You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dpot01.f 5.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220
  1. *> \brief \b DPOT01
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
  12. *
  13. * .. Scalar Arguments ..
  14. * CHARACTER UPLO
  15. * INTEGER LDA, LDAFAC, N
  16. * DOUBLE PRECISION RESID
  17. * ..
  18. * .. Array Arguments ..
  19. * DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> DPOT01 reconstructs a symmetric positive definite matrix A from
  29. *> its L*L' or U'*U factorization and computes the residual
  30. *> norm( L*L' - A ) / ( N * norm(A) * EPS ) or
  31. *> norm( U'*U - A ) / ( N * norm(A) * EPS ),
  32. *> where EPS is the machine epsilon.
  33. *> \endverbatim
  34. *
  35. * Arguments:
  36. * ==========
  37. *
  38. *> \param[in] UPLO
  39. *> \verbatim
  40. *> UPLO is CHARACTER*1
  41. *> Specifies whether the upper or lower triangular part of the
  42. *> symmetric matrix A is stored:
  43. *> = 'U': Upper triangular
  44. *> = 'L': Lower triangular
  45. *> \endverbatim
  46. *>
  47. *> \param[in] N
  48. *> \verbatim
  49. *> N is INTEGER
  50. *> The number of rows and columns of the matrix A. N >= 0.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] A
  54. *> \verbatim
  55. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  56. *> The original symmetric matrix A.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] LDA
  60. *> \verbatim
  61. *> LDA is INTEGER
  62. *> The leading dimension of the array A. LDA >= max(1,N)
  63. *> \endverbatim
  64. *>
  65. *> \param[in,out] AFAC
  66. *> \verbatim
  67. *> AFAC is DOUBLE PRECISION array, dimension (LDAFAC,N)
  68. *> On entry, the factor L or U from the L * L**T or U**T * U
  69. *> factorization of A.
  70. *> Overwritten with the reconstructed matrix, and then with
  71. *> the difference L * L**T - A (or U**T * U - A).
  72. *> \endverbatim
  73. *>
  74. *> \param[in] LDAFAC
  75. *> \verbatim
  76. *> LDAFAC is INTEGER
  77. *> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
  78. *> \endverbatim
  79. *>
  80. *> \param[out] RWORK
  81. *> \verbatim
  82. *> RWORK is DOUBLE PRECISION array, dimension (N)
  83. *> \endverbatim
  84. *>
  85. *> \param[out] RESID
  86. *> \verbatim
  87. *> RESID is DOUBLE PRECISION
  88. *> If UPLO = 'L', norm(L * L**T - A) / ( N * norm(A) * EPS )
  89. *> If UPLO = 'U', norm(U**T * U - A) / ( N * norm(A) * EPS )
  90. *> \endverbatim
  91. *
  92. * Authors:
  93. * ========
  94. *
  95. *> \author Univ. of Tennessee
  96. *> \author Univ. of California Berkeley
  97. *> \author Univ. of Colorado Denver
  98. *> \author NAG Ltd.
  99. *
  100. *> \ingroup double_lin
  101. *
  102. * =====================================================================
  103. SUBROUTINE DPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
  104. *
  105. * -- LAPACK test routine --
  106. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  107. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  108. *
  109. * .. Scalar Arguments ..
  110. CHARACTER UPLO
  111. INTEGER LDA, LDAFAC, N
  112. DOUBLE PRECISION RESID
  113. * ..
  114. * .. Array Arguments ..
  115. DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
  116. * ..
  117. *
  118. * =====================================================================
  119. *
  120. * .. Parameters ..
  121. DOUBLE PRECISION ZERO, ONE
  122. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  123. * ..
  124. * .. Local Scalars ..
  125. INTEGER I, J, K
  126. DOUBLE PRECISION ANORM, EPS, T
  127. * ..
  128. * .. External Functions ..
  129. LOGICAL LSAME
  130. DOUBLE PRECISION DDOT, DLAMCH, DLANSY
  131. EXTERNAL LSAME, DDOT, DLAMCH, DLANSY
  132. * ..
  133. * .. External Subroutines ..
  134. EXTERNAL DSCAL, DSYR, DTRMV
  135. * ..
  136. * .. Intrinsic Functions ..
  137. INTRINSIC DBLE
  138. * ..
  139. * .. Executable Statements ..
  140. *
  141. * Quick exit if N = 0.
  142. *
  143. IF( N.LE.0 ) THEN
  144. RESID = ZERO
  145. RETURN
  146. END IF
  147. *
  148. * Exit with RESID = 1/EPS if ANORM = 0.
  149. *
  150. EPS = DLAMCH( 'Epsilon' )
  151. ANORM = DLANSY( '1', UPLO, N, A, LDA, RWORK )
  152. IF( ANORM.LE.ZERO ) THEN
  153. RESID = ONE / EPS
  154. RETURN
  155. END IF
  156. *
  157. * Compute the product U**T * U, overwriting U.
  158. *
  159. IF( LSAME( UPLO, 'U' ) ) THEN
  160. DO 10 K = N, 1, -1
  161. *
  162. * Compute the (K,K) element of the result.
  163. *
  164. T = DDOT( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 )
  165. AFAC( K, K ) = T
  166. *
  167. * Compute the rest of column K.
  168. *
  169. CALL DTRMV( 'Upper', 'Transpose', 'Non-unit', K-1, AFAC,
  170. $ LDAFAC, AFAC( 1, K ), 1 )
  171. *
  172. 10 CONTINUE
  173. *
  174. * Compute the product L * L**T, overwriting L.
  175. *
  176. ELSE
  177. DO 20 K = N, 1, -1
  178. *
  179. * Add a multiple of column K of the factor L to each of
  180. * columns K+1 through N.
  181. *
  182. IF( K+1.LE.N )
  183. $ CALL DSYR( 'Lower', N-K, ONE, AFAC( K+1, K ), 1,
  184. $ AFAC( K+1, K+1 ), LDAFAC )
  185. *
  186. * Scale column K by the diagonal element.
  187. *
  188. T = AFAC( K, K )
  189. CALL DSCAL( N-K+1, T, AFAC( K, K ), 1 )
  190. *
  191. 20 CONTINUE
  192. END IF
  193. *
  194. * Compute the difference L * L**T - A (or U**T * U - A).
  195. *
  196. IF( LSAME( UPLO, 'U' ) ) THEN
  197. DO 40 J = 1, N
  198. DO 30 I = 1, J
  199. AFAC( I, J ) = AFAC( I, J ) - A( I, J )
  200. 30 CONTINUE
  201. 40 CONTINUE
  202. ELSE
  203. DO 60 J = 1, N
  204. DO 50 I = J, N
  205. AFAC( I, J ) = AFAC( I, J ) - A( I, J )
  206. 50 CONTINUE
  207. 60 CONTINUE
  208. END IF
  209. *
  210. * Compute norm( L*U - A ) / ( N * norm(A) * EPS )
  211. *
  212. RESID = DLANSY( '1', UPLO, N, AFAC, LDAFAC, RWORK )
  213. *
  214. RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
  215. *
  216. RETURN
  217. *
  218. * End of DPOT01
  219. *
  220. END