You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slqt04.f 6.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256
  1. *> \brief \b SLQT04
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE SLQT04(M,N,NB,RESULT)
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER M, N, NB, LDT
  15. * .. Return values ..
  16. * REAL RESULT(6)
  17. *
  18. *
  19. *> \par Purpose:
  20. * =============
  21. *>
  22. *> \verbatim
  23. *>
  24. *> SLQT04 tests SGELQT and SGEMLQT.
  25. *> \endverbatim
  26. *
  27. * Arguments:
  28. * ==========
  29. *
  30. *> \param[in] M
  31. *> \verbatim
  32. *> M is INTEGER
  33. *> Number of rows in test matrix.
  34. *> \endverbatim
  35. *>
  36. *> \param[in] N
  37. *> \verbatim
  38. *> N is INTEGER
  39. *> Number of columns in test matrix.
  40. *> \endverbatim
  41. *>
  42. *> \param[in] NB
  43. *> \verbatim
  44. *> NB is INTEGER
  45. *> Block size of test matrix. NB <= Min(M,N).
  46. *> \endverbatim
  47. *>
  48. *> \param[out] RESULT
  49. *> \verbatim
  50. *> RESULT is REAL array, dimension (6)
  51. *> Results of each of the six tests below.
  52. *>
  53. *> RESULT(1) = | A - L Q |
  54. *> RESULT(2) = | I - Q Q^H |
  55. *> RESULT(3) = | Q C - Q C |
  56. *> RESULT(4) = | Q^H C - Q^H C |
  57. *> RESULT(5) = | C Q - C Q |
  58. *> RESULT(6) = | C Q^H - C Q^H |
  59. *> \endverbatim
  60. *
  61. * Authors:
  62. * ========
  63. *
  64. *> \author Univ. of Tennessee
  65. *> \author Univ. of California Berkeley
  66. *> \author Univ. of Colorado Denver
  67. *> \author NAG Ltd.
  68. *
  69. *> \ingroup double_lin
  70. *
  71. * =====================================================================
  72. SUBROUTINE SLQT04(M,N,NB,RESULT)
  73. IMPLICIT NONE
  74. *
  75. * -- LAPACK test routine --
  76. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  77. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  78. *
  79. * .. Scalar Arguments ..
  80. INTEGER M, N, NB, LDT
  81. * .. Return values ..
  82. REAL RESULT(6)
  83. *
  84. * =====================================================================
  85. *
  86. * ..
  87. * .. Local allocatable arrays
  88. REAL, ALLOCATABLE :: AF(:,:), Q(:,:),
  89. $ L(:,:), RWORK(:), WORK( : ), T(:,:),
  90. $ CF(:,:), DF(:,:), A(:,:), C(:,:), D(:,:)
  91. *
  92. * .. Parameters ..
  93. REAL ONE, ZERO
  94. PARAMETER( ZERO = 0.0, ONE = 1.0 )
  95. * ..
  96. * .. Local Scalars ..
  97. INTEGER INFO, J, K, LL, LWORK
  98. REAL ANORM, EPS, RESID, CNORM, DNORM
  99. * ..
  100. * .. Local Arrays ..
  101. INTEGER ISEED( 4 )
  102. * ..
  103. * .. External Functions ..
  104. REAL SLAMCH, SLANGE, SLANSY
  105. LOGICAL LSAME
  106. EXTERNAL SLAMCH, SLANGE, SLANSY, LSAME
  107. * ..
  108. * .. Intrinsic Functions ..
  109. INTRINSIC MAX, MIN
  110. * ..
  111. * .. Data statements ..
  112. DATA ISEED / 1988, 1989, 1990, 1991 /
  113. *
  114. EPS = SLAMCH( 'Epsilon' )
  115. K = MIN(M,N)
  116. LL = MAX(M,N)
  117. LWORK = MAX(2,LL)*MAX(2,LL)*NB
  118. *
  119. * Dynamically allocate local arrays
  120. *
  121. ALLOCATE ( A(M,N), AF(M,N), Q(N,N), L(LL,N), RWORK(LL),
  122. $ WORK(LWORK), T(NB,N), C(M,N), CF(M,N),
  123. $ D(N,M), DF(N,M) )
  124. *
  125. * Put random numbers into A and copy to AF
  126. *
  127. LDT=NB
  128. DO J=1,N
  129. CALL SLARNV( 2, ISEED, M, A( 1, J ) )
  130. END DO
  131. CALL SLACPY( 'Full', M, N, A, M, AF, M )
  132. *
  133. * Factor the matrix A in the array AF.
