You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlavhe_rook.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597
  1. *> \brief \b ZLAVHE_ROOK
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZLAVHE_ROOK( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B,
  12. * LDB, INFO )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER DIAG, TRANS, UPLO
  16. * INTEGER INFO, LDA, LDB, N, NRHS
  17. * ..
  18. * .. Array Arguments ..
  19. * INTEGER IPIV( * )
  20. * COMPLEX*16 A( LDA, * ), B( LDB, * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> ZLAVHE_ROOK performs one of the matrix-vector operations
  28. *> x := A*x or x := A^H*x,
  29. *> where x is an N element vector and A is one of the factors
  30. *> from the block U*D*U' or L*D*L' factorization computed by ZHETRF_ROOK.
  31. *>
  32. *> If TRANS = 'N', multiplies by U or U * D (or L or L * D)
  33. *> If TRANS = 'C', multiplies by U' or D * U' (or L' or D * L')
  34. *
  35. * Arguments:
  36. * ==========
  37. *
  38. *> \param[in] UPLO
  39. *> \verbatim
  40. *> UPLO is CHARACTER*1
  41. *> Specifies whether the factor stored in A is upper or lower
  42. *> triangular.
  43. *> = 'U': Upper triangular
  44. *> = 'L': Lower triangular
  45. *> \endverbatim
  46. *>
  47. *> \param[in] TRANS
  48. *> \verbatim
  49. *> TRANS is CHARACTER*1
  50. *> Specifies the operation to be performed:
  51. *> = 'N': x := A*x
  52. *> = 'C': x := A^H*x
  53. *> \endverbatim
  54. *>
  55. *> \param[in] DIAG
  56. *> \verbatim
  57. *> DIAG is CHARACTER*1
  58. *> Specifies whether or not the diagonal blocks are unit
  59. *> matrices. If the diagonal blocks are assumed to be unit,
  60. *> then A = U or A = L, otherwise A = U*D or A = L*D.
  61. *> = 'U': Diagonal blocks are assumed to be unit matrices.
  62. *> = 'N': Diagonal blocks are assumed to be non-unit matrices.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] N
  66. *> \verbatim
  67. *> N is INTEGER
  68. *> The number of rows and columns of the matrix A. N >= 0.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] NRHS
  72. *> \verbatim
  73. *> NRHS is INTEGER
  74. *> The number of right hand sides, i.e., the number of vectors
  75. *> x to be multiplied by A. NRHS >= 0.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] A
  79. *> \verbatim
  80. *> A is COMPLEX*16 array, dimension (LDA,N)
  81. *> The block diagonal matrix D and the multipliers used to
  82. *> obtain the factor U or L as computed by ZHETRF_ROOK.
  83. *> Stored as a 2-D triangular matrix.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] LDA
  87. *> \verbatim
  88. *> LDA is INTEGER
  89. *> The leading dimension of the array A. LDA >= max(1,N).
  90. *> \endverbatim
  91. *>
  92. *> \param[out] IPIV
  93. *> \verbatim
  94. *> IPIV is INTEGER array, dimension (N)
  95. *> Details of the interchanges and the block structure of D,
  96. *> as determined by ZHETRF_ROOK.
  97. *> If UPLO = 'U':
  98. *> Only the last KB elements of IPIV are set.
  99. *>
  100. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  101. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  102. *>
  103. *> If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
  104. *> columns k and -IPIV(k) were interchanged and rows and
  105. *> columns k-1 and -IPIV(k-1) were inerchaged,
  106. *> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  107. *>
  108. *> If UPLO = 'L':
  109. *> Only the first KB elements of IPIV are set.
  110. *>
  111. *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
  112. *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
  113. *>
  114. *> If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
  115. *> columns k and -IPIV(k) were interchanged and rows and
  116. *> columns k+1 and -IPIV(k+1) were inerchaged,
  117. *> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  118. *> \endverbatim
  119. *>
  120. *> \param[in,out] B
  121. *> \verbatim
  122. *> B is COMPLEX array, dimension (LDB,NRHS)
  123. *> On entry, B contains NRHS vectors of length N.
