRKR*M
  2152. IWORK = ITAU + M
  2153. *
  2154. * Compute A=L*Q
  2155. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2156. *
  2157. CALL DGELQF( M, N, A, LDA, WORK( ITAU ),
  2158. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2159. *
  2160. * Copy L to WORK(IR) and zero out above it
  2161. *
  2162. CALL DLACPY( 'L', M, M, A, LDA, WORK( IR ), LDWRKR )
  2163. CALL DLASET( 'U', M-1, M-1, ZERO, ZERO,
  2164. $ WORK( IR+LDWRKR ), LDWRKR )
  2165. *
  2166. * Generate Q in A
  2167. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2168. *
  2169. CALL DORGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2170. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2171. IE = ITAU
  2172. ITAUQ = IE + M
  2173. ITAUP = ITAUQ + M
  2174. IWORK = ITAUP + M
  2175. *
  2176. * Bidiagonalize L in WORK(IR)
  2177. * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
  2178. *
  2179. CALL DGEBRD( M, M, WORK( IR ), LDWRKR, S, WORK( IE ),
  2180. $ WORK( ITAUQ ), WORK( ITAUP ),
  2181. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2182. *
  2183. * Generate right vectors bidiagonalizing L
  2184. * (Workspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
  2185. *
  2186. CALL DORGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
  2187. $ WORK( ITAUP ), WORK( IWORK ),
  2188. $ LWORK-IWORK+1, IERR )
  2189. IWORK = IE + M
  2190. *
  2191. * Perform bidiagonal QR iteration, computing right
  2192. * singular vectors of L in WORK(IR)
  2193. * (Workspace: need M*M+BDSPAC)
  2194. *
  2195. CALL DBDSQR( 'U', M, M, 0, 0, S, WORK( IE ),
  2196. $ WORK( IR ), LDWRKR, DUM, 1, DUM, 1,
  2197. $ WORK( IWORK ), INFO )
  2198. IU = IE + M
  2199. *
  2200. * Multiply right singular vectors of L in WORK(IR) by Q
  2201. * in A, storing result in WORK(IU) and copying to A
  2202. * (Workspace: need M*M+2*M, prefer M*M+M*N+M)
  2203. *
  2204. DO 30 I = 1, N, CHUNK
  2205. BLK = MIN( N-I+1, CHUNK )
  2206. CALL DGEMM( 'N', 'N', M, BLK, M, ONE, WORK( IR ),
  2207. $ LDWRKR, A( 1, I ), LDA, ZERO,
  2208. $ WORK( IU ), LDWRKU )
  2209. CALL DLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
  2210. $ A( 1, I ), LDA )
  2211. 30 CONTINUE
  2212. *
  2213. ELSE
  2214. *
  2215. * Insufficient workspace for a fast algorithm
  2216. *
  2217. IE = 1
  2218. ITAUQ = IE + M
  2219. ITAUP = ITAUQ + M
  2220. IWORK = ITAUP + M
  2221. *
  2222. * Bidiagonalize A
  2223. * (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
  2224. *
  2225. CALL DGEBRD( M, N, A, LDA, S, WORK( IE ),
  2226. $ WORK( ITAUQ ), WORK( ITAUP ),
  2227. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2228. *
  2229. * Generate right vectors bidiagonalizing A
  2230. * (Workspace: need 4*M, prefer 3*M+M*NB)
  2231. *
  2232. CALL DORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
  2233. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2234. IWORK = IE + M
  2235. *
  2236. * Perform bidiagonal QR iteration, computing right
  2237. * singular vectors of A in A
  2238. * (Workspace: need BDSPAC)
  2239. *
  2240. CALL DBDSQR( 'L', M, N, 0, 0, S, WORK( IE ), A, LDA,
  2241. $ DUM, 1, DUM, 1, WORK( IWORK ), INFO )
  2242. *
  2243. END IF
  2244. *
  2245. ELSE IF( WNTVO .AND. WNTUAS ) THEN
  2246. *
  2247. * Path 3t(N much larger than M, JOBU='S' or 'A', JOBVT='O')
  2248. * M right singular vectors to be overwritten on A and
  2249. * M left singular vectors to be computed in U
  2250. *
  2251. IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN
  2252. *
  2253. * Sufficient workspace for a fast algorithm
  2254. *
  2255. IR = 1
  2256. IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+LDA*M ) THEN
  2257. *
  2258. * WORK(IU) is LDA by N and WORK(IR) is LDA by M
  2259. *
  2260. LDWRKU = LDA
  2261. CHUNK = N
  2262. LDWRKR = LDA
  2263. ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+M*M ) THEN
  2264. *
  2265. * WORK(IU) is LDA by N and WORK(IR) is M by M
  2266. *
  2267. LDWRKU = LDA
  2268. CHUNK = N
  2269. LDWRKR = M
  2270. ELSE
  2271. *
  2272. * WORK(IU) is M by CHUNK and WORK(IR) is M by M
  2273. *
  2274. LDWRKU = M
  2275. CHUNK = ( LWORK-M*M-M ) / M
  2276. LDWRKR = M
  2277. END IF
  2278. ITAU = IR + LDWRKR*M
  2279. IWORK = ITAU + M
  2280. *
  2281. * Compute A=L*Q
  2282. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2283. *
  2284. CALL DGELQF( M, N, A, LDA, WORK( ITAU ),
  2285. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2286. *
  2287. * Copy L to U, zeroing about above it
  2288. *
  2289. CALL DLACPY( 'L', M, M, A, LDA, U, LDU )
  2290. CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ),
  2291. $ LDU )
  2292. *
  2293. * Generate Q in A
  2294. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2295. *
  2296. CALL DORGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2297. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2298. IE = ITAU
  2299. ITAUQ = IE + M
  2300. ITAUP = ITAUQ + M
  2301. IWORK = ITAUP + M
  2302. *
  2303. * Bidiagonalize L in U, copying result to WORK(IR)
  2304. * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
  2305. *
  2306. CALL DGEBRD( M, M, U, LDU, S, WORK( IE ),
  2307. $ WORK( ITAUQ ), WORK( ITAUP ),
  2308. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2309. CALL DLACPY( 'U', M, M, U, LDU, WORK( IR ), LDWRKR )
  2310. *
  2311. * Generate right vectors bidiagonalizing L in WORK(IR)
  2312. * (Workspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
  2313. *
  2314. CALL DORGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
