You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dpot03.f 6.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. *> \brief \b DPOT03
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DPOT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK,
  12. * RWORK, RCOND, RESID )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER UPLO
  16. * INTEGER LDA, LDAINV, LDWORK, N
  17. * DOUBLE PRECISION RCOND, RESID
  18. * ..
  19. * .. Array Arguments ..
  20. * DOUBLE PRECISION A( LDA, * ), AINV( LDAINV, * ), RWORK( * ),
  21. * $ WORK( LDWORK, * )
  22. * ..
  23. *
  24. *
  25. *> \par Purpose:
  26. * =============
  27. *>
  28. *> \verbatim
  29. *>
  30. *> DPOT03 computes the residual for a symmetric matrix times its
  31. *> inverse:
  32. *> norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
  33. *> where EPS is the machine epsilon.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] UPLO
  40. *> \verbatim
  41. *> UPLO is CHARACTER*1
  42. *> Specifies whether the upper or lower triangular part of the
  43. *> symmetric matrix A is stored:
  44. *> = 'U': Upper triangular
  45. *> = 'L': Lower triangular
  46. *> \endverbatim
  47. *>
  48. *> \param[in] N
  49. *> \verbatim
  50. *> N is INTEGER
  51. *> The number of rows and columns of the matrix A. N >= 0.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] A
  55. *> \verbatim
  56. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  57. *> The original symmetric matrix A.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] LDA
  61. *> \verbatim
  62. *> LDA is INTEGER
  63. *> The leading dimension of the array A. LDA >= max(1,N)
  64. *> \endverbatim
  65. *>
  66. *> \param[in,out] AINV
  67. *> \verbatim
  68. *> AINV is DOUBLE PRECISION array, dimension (LDAINV,N)
  69. *> On entry, the inverse of the matrix A, stored as a symmetric
  70. *> matrix in the same format as A.
  71. *> In this version, AINV is expanded into a full matrix and
  72. *> multiplied by A, so the opposing triangle of AINV will be
  73. *> changed; i.e., if the upper triangular part of AINV is
  74. *> stored, the lower triangular part will be used as work space.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] LDAINV
  78. *> \verbatim
  79. *> LDAINV is INTEGER
  80. *> The leading dimension of the array AINV. LDAINV >= max(1,N).
  81. *> \endverbatim
  82. *>
  83. *> \param[out] WORK
  84. *> \verbatim
  85. *> WORK is DOUBLE PRECISION array, dimension (LDWORK,N)
  86. *> \endverbatim
  87. *>
  88. *> \param[in] LDWORK
  89. *> \verbatim
  90. *> LDWORK is INTEGER
  91. *> The leading dimension of the array WORK. LDWORK >= max(1,N).
  92. *> \endverbatim
  93. *>
  94. *> \param[out] RWORK
  95. *> \verbatim
  96. *> RWORK is DOUBLE PRECISION array, dimension (N)
  97. *> \endverbatim
  98. *>
  99. *> \param[out] RCOND
  100. *> \verbatim
  101. *> RCOND is DOUBLE PRECISION
  102. *> The reciprocal of the condition number of A, computed as
  103. *> ( 1/norm(A) ) / norm(AINV).
  104. *> \endverbatim
  105. *>
  106. *> \param[out] RESID
  107. *> \verbatim
  108. *> RESID is DOUBLE PRECISION
  109. *> norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
  110. *> \endverbatim
  111. *
  112. * Authors:
  113. * ========
  114. *
  115. *> \author Univ. of Tennessee
  116. *> \author Univ. of California Berkeley
  117. *> \author Univ. of Colorado Denver
  118. *> \author NAG Ltd.
  119. *
  120. *> \ingroup double_lin
  121. *
  122. * =====================================================================
  123. SUBROUTINE DPOT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK,
  124. $ RWORK, RCOND, RESID )
  125. *
  126. * -- LAPACK test routine --
  127. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  128. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  129. *
  130. * .. Scalar Arguments ..
  131. CHARACTER UPLO
  132. INTEGER LDA, LDAINV, LDWORK, N
  133. DOUBLE PRECISION RCOND, RESID
  134. * ..
  135. * .. Array Arguments ..
  136. DOUBLE PRECISION A( LDA, * ), AINV( LDAINV, * ), RWORK( * ),
  137. $ WORK( LDWORK, * )
  138. * ..
  139. *
  140. * =====================================================================
  141. *
  142. * .. Parameters ..
  143. DOUBLE PRECISION ZERO, ONE
  144. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  145. * ..
  146. * .. Local Scalars ..
  147. INTEGER I, J
  148. DOUBLE PRECISION AINVNM, ANORM, EPS
  149. * ..
  150. * .. External Functions ..
  151. LOGICAL LSAME
  152. DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
  153. EXTERNAL LSAME, DLAMCH, DLANGE, DLANSY
  154. * ..
  155. * .. External Subroutines ..
  156. EXTERNAL DSYMM
  157. * ..
  158. * .. Intrinsic Functions ..
  159. INTRINSIC DBLE
  160. * ..
  161. * .. Executable Statements ..
  162. *
  163. * Quick exit if N = 0.
  164. *
  165. IF( N.LE.0 ) THEN
  166. RCOND = ONE
  167. RESID = ZERO
  168. RETURN
  169. END IF
  170. *
  171. * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
  172. *
  173. EPS = DLAMCH( 'Epsilon' )
  174. ANORM = DLANSY( '1', UPLO, N, A, LDA, RWORK )
  175. AINVNM = DLANSY( '1', UPLO, N, AINV, LDAINV, RWORK )
  176. IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
  177. RCOND = ZERO
  178. RESID = ONE / EPS
  179. RETURN
  180. END IF
  181. RCOND = ( ONE / ANORM ) / AINVNM
  182. *
  183. * Expand AINV into a full matrix and call DSYMM to multiply
  184. * AINV on the left by A.
  185. *
  186. IF( LSAME( UPLO, 'U' ) ) THEN
  187. DO 20 J = 1, N
  188. DO 10 I = 1, J - 1
  189. AINV( J, I ) = AINV( I, J )
  190. 10 CONTINUE
  191. 20 CONTINUE
  192. ELSE
  193. DO 40 J = 1, N
  194. DO 30 I = J + 1, N
  195. AINV( J, I ) = AINV( I, J )
  196. 30 CONTINUE
  197. 40 CONTINUE
  198. END IF
  199. CALL DSYMM( 'Left', UPLO, N, N, -ONE, A, LDA, AINV, LDAINV, ZERO,
  200. $ WORK, LDWORK )
  201. *
  202. * Add the identity matrix to WORK .
  203. *
  204. DO 50 I = 1, N
  205. WORK( I, I ) = WORK( I, I ) + ONE
  206. 50 CONTINUE
  207. *
  208. * Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
  209. *
  210. RESID = DLANGE( '1', N, N, WORK, LDWORK, RWORK )
  211. *
  212. RESID = ( ( RESID*RCOND ) / EPS ) / DBLE( N )
  213. *
  214. RETURN
  215. *
  216. * End of DPOT03
  217. *
  218. END