  124. *> On exit, B is overwritten with the product A * B.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LDB
  128. *> \verbatim
  129. *> LDB is INTEGER
  130. *> The leading dimension of the array B. LDB >= max(1,N).
  131. *> \endverbatim
  132. *>
  133. *> \param[out] INFO
  134. *> \verbatim
  135. *> INFO is INTEGER
  136. *> = 0: successful exit
  137. *> < 0: if INFO = -k, the k-th argument had an illegal value
  138. *> \endverbatim
  139. *
  140. * Authors:
  141. * ========
  142. *
  143. *> \author Univ. of Tennessee
  144. *> \author Univ. of California Berkeley
  145. *> \author Univ. of Colorado Denver
  146. *> \author NAG Ltd.
  147. *
  148. *> \ingroup complex16_lin
  149. *
  150. * =====================================================================
  151. SUBROUTINE ZLAVHE_ROOK( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV,
  152. $ B, LDB, INFO )
  153. *
  154. * -- LAPACK test routine --
  155. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  156. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  157. *
  158. * .. Scalar Arguments ..
  159. CHARACTER DIAG, TRANS, UPLO
  160. INTEGER INFO, LDA, LDB, N, NRHS
  161. * ..
  162. * .. Array Arguments ..
  163. INTEGER IPIV( * )
  164. COMPLEX*16 A( LDA, * ), B( LDB, * )
  165. * ..
  166. *
  167. * =====================================================================
  168. *
  169. * .. Parameters ..
  170. COMPLEX*16 CONE
  171. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
  172. * ..
  173. * .. Local Scalars ..
  174. LOGICAL NOUNIT
  175. INTEGER J, K, KP
  176. COMPLEX*16 D11, D12, D21, D22, T1, T2
  177. * ..
  178. * .. External Functions ..
  179. LOGICAL LSAME
  180. EXTERNAL LSAME
  181. * ..
  182. * .. External Subroutines ..
  183. EXTERNAL ZGEMV, ZGERU, ZLACGV, ZSCAL, ZSWAP, XERBLA
  184. * ..
  185. * .. Intrinsic Functions ..
  186. INTRINSIC ABS, DCONJG, MAX
  187. * ..
  188. * .. Executable Statements ..
  189. *
  190. * Test the input parameters.
  191. *
  192. INFO = 0
  193. IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  194. INFO = -1
  195. ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'C' ) )
  196. $ THEN
  197. INFO = -2
  198. ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
  199. $ THEN
  200. INFO = -3
  201. ELSE IF( N.LT.0 ) THEN
  202. INFO = -4
  203. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  204. INFO = -6
  205. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  206. INFO = -9
  207. END IF
  208. IF( INFO.NE.0 ) THEN
  209. CALL XERBLA( 'ZLAVHE_ROOK ', -INFO )
  210. RETURN
  211. END IF
  212. *
  213. * Quick return if possible.
  214. *
  215. IF( N.EQ.0 )
  216. $ RETURN
  217. *
  218. NOUNIT = LSAME( DIAG, 'N' )
  219. *------------------------------------------
  220. *
  221. * Compute B := A * B (No transpose)
  222. *
  223. *------------------------------------------
  224. IF( LSAME( TRANS, 'N' ) ) THEN
  225. *
  226. * Compute B := U*B
  227. * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
  228. *
  229. IF( LSAME( UPLO, 'U' ) ) THEN
  230. *
  231. * Loop forward applying the transformations.
  232. *
  233. K = 1
  234. 10 CONTINUE
  235. IF( K.GT.N )
  236. $ GO TO 30
  237. IF( IPIV( K ).GT.0 ) THEN
  238. *
  239. * 1 x 1 pivot block
  240. *
  241. * Multiply by the diagonal element if forming U * D.
  242. *
  243. IF( NOUNIT )
  244. $ CALL ZSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  245. *
  246. * Multiply by P(K) * inv(U(K)) if K > 1.