  2315. $ WORK( ITAUP ), WORK( IWORK ),
  2316. $ LWORK-IWORK+1, IERR )
  2317. *
  2318. * Generate left vectors bidiagonalizing L in U
  2319. * (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB)
  2320. *
  2321. CALL DORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  2322. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2323. IWORK = IE + M
  2324. *
  2325. * Perform bidiagonal QR iteration, computing left
  2326. * singular vectors of L in U, and computing right
  2327. * singular vectors of L in WORK(IR)
  2328. * (Workspace: need M*M+BDSPAC)
  2329. *
  2330. CALL DBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
  2331. $ WORK( IR ), LDWRKR, U, LDU, DUM, 1,
  2332. $ WORK( IWORK ), INFO )
  2333. IU = IE + M
  2334. *
  2335. * Multiply right singular vectors of L in WORK(IR) by Q
  2336. * in A, storing result in WORK(IU) and copying to A
  2337. * (Workspace: need M*M+2*M, prefer M*M+M*N+M))
  2338. *
  2339. DO 40 I = 1, N, CHUNK
  2340. BLK = MIN( N-I+1, CHUNK )
  2341. CALL DGEMM( 'N', 'N', M, BLK, M, ONE, WORK( IR ),
  2342. $ LDWRKR, A( 1, I ), LDA, ZERO,
  2343. $ WORK( IU ), LDWRKU )
  2344. CALL DLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
  2345. $ A( 1, I ), LDA )
  2346. 40 CONTINUE
  2347. *
  2348. ELSE
  2349. *
  2350. * Insufficient workspace for a fast algorithm
  2351. *
  2352. ITAU = 1
  2353. IWORK = ITAU + M
  2354. *
  2355. * Compute A=L*Q
  2356. * (Workspace: need 2*M, prefer M+M*NB)
  2357. *
  2358. CALL DGELQF( M, N, A, LDA, WORK( ITAU ),
  2359. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2360. *
  2361. * Copy L to U, zeroing out above it
  2362. *
  2363. CALL DLACPY( 'L', M, M, A, LDA, U, LDU )
  2364. CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ),
  2365. $ LDU )
  2366. *
  2367. * Generate Q in A
  2368. * (Workspace: need 2*M, prefer M+M*NB)
  2369. *
  2370. CALL DORGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2371. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2372. IE = ITAU
  2373. ITAUQ = IE + M
  2374. ITAUP = ITAUQ + M
  2375. IWORK = ITAUP + M
  2376. *
  2377. * Bidiagonalize L in U
  2378. * (Workspace: need 4*M, prefer 3*M+2*M*NB)
  2379. *
  2380. CALL DGEBRD( M, M, U, LDU, S, WORK( IE ),
  2381. $ WORK( ITAUQ ), WORK( ITAUP ),
  2382. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2383. *
  2384. * Multiply right vectors bidiagonalizing L by Q in A
  2385. * (Workspace: need 3*M+N, prefer 3*M+N*NB)
  2386. *
  2387. CALL DORMBR( 'P', 'L', 'T', M, N, M, U, LDU,
  2388. $ WORK( ITAUP ), A, LDA, WORK( IWORK ),
  2389. $ LWORK-IWORK+1, IERR )
  2390. *
  2391. * Generate left vectors bidiagonalizing L in U
  2392. * (Workspace: need 4*M, prefer 3*M+M*NB)
  2393. *
  2394. CALL DORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  2395. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2396. IWORK = IE + M
  2397. *
  2398. * Perform bidiagonal QR iteration, computing left
  2399. * singular vectors of A in U and computing right
  2400. * singular vectors of A in A
  2401. * (Workspace: need BDSPAC)
  2402. *
  2403. CALL DBDSQR( 'U', M, N, M, 0, S, WORK( IE ), A, LDA,
  2404. $ U, LDU, DUM, 1, WORK( IWORK ), INFO )
  2405. *
  2406. END IF
  2407. *
  2408. ELSE IF( WNTVS ) THEN
  2409. *
  2410. IF( WNTUN ) THEN
  2411. *
  2412. * Path 4t(N much larger than M, JOBU='N', JOBVT='S')
  2413. * M right singular vectors to be computed in VT and
  2414. * no left singular vectors to be computed
  2415. *
  2416. IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN
  2417. *
  2418. * Sufficient workspace for a fast algorithm
  2419. *
  2420. IR = 1
  2421. IF( LWORK.GE.WRKBL+LDA*M ) THEN
  2422. *
  2423. * WORK(IR) is LDA by M
  2424. *
  2425. LDWRKR = LDA
  2426. ELSE
  2427. *
  2428. * WORK(IR) is M by M
  2429. *
  2430. LDWRKR = M
  2431. END IF
  2432. ITAU = IR + LDWRKR*M
  2433. IWORK = ITAU + M
  2434. *
  2435. * Compute A=L*Q
  2436. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2437. *
  2438. CALL DGELQF( M, N, A, LDA, WORK( ITAU ),
  2439. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2440. *
  2441. * Copy L to WORK(IR), zeroing out above it
  2442. *
  2443. CALL DLACPY( 'L', M, M, A, LDA, WORK( IR ),
  2444. $ LDWRKR )
  2445. CALL DLASET( 'U', M-1, M-1, ZERO, ZERO,
  2446. $ WORK( IR+LDWRKR ), LDWRKR )
  2447. *
  2448. * Generate Q in A
  2449. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2450. *
  2451. CALL DORGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2452. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2453. IE = ITAU
  2454. ITAUQ = IE + M
  2455. ITAUP = ITAUQ + M
  2456. IWORK = ITAUP + M
  2457. *
  2458. * Bidiagonalize L in WORK(IR)
  2459. * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
  2460. *
  2461. CALL DGEBRD( M, M, WORK( IR ), LDWRKR, S,
  2462. $ WORK( IE ), WORK( ITAUQ ),
  2463. $ WORK( ITAUP ), WORK( IWORK ),
  2464. $ LWORK-IWORK+1, IERR )
  2465. *
  2466. * Generate right vectors bidiagonalizing L in
  2467. * WORK(IR)
  2468. * (Workspace: need M*M+4*M, prefer M*M+3*M+(M-1)*NB)
  2469. *
  2470. CALL DORGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
  2471. $ WORK( ITAUP ), WORK( IWORK ),
  2472. $ LWORK-IWORK+1, IERR )
  2473. IWORK = IE + M
  2474. *
  2475. * Perform bidiagonal QR iteration, computing right
  2476. * singular vectors of L in WORK(IR)
  2477. * (Workspace: need M*M+BDSPAC)
  2478. *
  2479. CALL DBDSQR( 'U', M, M, 0, 0, S, WORK( IE ),
  2480. $ WORK( IR ), LDWRKR, DUM, 1, DUM, 1,
  2481. $ WORK( IWORK ), INFO )
  2482. *