  134. *
  135. CALL SGELQT( M, N, NB, AF, M, T, LDT, WORK, INFO )
  136. *
  137. * Generate the n-by-n matrix Q
  138. *
  139. CALL SLASET( 'Full', N, N, ZERO, ONE, Q, N )
  140. CALL SGEMLQT( 'R', 'N', N, N, K, NB, AF, M, T, LDT, Q, N,
  141. $ WORK, INFO )
  142. *
  143. * Copy R
  144. *
  145. CALL SLASET( 'Full', M, N, ZERO, ZERO, L, LL )
  146. CALL SLACPY( 'Lower', M, N, AF, M, L, LL )
  147. *
  148. * Compute |L - A*Q'| / |A| and store in RESULT(1)
  149. *
  150. CALL SGEMM( 'N', 'T', M, N, N, -ONE, A, M, Q, N, ONE, L, LL )
  151. ANORM = SLANGE( '1', M, N, A, M, RWORK )
  152. RESID = SLANGE( '1', M, N, L, LL, RWORK )
  153. IF( ANORM.GT.ZERO ) THEN
  154. RESULT( 1 ) = RESID / (EPS*MAX(1,M)*ANORM)
  155. ELSE
  156. RESULT( 1 ) = ZERO
  157. END IF
  158. *
  159. * Compute |I - Q'*Q| and store in RESULT(2)
  160. *
  161. CALL SLASET( 'Full', N, N, ZERO, ONE, L, LL )
  162. CALL SSYRK( 'U', 'C', N, N, -ONE, Q, N, ONE, L, LL )
  163. RESID = SLANSY( '1', 'Upper', N, L, LL, RWORK )
  164. RESULT( 2 ) = RESID / (EPS*MAX(1,N))
  165. *
  166. * Generate random m-by-n matrix C and a copy CF
  167. *
  168. DO J=1,M
  169. CALL SLARNV( 2, ISEED, N, D( 1, J ) )
  170. END DO
  171. DNORM = SLANGE( '1', N, M, D, N, RWORK)
  172. CALL SLACPY( 'Full', N, M, D, N, DF, N )
  173. *
  174. * Apply Q to C as Q*C
  175. *
  176. CALL SGEMLQT( 'L', 'N', N, M, K, NB, AF, M, T, NB, DF, N,
  177. $ WORK, INFO)
  178. *
  179. * Compute |Q*D - Q*D| / |D|
  180. *
  181. CALL SGEMM( 'N', 'N', N, M, N, -ONE, Q, N, D, N, ONE, DF, N )
  182. RESID = SLANGE( '1', N, M, DF, N, RWORK )
  183. IF( DNORM.GT.ZERO ) THEN
  184. RESULT( 3 ) = RESID / (EPS*MAX(1,M)*DNORM)
  185. ELSE
  186. RESULT( 3 ) = ZERO
  187. END IF
  188. *
  189. * Copy D into DF again
  190. *
  191. CALL SLACPY( 'Full', N, M, D, N, DF, N )
  192. *
  193. * Apply Q to D as QT*D
  194. *
  195. CALL SGEMLQT( 'L', 'T', N, M, K, NB, AF, M, T, NB, DF, N,
  196. $ WORK, INFO)
  197. *
  198. * Compute |QT*D - QT*D| / |D|
  199. *
  200. CALL SGEMM( 'T', 'N', N, M, N, -ONE, Q, N, D, N, ONE, DF, N )
  201. RESID = SLANGE( '1', N, M, DF, N, RWORK )
  202. IF( DNORM.GT.ZERO ) THEN
  203. RESULT( 4 ) = RESID / (EPS*MAX(1,M)*DNORM)
  204. ELSE
  205. RESULT( 4 ) = ZERO
  206. END IF
  207. *
  208. * Generate random n-by-m matrix D and a copy DF
  209. *
  210. DO J=1,N
  211. CALL SLARNV( 2, ISEED, M, C( 1, J ) )
  212. END DO
  213. CNORM = SLANGE( '1', M, N, C, M, RWORK)
  214. CALL SLACPY( 'Full', M, N, C, M, CF, M )
  215. *
  216. * Apply Q to C as C*Q
  217. *
  218. CALL SGEMLQT( 'R', 'N', M, N, K, NB, AF, M, T, NB, CF, M,
  219. $ WORK, INFO)
  220. *
  221. * Compute |C*Q - C*Q| / |C|
  222. *
  223. CALL SGEMM( 'N', 'N', M, N, N, -ONE, C, M, Q, N, ONE, CF, M )
  224. RESID = SLANGE( '1', N, M, DF, N, RWORK )
  225. IF( CNORM.GT.ZERO ) THEN
  226. RESULT( 5 ) = RESID / (EPS*MAX(1,M)*DNORM)
  227. ELSE
  228. RESULT( 5 ) = ZERO
  229. END IF
  230. *
  231. * Copy C into CF again
  232. *
  233. CALL SLACPY( 'Full', M, N, C, M, CF, M )
  234. *
  235. * Apply Q to D as D*QT
  236. *
  237. CALL SGEMLQT( 'R', 'T', M, N, K, NB, AF, M, T, NB, CF, M,
  238. $ WORK, INFO)
  239. *
  240. * Compute |C*QT - C*QT| / |C|
  241. *
  242. CALL SGEMM( 'N', 'T', M, N, N, -ONE, C, M, Q, N, ONE, CF, M )
  243. RESID = SLANGE( '1', M, N, CF, M, RWORK )
  244. IF( CNORM.GT.ZERO ) THEN
  245. RESULT( 6 ) = RESID / (EPS*MAX(1,M)*DNORM)
  246. ELSE
  247. RESULT( 6 ) = ZERO
  248. END IF
  249. *
  250. * Deallocate all arrays
  251. *
  252. DEALLOCATE ( A, AF, Q, L, RWORK, WORK, T, C, D, CF, DF)
  253. *
  254. RETURN
  255. END