  247. *
  248. IF( K.GT.1 ) THEN
  249. *
  250. * Apply the transformation.
  251. *
  252. CALL ZGERU( K-1, NRHS, CONE, A( 1, K ), 1, B( K, 1 ),
  253. $ LDB, B( 1, 1 ), LDB )
  254. *
  255. * Interchange if P(K) != I.
  256. *
  257. KP = IPIV( K )
  258. IF( KP.NE.K )
  259. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  260. END IF
  261. K = K + 1
  262. ELSE
  263. *
  264. * 2 x 2 pivot block
  265. *
  266. * Multiply by the diagonal block if forming U * D.
  267. *
  268. IF( NOUNIT ) THEN
  269. D11 = A( K, K )
  270. D22 = A( K+1, K+1 )
  271. D12 = A( K, K+1 )
  272. D21 = DCONJG( D12 )
  273. DO 20 J = 1, NRHS
  274. T1 = B( K, J )
  275. T2 = B( K+1, J )
  276. B( K, J ) = D11*T1 + D12*T2
  277. B( K+1, J ) = D21*T1 + D22*T2
  278. 20 CONTINUE
  279. END IF
  280. *
  281. * Multiply by P(K) * inv(U(K)) if K > 1.
  282. *
  283. IF( K.GT.1 ) THEN
  284. *
  285. * Apply the transformations.
  286. *
  287. CALL ZGERU( K-1, NRHS, CONE, A( 1, K ), 1, B( K, 1 ),
  288. $ LDB, B( 1, 1 ), LDB )
  289. CALL ZGERU( K-1, NRHS, CONE, A( 1, K+1 ), 1,
  290. $ B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
  291. *
  292. * Interchange if a permutation was applied at the
  293. * K-th step of the factorization.
  294. *
  295. * Swap the first of pair with IMAXth
  296. *
  297. KP = ABS( IPIV( K ) )
  298. IF( KP.NE.K )
  299. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  300. *
  301. * NOW swap the first of pair with Pth
  302. *
  303. KP = ABS( IPIV( K+1 ) )
  304. IF( KP.NE.K+1 )
  305. $ CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
  306. $ LDB )
  307. END IF
  308. K = K + 2
  309. END IF
  310. GO TO 10
  311. 30 CONTINUE
  312. *
  313. * Compute B := L*B
  314. * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
  315. *
  316. ELSE
  317. *
  318. * Loop backward applying the transformations to B.
  319. *
  320. K = N
  321. 40 CONTINUE
  322. IF( K.LT.1 )
  323. $ GO TO 60
  324. *
  325. * Test the pivot index. If greater than zero, a 1 x 1
  326. * pivot was used, otherwise a 2 x 2 pivot was used.
  327. *
  328. IF( IPIV( K ).GT.0 ) THEN
  329. *
  330. * 1 x 1 pivot block:
  331. *
  332. * Multiply by the diagonal element if forming L * D.
  333. *
  334. IF( NOUNIT )
  335. $ CALL ZSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  336. *
  337. * Multiply by P(K) * inv(L(K)) if K < N.
  338. *
  339. IF( K.NE.N ) THEN
  340. KP = IPIV( K )
  341. *
  342. * Apply the transformation.
  343. *
  344. CALL ZGERU( N-K, NRHS, CONE, A( K+1, K ), 1,
  345. $ B( K, 1 ), LDB, B( K+1, 1 ), LDB )
  346. *
  347. * Interchange if a permutation was applied at the
  348. * K-th step of the factorization.
  349. *
  350. IF( KP.NE.K )
  351. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  352. END IF
  353. K = K - 1
  354. *
  355. ELSE
  356. *
  357. * 2 x 2 pivot block:
  358. *
  359. * Multiply by the diagonal block if forming L * D.