  2483. * Multiply right singular vectors of L in WORK(IR) by
  2484. * Q in A, storing result in VT
  2485. * (Workspace: need M*M)
  2486. *
  2487. CALL DGEMM( 'N', 'N', M, N, M, ONE, WORK( IR ),
  2488. $ LDWRKR, A, LDA, ZERO, VT, LDVT )
  2489. *
  2490. ELSE
  2491. *
  2492. * Insufficient workspace for a fast algorithm
  2493. *
  2494. ITAU = 1
  2495. IWORK = ITAU + M
  2496. *
  2497. * Compute A=L*Q
  2498. * (Workspace: need 2*M, prefer M+M*NB)
  2499. *
  2500. CALL DGELQF( M, N, A, LDA, WORK( ITAU ),
  2501. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2502. *
  2503. * Copy result to VT
  2504. *
  2505. CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT )
  2506. *
  2507. * Generate Q in VT
  2508. * (Workspace: need 2*M, prefer M+M*NB)
  2509. *
  2510. CALL DORGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
  2511. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2512. IE = ITAU
  2513. ITAUQ = IE + M
  2514. ITAUP = ITAUQ + M
  2515. IWORK = ITAUP + M
  2516. *
  2517. * Zero out above L in A
  2518. *
  2519. CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ),
  2520. $ LDA )
  2521. *
  2522. * Bidiagonalize L in A
  2523. * (Workspace: need 4*M, prefer 3*M+2*M*NB)
  2524. *
  2525. CALL DGEBRD( M, M, A, LDA, S, WORK( IE ),
  2526. $ WORK( ITAUQ ), WORK( ITAUP ),
  2527. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2528. *
  2529. * Multiply right vectors bidiagonalizing L by Q in VT
  2530. * (Workspace: need 3*M+N, prefer 3*M+N*NB)
  2531. *
  2532. CALL DORMBR( 'P', 'L', 'T', M, N, M, A, LDA,
  2533. $ WORK( ITAUP ), VT, LDVT,
  2534. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2535. IWORK = IE + M
  2536. *
  2537. * Perform bidiagonal QR iteration, computing right
  2538. * singular vectors of A in VT
  2539. * (Workspace: need BDSPAC)
  2540. *
  2541. CALL DBDSQR( 'U', M, N, 0, 0, S, WORK( IE ), VT,
  2542. $ LDVT, DUM, 1, DUM, 1, WORK( IWORK ),
  2543. $ INFO )
  2544. *
  2545. END IF
  2546. *
  2547. ELSE IF( WNTUO ) THEN
  2548. *
  2549. * Path 5t(N much larger than M, JOBU='O', JOBVT='S')
  2550. * M right singular vectors to be computed in VT and
  2551. * M left singular vectors to be overwritten on A
  2552. *
  2553. IF( LWORK.GE.2*M*M+MAX( 4*M, BDSPAC ) ) THEN
  2554. *
  2555. * Sufficient workspace for a fast algorithm
  2556. *
  2557. IU = 1
  2558. IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
  2559. *
  2560. * WORK(IU) is LDA by M and WORK(IR) is LDA by M
  2561. *
  2562. LDWRKU = LDA
  2563. IR = IU + LDWRKU*M
  2564. LDWRKR = LDA
  2565. ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
  2566. *
  2567. * WORK(IU) is LDA by M and WORK(IR) is M by M
  2568. *
  2569. LDWRKU = LDA
  2570. IR = IU + LDWRKU*M
  2571. LDWRKR = M
  2572. ELSE
  2573. *
  2574. * WORK(IU) is M by M and WORK(IR) is M by M
  2575. *
  2576. LDWRKU = M
  2577. IR = IU + LDWRKU*M
  2578. LDWRKR = M
  2579. END IF
  2580. ITAU = IR + LDWRKR*M
  2581. IWORK = ITAU + M
  2582. *
  2583. * Compute A=L*Q
  2584. * (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
  2585. *
  2586. CALL DGELQF( M, N, A, LDA, WORK( ITAU ),
  2587. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2588. *
  2589. * Copy L to WORK(IU), zeroing out below it
  2590. *
  2591. CALL DLACPY( 'L', M, M, A, LDA, WORK( IU ),
  2592. $ LDWRKU )
  2593. CALL DLASET( 'U', M-1, M-1, ZERO, ZERO,
  2594. $ WORK( IU+LDWRKU ), LDWRKU )
  2595. *
  2596. * Generate Q in A
  2597. * (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
  2598. *
  2599. CALL DORGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2600. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2601. IE = ITAU
  2602. ITAUQ = IE + M
  2603. ITAUP = ITAUQ + M
  2604. IWORK = ITAUP + M
  2605. *
  2606. * Bidiagonalize L in WORK(IU), copying result to
  2607. * WORK(IR)
  2608. * (Workspace: need 2*M*M+4*M,
  2609. * prefer 2*M*M+3*M+2*M*NB)
  2610. *
  2611. CALL DGEBRD( M, M, WORK( IU ), LDWRKU, S,
  2612. $ WORK( IE ), WORK( ITAUQ ),
  2613. $ WORK( ITAUP ), WORK( IWORK ),
  2614. $ LWORK-IWORK+1, IERR )
  2615. CALL DLACPY( 'L', M, M, WORK( IU ), LDWRKU,
  2616. $ WORK( IR ), LDWRKR )
  2617. *
  2618. * Generate right bidiagonalizing vectors in WORK(IU)
  2619. * (Workspace: need 2*M*M+4*M-1,
  2620. * prefer 2*M*M+3*M+(M-1)*NB)
  2621. *
  2622. CALL DORGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
  2623. $ WORK( ITAUP ), WORK( IWORK ),
  2624. $ LWORK-IWORK+1, IERR )
  2625. *
  2626. * Generate left bidiagonalizing vectors in WORK(IR)
  2627. * (Workspace: need 2*M*M+4*M, prefer 2*M*M+3*M+M*NB)
  2628. *
  2629. CALL DORGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
  2630. $ WORK( ITAUQ ), WORK( IWORK ),
  2631. $ LWORK-IWORK+1, IERR )
  2632. IWORK = IE + M
  2633. *
  2634. * Perform bidiagonal QR iteration, computing left
  2635. * singular vectors of L in WORK(IR) and computing
  2636. * right singular vectors of L in WORK(IU)
  2637. * (Workspace: need 2*M*M+BDSPAC)
  2638. *
  2639. CALL DBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
  2640. $ WORK( IU ), LDWRKU, WORK( IR ),
  2641. $ LDWRKR, DUM, 1, WORK( IWORK ), INFO )
  2642. *
  2643. * Multiply right singular vectors of L in WORK(IU) by
  2644. * Q in A, storing result in VT
  2645. * (Workspace: need M*M)
  2646. *
  2647. CALL DGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ),
  2648. $ LDWRKU, A, LDA, ZERO, VT, LDVT )
  2649. *
  2650. * Copy left singular vectors of L to A
  2651. * (Workspace: need M*M)
  2652. *
  2653. CALL DLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
  2654. $ LDA )
  2655. *
  2656. ELSE
  2657. *
  2658. * Insufficient workspace for a fast algorithm
  2659. *
  2660. ITAU = 1
  2661. IWORK = ITAU + M
  2662. *
  2663. * Compute A=L*Q, copying result to VT
  2664. * (Workspace: need 2*M, prefer M+M*NB)
  2665. *
  2666. CALL DGELQF( M, N, A, LDA, WORK( ITAU ),
  2667. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2668. CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT )
  2669. *
  2670. * Generate Q in VT
  2671. * (Workspace: need 2*M, prefer M+M*NB)
  2672. *
  2673. CALL DORGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
  2674. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2675. IE = ITAU
  2676. ITAUQ = IE + M
  2677. ITAUP = ITAUQ + M
  2678. IWORK = ITAUP + M
  2679. *
  2680. * Zero out above L in A
  2681. *
  2682. CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ),
  2683. $ LDA )
  2684. *
  2685. * Bidiagonalize L in A
  2686. * (Workspace: need 4*M, prefer 3*M+2*M*NB)
  2687. *
  2688. CALL DGEBRD( M, M, A, LDA, S, WORK( IE ),
  2689. $ WORK( ITAUQ ), WORK( ITAUP ),
  2690. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2691. *
  2692. * Multiply right vectors bidiagonalizing L by Q in VT
  2693. * (Workspace: need 3*M+N, prefer 3*M+N*NB)
  2694. *
  2695. CALL DORMBR( 'P', 'L', 'T', M, N, M, A, LDA,
  2696. $ WORK( ITAUP ), VT, LDVT,
  2697. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2698. *
  2699. * Generate left bidiagonalizing vectors of L in A
  2700. * (Workspace: need 4*M, prefer 3*M+M*NB)
  2701. *
  2702. CALL DORGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
  2703. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2704. IWORK = IE + M
  2705. *
  2706. * Perform bidiagonal QR iteration, compute left
  2707. * singular vectors of A in A and compute right
  2708. * singular vectors of A in VT
  2709. * (Workspace: need BDSPAC)
  2710. *
  2711. CALL DBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT,
  2712. $ LDVT, A, LDA, DUM, 1, WORK( IWORK ),
  2713. $ INFO )
  2714. *
  2715. END IF
  2716. *
  2717. ELSE IF( WNTUAS ) THEN
  2718. *
  2719. * Path 6t(N much larger than M, JOBU='S' or 'A',
  2720. * JOBVT='S')
  2721. * M right singular vectors to be computed in VT and
  2722. * M left singular vectors to be computed in U
  2723. *
  2724. IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN
  2725. *
  2726. * Sufficient workspace for a fast algorithm
  2727. *
  2728. IU = 1
  2729. IF( LWORK.GE.WRKBL+LDA*M ) THEN
  2730. *
  2731. * WORK(IU) is LDA by N
  2732. *
  2733. LDWRKU = LDA
  2734. ELSE
  2735. *
  2736. * WORK(IU) is LDA by M
  2737. *
  2738. LDWRKU = M
  2739. END IF
  2740. ITAU = IU + LDWRKU*M
  2741. IWORK = ITAU + M
  2742. *
  2743. * Compute A=L*Q
  2744. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2745. *
  2746. CALL DGELQF( M, N, A, LDA, WORK( ITAU ),
  2747. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2748. *
  2749. * Copy L to WORK(IU), zeroing out above it
  2750. *
  2751. CALL DLACPY( 'L', M, M, A, LDA, WORK( IU ),
  2752. $ LDWRKU )
  2753. CALL DLASET( 'U', M-1, M-1, ZERO, ZERO,
  2754. $ WORK( IU+LDWRKU ), LDWRKU )
  2755. *
  2756. * Generate Q in A
  2757. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2758. *
  2759. CALL DORGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2760. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2761. IE = ITAU
  2762. ITAUQ = IE + M
  2763. ITAUP = ITAUQ + M
  2764. IWORK = ITAUP + M
  2765. *
  2766. * Bidiagonalize L in WORK(IU), copying result to U
  2767. * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
  2768. *
  2769. CALL DGEBRD( M, M, WORK( IU ), LDWRKU, S,
  2770. $ WORK( IE ), WORK( ITAUQ ),
  2771. $ WORK( ITAUP ), WORK( IWORK ),
  2772. $ LWORK-IWORK+1, IERR )
  2773. CALL DLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
  2774. $ LDU )
  2775. *
  2776. * Generate right bidiagonalizing vectors in WORK(IU)
  2777. * (Workspace: need M*M+4*M-1,
  2778. * prefer M*M+3*M+(M-1)*NB)
  2779. *
  2780. CALL DORGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
  2781. $ WORK( ITAUP ), WORK( IWORK ),
  2782. $ LWORK-IWORK+1, IERR )
  2783. *
  2784. * Generate left bidiagonalizing vectors in U
  2785. * (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB)
  2786. *
  2787. CALL DORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  2788. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2789. IWORK = IE + M
  2790. *
  2791. * Perform bidiagonal QR iteration, computing left
  2792. * singular vectors of L in U and computing right
  2793. * singular vectors of L in WORK(IU)
  2794. * (Workspace: need M*M+BDSPAC)
  2795. *
  2796. CALL DBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
  2797. $ WORK( IU ), LDWRKU, U, LDU, DUM, 1,
  2798. $ WORK( IWORK ), INFO )
  2799. *
  2800. * Multiply right singular vectors of L in WORK(IU) by
  2801. * Q in A, storing result in VT
  2802. * (Workspace: need M*M)
  2803. *
  2804. CALL DGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ),
  2805. $ LDWRKU, A, LDA, ZERO, VT, LDVT )
  2806. *
  2807. ELSE
  2808. *
  2809. * Insufficient workspace for a fast algorithm
  2810. *
  2811. ITAU = 1
  2812. IWORK = ITAU + M
  2813. *
  2814. * Compute A=L*Q, copying result to VT
  2815. * (Workspace: need 2*M, prefer M+M*NB)
  2816. *
  2817. CALL DGELQF( M, N, A, LDA, WORK( ITAU ),
  2818. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2819. CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT )
  2820. *