  360. *
  361. IF( NOUNIT ) THEN
  362. D11 = A( K-1, K-1 )
  363. D22 = A( K, K )
  364. D21 = A( K, K-1 )
  365. D12 = DCONJG( D21 )
  366. DO 50 J = 1, NRHS
  367. T1 = B( K-1, J )
  368. T2 = B( K, J )
  369. B( K-1, J ) = D11*T1 + D12*T2
  370. B( K, J ) = D21*T1 + D22*T2
  371. 50 CONTINUE
  372. END IF
  373. *
  374. * Multiply by P(K) * inv(L(K)) if K < N.
  375. *
  376. IF( K.NE.N ) THEN
  377. *
  378. * Apply the transformation.
  379. *
  380. CALL ZGERU( N-K, NRHS, CONE, A( K+1, K ), 1,
  381. $ B( K, 1 ), LDB, B( K+1, 1 ), LDB )
  382. CALL ZGERU( N-K, NRHS, CONE, A( K+1, K-1 ), 1,
  383. $ B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
  384. *
  385. * Interchange if a permutation was applied at the
  386. * K-th step of the factorization.
  387. *
  388. *
  389. * Swap the second of pair with IMAXth
  390. *
  391. KP = ABS( IPIV( K ) )
  392. IF( KP.NE.K )
  393. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  394. *
  395. * NOW swap the first of pair with Pth
  396. *
  397. KP = ABS( IPIV( K-1 ) )
  398. IF( KP.NE.K-1 )
  399. $ CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
  400. $ LDB )
  401. *
  402. END IF
  403. K = K - 2
  404. END IF
  405. GO TO 40
  406. 60 CONTINUE
  407. END IF
  408. *--------------------------------------------------
  409. *
  410. * Compute B := A^H * B (conjugate transpose)
  411. *
  412. *--------------------------------------------------
  413. ELSE
  414. *
  415. * Form B := U^H*B
  416. * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
  417. * and U^H = inv(U^H(1))*P(1)* ... *inv(U^H(m))*P(m)
  418. *
  419. IF( LSAME( UPLO, 'U' ) ) THEN
  420. *
  421. * Loop backward applying the transformations.
  422. *
  423. K = N
  424. 70 IF( K.LT.1 )
  425. $ GO TO 90
  426. *
  427. * 1 x 1 pivot block.
  428. *
  429. IF( IPIV( K ).GT.0 ) THEN
  430. IF( K.GT.1 ) THEN
  431. *
  432. * Interchange if P(K) != I.
  433. *
  434. KP = IPIV( K )
  435. IF( KP.NE.K )
  436. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  437. *
  438. * Apply the transformation
  439. * y = y - B' DCONJG(x),
  440. * where x is a column of A and y is a row of B.
  441. *
  442. CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  443. CALL ZGEMV( 'Conjugate', K-1, NRHS, CONE, B, LDB,
  444. $ A( 1, K ), 1, CONE, B( K, 1 ), LDB )
  445. CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  446. END IF
  447. IF( NOUNIT )
  448. $ CALL ZSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  449. K = K - 1
  450. *
  451. * 2 x 2 pivot block.
  452. *
  453. ELSE
  454. IF( K.GT.2 ) THEN
  455. *
  456. * Swap the second of pair with Pth
  457. *
  458. KP = ABS( IPIV( K ) )
  459. IF( KP.NE.K )
  460. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  461. *
  462. * Now swap the first of pair with IMAX(r)th
  463. *
  464. KP = ABS( IPIV( K-1 ) )
  465. IF( KP.NE.K-1 )
  466. $ CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
  467. $ LDB )
  468. *
  469. * Apply the transformations
  470. * y = y - B' DCONJG(x),
  471. * where x is a block column of A and y is a block
  472. * row of B.
  473. *
  474. CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  475. CALL ZGEMV( 'Conjugate', K-2, NRHS, CONE, B, LDB,
  476. $ A( 1, K ), 1, CONE, B( K, 1 ), LDB )
  477. CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  478. *
  479. CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
  480. CALL ZGEMV( 'Conjugate', K-2, NRHS, CONE, B, LDB,
  481. $ A( 1, K-1 ), 1, CONE, B( K-1, 1 ), LDB )
  482. CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
  483. END IF
  484. *
  485. * Multiply by the diagonal block if non-unit.