  2821. * Generate Q in VT
  2822. * (Workspace: need 2*M, prefer M+M*NB)
  2823. *
  2824. CALL DORGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
  2825. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2826. *
  2827. * Copy L to U, zeroing out above it
  2828. *
  2829. CALL DLACPY( 'L', M, M, A, LDA, U, LDU )
  2830. CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ),
  2831. $ LDU )
  2832. IE = ITAU
  2833. ITAUQ = IE + M
  2834. ITAUP = ITAUQ + M
  2835. IWORK = ITAUP + M
  2836. *
  2837. * Bidiagonalize L in U
  2838. * (Workspace: need 4*M, prefer 3*M+2*M*NB)
  2839. *
  2840. CALL DGEBRD( M, M, U, LDU, S, WORK( IE ),
  2841. $ WORK( ITAUQ ), WORK( ITAUP ),
  2842. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2843. *
  2844. * Multiply right bidiagonalizing vectors in U by Q
  2845. * in VT
  2846. * (Workspace: need 3*M+N, prefer 3*M+N*NB)
  2847. *
  2848. CALL DORMBR( 'P', 'L', 'T', M, N, M, U, LDU,
  2849. $ WORK( ITAUP ), VT, LDVT,
  2850. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2851. *
  2852. * Generate left bidiagonalizing vectors in U
  2853. * (Workspace: need 4*M, prefer 3*M+M*NB)
  2854. *
  2855. CALL DORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  2856. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2857. IWORK = IE + M
  2858. *
  2859. * Perform bidiagonal QR iteration, computing left
  2860. * singular vectors of A in U and computing right
  2861. * singular vectors of A in VT
  2862. * (Workspace: need BDSPAC)
  2863. *
  2864. CALL DBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT,
  2865. $ LDVT, U, LDU, DUM, 1, WORK( IWORK ),
  2866. $ INFO )
  2867. *
  2868. END IF
  2869. *
  2870. END IF
  2871. *
  2872. ELSE IF( WNTVA ) THEN
  2873. *
  2874. IF( WNTUN ) THEN
  2875. *
  2876. * Path 7t(N much larger than M, JOBU='N', JOBVT='A')
  2877. * N right singular vectors to be computed in VT and
  2878. * no left singular vectors to be computed
  2879. *
  2880. IF( LWORK.GE.M*M+MAX( N+M, 4*M, BDSPAC ) ) THEN
  2881. *
  2882. * Sufficient workspace for a fast algorithm
  2883. *
  2884. IR = 1
  2885. IF( LWORK.GE.WRKBL+LDA*M ) THEN
  2886. *
  2887. * WORK(IR) is LDA by M
  2888. *
  2889. LDWRKR = LDA
  2890. ELSE
  2891. *
  2892. * WORK(IR) is M by M
  2893. *
  2894. LDWRKR = M
  2895. END IF
  2896. ITAU = IR + LDWRKR*M
  2897. IWORK = ITAU + M
  2898. *
  2899. * Compute A=L*Q, copying result to VT
  2900. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  2901. *
  2902. CALL DGELQF( M, N, A, LDA, WORK( ITAU ),
  2903. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2904. CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT )
  2905. *
  2906. * Copy L to WORK(IR), zeroing out above it
  2907. *
  2908. CALL DLACPY( 'L', M, M, A, LDA, WORK( IR ),
  2909. $ LDWRKR )
  2910. CALL DLASET( 'U', M-1, M-1, ZERO, ZERO,
  2911. $ WORK( IR+LDWRKR ), LDWRKR )
  2912. *
  2913. * Generate Q in VT
  2914. * (Workspace: need M*M+M+N, prefer M*M+M+N*NB)
  2915. *
  2916. CALL DORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  2917. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2918. IE = ITAU
  2919. ITAUQ = IE + M
  2920. ITAUP = ITAUQ + M
  2921. IWORK = ITAUP + M
  2922. *
  2923. * Bidiagonalize L in WORK(IR)
  2924. * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
  2925. *
  2926. CALL DGEBRD( M, M, WORK( IR ), LDWRKR, S,
  2927. $ WORK( IE ), WORK( ITAUQ ),
  2928. $ WORK( ITAUP ), WORK( IWORK ),
  2929. $ LWORK-IWORK+1, IERR )
  2930. *
  2931. * Generate right bidiagonalizing vectors in WORK(IR)
  2932. * (Workspace: need M*M+4*M-1,
  2933. * prefer M*M+3*M+(M-1)*NB)
  2934. *
  2935. CALL DORGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
  2936. $ WORK( ITAUP ), WORK( IWORK ),
  2937. $ LWORK-IWORK+1, IERR )
  2938. IWORK = IE + M
  2939. *
  2940. * Perform bidiagonal QR iteration, computing right
  2941. * singular vectors of L in WORK(IR)
  2942. * (Workspace: need M*M+BDSPAC)
  2943. *
  2944. CALL DBDSQR( 'U', M, M, 0, 0, S, WORK( IE ),
  2945. $ WORK( IR ), LDWRKR, DUM, 1, DUM, 1,
  2946. $ WORK( IWORK ), INFO )
  2947. *
  2948. * Multiply right singular vectors of L in WORK(IR) by
  2949. * Q in VT, storing result in A
  2950. * (Workspace: need M*M)
  2951. *
  2952. CALL DGEMM( 'N', 'N', M, N, M, ONE, WORK( IR ),
  2953. $ LDWRKR, VT, LDVT, ZERO, A, LDA )
  2954. *
  2955. * Copy right singular vectors of A from A to VT
  2956. *
  2957. CALL DLACPY( 'F', M, N, A, LDA, VT, LDVT )
  2958. *
  2959. ELSE
  2960. *
  2961. * Insufficient workspace for a fast algorithm
  2962. *
  2963. ITAU = 1
  2964. IWORK = ITAU + M
  2965. *
  2966. * Compute A=L*Q, copying result to VT
  2967. * (Workspace: need 2*M, prefer M+M*NB)
  2968. *
  2969. CALL DGELQF( M, N, A, LDA, WORK( ITAU ),
  2970. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2971. CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT )
  2972. *
  2973. * Generate Q in VT
  2974. * (Workspace: need M+N, prefer M+N*NB)
  2975. *
  2976. CALL DORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  2977. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2978. IE = ITAU
  2979. ITAUQ = IE + M
  2980. ITAUP = ITAUQ + M
  2981. IWORK = ITAUP + M
  2982. *
  2983. * Zero out above L in A
  2984. *
  2985. CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ),
  2986. $ LDA )
  2987. *
  2988. * Bidiagonalize L in A
  2989. * (Workspace: need 4*M, prefer 3*M+2*M*NB)
  2990. *
  2991. CALL DGEBRD( M, M, A, LDA, S, WORK( IE ),
  2992. $ WORK( ITAUQ ), WORK( ITAUP ),
  2993. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2994. *
  2995. * Multiply right bidiagonalizing vectors in A by Q
  2996. * in VT
  2997. * (Workspace: need 3*M+N, prefer 3*M+N*NB)
  2998. *
  2999. CALL DORMBR( 'P', 'L', 'T', M, N, M, A, LDA,
  3000. $ WORK( ITAUP ), VT, LDVT,
  3001. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3002. IWORK = IE + M
  3003. *
  3004. * Perform bidiagonal QR iteration, computing right
  3005. * singular vectors of A in VT
  3006. * (Workspace: need BDSPAC)
  3007. *
  3008. CALL DBDSQR( 'U', M, N, 0, 0, S, WORK( IE ), VT,
  3009. $ LDVT, DUM, 1, DUM, 1, WORK( IWORK ),
  3010. $ INFO )
  3011. *
  3012. END IF
  3013. *
  3014. ELSE IF( WNTUO ) THEN
  3015. *
  3016. * Path 8t(N much larger than M, JOBU='O', JOBVT='A')
  3017. * N right singular vectors to be computed in VT and
  3018. * M left singular vectors to be overwritten on A
  3019. *
  3020. IF( LWORK.GE.2*M*M+MAX( N+M, 4*M, BDSPAC ) ) THEN
  3021. *
  3022. * Sufficient workspace for a fast algorithm
  3023. *
  3024. IU = 1
  3025. IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
  3026. *
  3027. * WORK(IU) is LDA by M and WORK(IR) is LDA by M
  3028. *
  3029. LDWRKU = LDA
  3030. IR = IU + LDWRKU*M
  3031. LDWRKR = LDA
  3032. ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
  3033. *
  3034. * WORK(IU) is LDA by M and WORK(IR) is M by M
  3035. *
  3036. LDWRKU = LDA
  3037. IR = IU + LDWRKU*M
  3038. LDWRKR = M
  3039. ELSE
  3040. *
  3041. * WORK(IU) is M by M and WORK(IR) is M by M
  3042. *
  3043. LDWRKU = M
  3044. IR = IU + LDWRKU*M
  3045. LDWRKR = M
  3046. END IF
  3047. ITAU = IR + LDWRKR*M
  3048. IWORK = ITAU + M
  3049. *
  3050. * Compute A=L*Q, copying result to VT
  3051. * (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
  3052. *
  3053. CALL DGELQF( M, N, A, LDA, WORK( ITAU ),
  3054. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3055. CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT )
  3056. *
  3057. * Generate Q in VT
  3058. * (Workspace: need 2*M*M+M+N, prefer 2*M*M+M+N*NB)
  3059. *
  3060. CALL DORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  3061. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3062. *
  3063. * Copy L to WORK(IU), zeroing out above it
  3064. *
  3065. CALL DLACPY( 'L', M, M, A, LDA, WORK( IU ),
  3066. $ LDWRKU )
  3067. CALL DLASET( 'U', M-1, M-1, ZERO, ZERO,
  3068. $ WORK( IU+LDWRKU ), LDWRKU )
  3069. IE = ITAU
  3070. ITAUQ = IE + M
  3071. ITAUP = ITAUQ + M
  3072. IWORK = ITAUP + M
  3073. *
  3074. * Bidiagonalize L in WORK(IU), copying result to
  3075. * WORK(IR)
  3076. * (Workspace: need 2*M*M+4*M,
  3077. * prefer 2*M*M+3*M+2*M*NB)
  3078. *
  3079. CALL DGEBRD( M, M, WORK( IU ), LDWRKU, S,
  3080. $ WORK( IE ), WORK( ITAUQ ),
  3081. $ WORK( ITAUP ), WORK( IWORK ),
  3082. $ LWORK-IWORK+1, IERR )
  3083. CALL DLACPY( 'L', M, M, WORK( IU ), LDWRKU,
  3084. $ WORK( IR ), LDWRKR )
  3085. *
  3086. * Generate right bidiagonalizing vectors in WORK(IU)
  3087. * (Workspace: need 2*M*M+4*M-1,
  3088. * prefer 2*M*M+3*M+(M-1)*NB)
  3089. *
  3090. CALL DORGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
  3091. $ WORK( ITAUP ), WORK( IWORK ),
  3092. $ LWORK-IWORK+1, IERR )
  3093. *
  3094. * Generate left bidiagonalizing vectors in WORK(IR)
  3095. * (Workspace: need 2*M*M+4*M, prefer 2*M*M+3*M+M*NB)
  3096. *
  3097. CALL DORGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
  3098. $ WORK( ITAUQ ), WORK( IWORK ),
  3099. $ LWORK-IWORK+1, IERR )
  3100. IWORK = IE + M
  3101. *
  3102. * Perform bidiagonal QR iteration, computing left
  3103. * singular vectors of L in WORK(IR) and computing
  3104. * right singular vectors of L in WORK(IU)
  3105. * (Workspace: need 2*M*M+BDSPAC)
  3106. *
  3107. CALL DBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
  3108. $ WORK( IU ), LDWRKU, WORK( IR ),
  3109. $ LDWRKR, DUM, 1, WORK( IWORK ), INFO )
  3110. *
  3111. * Multiply right singular vectors of L in WORK(IU) by
  3112. * Q in VT, storing result in A
  3113. * (Workspace: need M*M)
  3114. *
  3115. CALL DGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ),
  3116. $ LDWRKU, VT, LDVT, ZERO, A, LDA )
  3117. *
  3118. * Copy right singular vectors of A from A to VT
  3119. *
  3120. CALL DLACPY( 'F', M, N, A, LDA, VT, LDVT )
  3121. *
  3122. * Copy left singular vectors of A from WORK(IR) to A
  3123. *
  3124. CALL DLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
  3125. $ LDA )
  3126. *
  3127. ELSE
  3128. *
  3129. * Insufficient workspace for a fast algorithm
  3130. *
  3131. ITAU = 1
  3132. IWORK = ITAU + M
  3133. *
  3134. * Compute A=L*Q, copying result to VT
  3135. * (Workspace: need 2*M, prefer M+M*NB)
  3136. *
  3137. CALL DGELQF( M, N, A, LDA, WORK( ITAU ),
  3138. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3139. CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT )
  3140. *
  3141. * Generate Q in VT
  3142. * (Workspace: need M+N, prefer M+N*NB)
  3143. *
  3144. CALL DORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  3145. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3146. IE = ITAU
  3147. ITAUQ = IE + M
  3148. ITAUP = ITAUQ + M
  3149. IWORK = ITAUP + M
  3150. *
  3151. * Zero out above L in A
  3152. *
  3153. CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ),
  3154. $ LDA )
  3155. *
  3156. * Bidiagonalize L in A
  3157. * (Workspace: need 4*M, prefer 3*M+2*M*NB)
  3158. *
  3159. CALL DGEBRD( M, M, A, LDA, S, WORK( IE ),
  3160. $ WORK( ITAUQ ), WORK( ITAUP ),