  486. *
  487. IF( NOUNIT ) THEN
  488. D11 = A( K-1, K-1 )
  489. D22 = A( K, K )
  490. D12 = A( K-1, K )
  491. D21 = DCONJG( D12 )
  492. DO 80 J = 1, NRHS
  493. T1 = B( K-1, J )
  494. T2 = B( K, J )
  495. B( K-1, J ) = D11*T1 + D12*T2
  496. B( K, J ) = D21*T1 + D22*T2
  497. 80 CONTINUE
  498. END IF
  499. K = K - 2
  500. END IF
  501. GO TO 70
  502. 90 CONTINUE
  503. *
  504. * Form B := L^H*B
  505. * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
  506. * and L^H = inv(L^H(m))*P(m)* ... *inv(L^H(1))*P(1)
  507. *
  508. ELSE
  509. *
  510. * Loop forward applying the L-transformations.
  511. *
  512. K = 1
  513. 100 CONTINUE
  514. IF( K.GT.N )
  515. $ GO TO 120
  516. *
  517. * 1 x 1 pivot block
  518. *
  519. IF( IPIV( K ).GT.0 ) THEN
  520. IF( K.LT.N ) THEN
  521. *
  522. * Interchange if P(K) != I.
  523. *
  524. KP = IPIV( K )
  525. IF( KP.NE.K )
  526. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  527. *
  528. * Apply the transformation
  529. *
  530. CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  531. CALL ZGEMV( 'Conjugate', N-K, NRHS, CONE, B( K+1, 1 ),
  532. $ LDB, A( K+1, K ), 1, CONE, B( K, 1 ), LDB )
  533. CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  534. END IF
  535. IF( NOUNIT )
  536. $ CALL ZSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
  537. K = K + 1
  538. *
  539. * 2 x 2 pivot block.
  540. *
  541. ELSE
  542. IF( K.LT.N-1 ) THEN
  543. *
  544. * Swap the first of pair with Pth
  545. *
  546. KP = ABS( IPIV( K ) )
  547. IF( KP.NE.K )
  548. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  549. *
  550. * Now swap the second of pair with IMAX(r)th
  551. *
  552. KP = ABS( IPIV( K+1 ) )
  553. IF( KP.NE.K+1 )
  554. $ CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
  555. $ LDB )
  556. *
  557. * Apply the transformation
  558. *
  559. CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
  560. CALL ZGEMV( 'Conjugate', N-K-1, NRHS, CONE,
  561. $ B( K+2, 1 ), LDB, A( K+2, K+1 ), 1, CONE,
  562. $ B( K+1, 1 ), LDB )
  563. CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
  564. *
  565. CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  566. CALL ZGEMV( 'Conjugate', N-K-1, NRHS, CONE,
  567. $ B( K+2, 1 ), LDB, A( K+2, K ), 1, CONE,
  568. $ B( K, 1 ), LDB )
  569. CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  570. END IF
  571. *
  572. * Multiply by the diagonal block if non-unit.
  573. *
  574. IF( NOUNIT ) THEN
  575. D11 = A( K, K )
  576. D22 = A( K+1, K+1 )
  577. D21 = A( K+1, K )
  578. D12 = DCONJG( D21 )
  579. DO 110 J = 1, NRHS
  580. T1 = B( K, J )
  581. T2 = B( K+1, J )
  582. B( K, J ) = D11*T1 + D12*T2
  583. B( K+1, J ) = D21*T1 + D22*T2
  584. 110 CONTINUE
  585. END IF
  586. K = K + 2
  587. END IF
  588. GO TO 100
  589. 120 CONTINUE
  590. END IF
  591. *
  592. END IF
  593. RETURN
  594. *
  595. * End of ZLAVHE_ROOK
  596. *
  597. END