  3161. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3162. *
  3163. * Multiply right bidiagonalizing vectors in A by Q
  3164. * in VT
  3165. * (Workspace: need 3*M+N, prefer 3*M+N*NB)
  3166. *
  3167. CALL DORMBR( 'P', 'L', 'T', M, N, M, A, LDA,
  3168. $ WORK( ITAUP ), VT, LDVT,
  3169. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3170. *
  3171. * Generate left bidiagonalizing vectors in A
  3172. * (Workspace: need 4*M, prefer 3*M+M*NB)
  3173. *
  3174. CALL DORGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
  3175. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3176. IWORK = IE + M
  3177. *
  3178. * Perform bidiagonal QR iteration, computing left
  3179. * singular vectors of A in A and computing right
  3180. * singular vectors of A in VT
  3181. * (Workspace: need BDSPAC)
  3182. *
  3183. CALL DBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT,
  3184. $ LDVT, A, LDA, DUM, 1, WORK( IWORK ),
  3185. $ INFO )
  3186. *
  3187. END IF
  3188. *
  3189. ELSE IF( WNTUAS ) THEN
  3190. *
  3191. * Path 9t(N much larger than M, JOBU='S' or 'A',
  3192. * JOBVT='A')
  3193. * N right singular vectors to be computed in VT and
  3194. * M left singular vectors to be computed in U
  3195. *
  3196. IF( LWORK.GE.M*M+MAX( N+M, 4*M, BDSPAC ) ) THEN
  3197. *
  3198. * Sufficient workspace for a fast algorithm
  3199. *
  3200. IU = 1
  3201. IF( LWORK.GE.WRKBL+LDA*M ) THEN
  3202. *
  3203. * WORK(IU) is LDA by M
  3204. *
  3205. LDWRKU = LDA
  3206. ELSE
  3207. *
  3208. * WORK(IU) is M by M
  3209. *
  3210. LDWRKU = M
  3211. END IF
  3212. ITAU = IU + LDWRKU*M
  3213. IWORK = ITAU + M
  3214. *
  3215. * Compute A=L*Q, copying result to VT
  3216. * (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
  3217. *
  3218. CALL DGELQF( M, N, A, LDA, WORK( ITAU ),
  3219. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3220. CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT )
  3221. *
  3222. * Generate Q in VT
  3223. * (Workspace: need M*M+M+N, prefer M*M+M+N*NB)
  3224. *
  3225. CALL DORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  3226. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3227. *
  3228. * Copy L to WORK(IU), zeroing out above it
  3229. *
  3230. CALL DLACPY( 'L', M, M, A, LDA, WORK( IU ),
  3231. $ LDWRKU )
  3232. CALL DLASET( 'U', M-1, M-1, ZERO, ZERO,
  3233. $ WORK( IU+LDWRKU ), LDWRKU )
  3234. IE = ITAU
  3235. ITAUQ = IE + M
  3236. ITAUP = ITAUQ + M
  3237. IWORK = ITAUP + M
  3238. *
  3239. * Bidiagonalize L in WORK(IU), copying result to U
  3240. * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
  3241. *
  3242. CALL DGEBRD( M, M, WORK( IU ), LDWRKU, S,
  3243. $ WORK( IE ), WORK( ITAUQ ),
  3244. $ WORK( ITAUP ), WORK( IWORK ),
  3245. $ LWORK-IWORK+1, IERR )
  3246. CALL DLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
  3247. $ LDU )
  3248. *
  3249. * Generate right bidiagonalizing vectors in WORK(IU)
  3250. * (Workspace: need M*M+4*M, prefer M*M+3*M+(M-1)*NB)
  3251. *
  3252. CALL DORGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
  3253. $ WORK( ITAUP ), WORK( IWORK ),
  3254. $ LWORK-IWORK+1, IERR )
  3255. *
  3256. * Generate left bidiagonalizing vectors in U
  3257. * (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB)
  3258. *
  3259. CALL DORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  3260. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3261. IWORK = IE + M
  3262. *
  3263. * Perform bidiagonal QR iteration, computing left
  3264. * singular vectors of L in U and computing right
  3265. * singular vectors of L in WORK(IU)
  3266. * (Workspace: need M*M+BDSPAC)
  3267. *
  3268. CALL DBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
  3269. $ WORK( IU ), LDWRKU, U, LDU, DUM, 1,
  3270. $ WORK( IWORK ), INFO )
  3271. *
  3272. * Multiply right singular vectors of L in WORK(IU) by
  3273. * Q in VT, storing result in A
  3274. * (Workspace: need M*M)
  3275. *
  3276. CALL DGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ),
  3277. $ LDWRKU, VT, LDVT, ZERO, A, LDA )
  3278. *
  3279. * Copy right singular vectors of A from A to VT
  3280. *
  3281. CALL DLACPY( 'F', M, N, A, LDA, VT, LDVT )
  3282. *
  3283. ELSE
  3284. *
  3285. * Insufficient workspace for a fast algorithm
  3286. *
  3287. ITAU = 1
  3288. IWORK = ITAU + M
  3289. *
  3290. * Compute A=L*Q, copying result to VT
  3291. * (Workspace: need 2*M, prefer M+M*NB)
  3292. *
  3293. CALL DGELQF( M, N, A, LDA, WORK( ITAU ),
  3294. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3295. CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT )
  3296. *
  3297. * Generate Q in VT
  3298. * (Workspace: need M+N, prefer M+N*NB)
  3299. *
  3300. CALL DORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  3301. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3302. *
  3303. * Copy L to U, zeroing out above it
  3304. *
  3305. CALL DLACPY( 'L', M, M, A, LDA, U, LDU )
  3306. CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ),
  3307. $ LDU )
  3308. IE = ITAU
  3309. ITAUQ = IE + M
  3310. ITAUP = ITAUQ + M
  3311. IWORK = ITAUP + M
  3312. *
  3313. * Bidiagonalize L in U
  3314. * (Workspace: need 4*M, prefer 3*M+2*M*NB)
  3315. *
  3316. CALL DGEBRD( M, M, U, LDU, S, WORK( IE ),
  3317. $ WORK( ITAUQ ), WORK( ITAUP ),
  3318. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3319. *
  3320. * Multiply right bidiagonalizing vectors in U by Q
  3321. * in VT
  3322. * (Workspace: need 3*M+N, prefer 3*M+N*NB)
  3323. *
  3324. CALL DORMBR( 'P', 'L', 'T', M, N, M, U, LDU,
  3325. $ WORK( ITAUP ), VT, LDVT,
  3326. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3327. *
  3328. * Generate left bidiagonalizing vectors in U
  3329. * (Workspace: need 4*M, prefer 3*M+M*NB)
  3330. *
  3331. CALL DORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  3332. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3333. IWORK = IE + M
  3334. *
  3335. * Perform bidiagonal QR iteration, computing left
  3336. * singular vectors of A in U and computing right
  3337. * singular vectors of A in VT
  3338. * (Workspace: need BDSPAC)
  3339. *
  3340. CALL DBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT,
  3341. $ LDVT, U, LDU, DUM, 1, WORK( IWORK ),
  3342. $ INFO )
  3343. *
  3344. END IF
  3345. *
  3346. END IF
  3347. *
  3348. END IF
  3349. *
  3350. ELSE
  3351. *
  3352. * N .LT. MNTHR
  3353. *
  3354. * Path 10t(N greater than M, but not much larger)
  3355. * Reduce to bidiagonal form without LQ decomposition
  3356. *
  3357. IE = 1
  3358. ITAUQ = IE + M
  3359. ITAUP = ITAUQ + M
  3360. IWORK = ITAUP + M
  3361. *
  3362. * Bidiagonalize A
  3363. * (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
  3364. *
  3365. CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  3366. $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  3367. $ IERR )
  3368. IF( WNTUAS ) THEN
  3369. *
  3370. * If left singular vectors desired in U, copy result to U
  3371. * and generate left bidiagonalizing vectors in U
  3372. * (Workspace: need 4*M-1, prefer 3*M+(M-1)*NB)
  3373. *
  3374. CALL DLACPY( 'L', M, M, A, LDA, U, LDU )
  3375. CALL DORGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
  3376. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3377. END IF
  3378. IF( WNTVAS ) THEN
  3379. *
  3380. * If right singular vectors desired in VT, copy result to
  3381. * VT and generate right bidiagonalizing vectors in VT
  3382. * (Workspace: need 3*M+NRVT, prefer 3*M+NRVT*NB)
  3383. *
  3384. CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT )
  3385. IF( WNTVA )
  3386. $ NRVT = N
  3387. IF( WNTVS )
  3388. $ NRVT = M
  3389. CALL DORGBR( 'P', NRVT, N, M, VT, LDVT, WORK( ITAUP ),
  3390. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3391. END IF
  3392. IF( WNTUO ) THEN
  3393. *
  3394. * If left singular vectors desired in A, generate left
  3395. * bidiagonalizing vectors in A
  3396. * (Workspace: need 4*M-1, prefer 3*M+(M-1)*NB)
  3397. *
  3398. CALL DORGBR( 'Q', M, M, N, A, LDA, WORK( ITAUQ ),
  3399. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3400. END IF
  3401. IF( WNTVO ) THEN
  3402. *
  3403. * If right singular vectors desired in A, generate right
  3404. * bidiagonalizing vectors in A
  3405. * (Workspace: need 4*M, prefer 3*M+M*NB)
  3406. *
  3407. CALL DORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
  3408. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3409. END IF
  3410. IWORK = IE + M
  3411. IF( WNTUAS .OR. WNTUO )
  3412. $ NRU = M
  3413. IF( WNTUN )
  3414. $ NRU = 0
  3415. IF( WNTVAS .OR. WNTVO )
  3416. $ NCVT = N
  3417. IF( WNTVN )
  3418. $ NCVT = 0
  3419. IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
  3420. *
  3421. * Perform bidiagonal QR iteration, if desired, computing
  3422. * left singular vectors in U and computing right singular
  3423. * vectors in VT
  3424. * (Workspace: need BDSPAC)
  3425. *
  3426. CALL DBDSQR( 'L', M, NCVT, NRU, 0, S, WORK( IE ), VT,
  3427. $ LDVT, U, LDU, DUM, 1, WORK( IWORK ), INFO )
  3428. ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
  3429. *
  3430. * Perform bidiagonal QR iteration, if desired, computing
  3431. * left singular vectors in U and computing right singular
  3432. * vectors in A
  3433. * (Workspace: need BDSPAC)
  3434. *
  3435. CALL DBDSQR( 'L', M, NCVT, NRU, 0, S, WORK( IE ), A, LDA,
  3436. $ U, LDU, DUM, 1, WORK( IWORK ), INFO )
  3437. ELSE
  3438. *
  3439. * Perform bidiagonal QR iteration, if desired, computing
  3440. * left singular vectors in A and computing right singular
  3441. * vectors in VT
  3442. * (Workspace: need BDSPAC)
  3443. *
  3444. CALL DBDSQR( 'L', M, NCVT, NRU, 0, S, WORK( IE ), VT,
  3445. $ LDVT, A, LDA, DUM, 1, WORK( IWORK ), INFO )
  3446. END IF
  3447. *
  3448. END IF
  3449. *
  3450. END IF
  3451. *
  3452. * If DBDSQR failed to converge, copy unconverged superdiagonals
  3453. * to WORK( 2:MINMN )
  3454. *
  3455. IF( INFO.NE.0 ) THEN
  3456. IF( IE.GT.2 ) THEN
  3457. DO 50 I = 1, MINMN - 1
  3458. WORK( I+1 ) = WORK( I+IE-1 )
  3459. 50 CONTINUE
  3460. END IF
  3461. IF( IE.LT.2 ) THEN
  3462. DO 60 I = MINMN - 1, 1, -1
  3463. WORK( I+1 ) = WORK( I+IE-1 )
  3464. 60 CONTINUE
  3465. END IF
  3466. END IF
  3467. *
  3468. * Undo scaling if necessary
  3469. *
  3470. IF( ISCL.EQ.1 ) THEN
  3471. IF( ANRM.GT.BIGNUM )
  3472. $ CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
  3473. $ IERR )
  3474. IF( INFO.NE.0 .AND. ANRM.GT.BIGNUM )
  3475. $ CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN-1, 1, WORK( 2 ),
  3476. $ MINMN, IERR )
  3477. IF( ANRM.LT.SMLNUM )
  3478. $ CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
  3479. $ IERR )
  3480. IF( INFO.NE.0 .AND. ANRM.LT.SMLNUM )
  3481. $ CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN-1, 1, WORK( 2 ),
  3482. $ MINMN, IERR )
  3483. END IF
  3484. *
  3485. * Return optimal workspace in WORK(1)
  3486. *
  3487. WORK( 1 ) = MAXWRK
  3488. *
  3489. RETURN
  3490. *
  3491. * End of DGESVD
  3492. *
  3493. END