You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clavsp.f 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544
  1. *> \brief \b CLAVSP
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CLAVSP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
  12. * INFO )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER DIAG, TRANS, UPLO
  16. * INTEGER INFO, LDB, N, NRHS
  17. * ..
  18. * .. Array Arguments ..
  19. * INTEGER IPIV( * )
  20. * COMPLEX A( * ), B( LDB, * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> CLAVSP performs one of the matrix-vector operations
  30. *> x := A*x or x := A^T*x,
  31. *> where x is an N element vector and A is one of the factors
  32. *> from the symmetric factorization computed by CSPTRF.
  33. *> CSPTRF produces a factorization of the form
  34. *> U * D * U^T or L * D * L^T,
  35. *> where U (or L) is a product of permutation and unit upper (lower)
  36. *> triangular matrices, U^T (or L^T) is the transpose of
  37. *> U (or L), and D is symmetric and block diagonal with 1 x 1 and
  38. *> 2 x 2 diagonal blocks. The multipliers for the transformations
  39. *> and the upper or lower triangular parts of the diagonal blocks
  40. *> are stored columnwise in packed format in the linear array A.
  41. *>
  42. *> If TRANS = 'N' or 'n', CLAVSP multiplies either by U or U * D
  43. *> (or L or L * D).
  44. *> If TRANS = 'C' or 'c', CLAVSP multiplies either by U^T or D * U^T
  45. *> (or L^T or D * L^T ).
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \verbatim
  52. *> UPLO - CHARACTER*1
  53. *> On entry, UPLO specifies whether the triangular matrix
  54. *> stored in A is upper or lower triangular.
  55. *> UPLO = 'U' or 'u' The matrix is upper triangular.
  56. *> UPLO = 'L' or 'l' The matrix is lower triangular.
  57. *> Unchanged on exit.
  58. *>
  59. *> TRANS - CHARACTER*1
  60. *> On entry, TRANS specifies the operation to be performed as
  61. *> follows:
  62. *> TRANS = 'N' or 'n' x := A*x.
  63. *> TRANS = 'T' or 't' x := A^T*x.
  64. *> Unchanged on exit.
  65. *>
  66. *> DIAG - CHARACTER*1
  67. *> On entry, DIAG specifies whether the diagonal blocks are
  68. *> assumed to be unit matrices, as follows:
  69. *> DIAG = 'U' or 'u' Diagonal blocks are unit matrices.
  70. *> DIAG = 'N' or 'n' Diagonal blocks are non-unit.
  71. *> Unchanged on exit.
  72. *>
  73. *> N - INTEGER
  74. *> On entry, N specifies the order of the matrix A.
  75. *> N must be at least zero.
  76. *> Unchanged on exit.
  77. *>
  78. *> NRHS - INTEGER
  79. *> On entry, NRHS specifies the number of right hand sides,
  80. *> i.e., the number of vectors x to be multiplied by A.
  81. *> NRHS must be at least zero.
  82. *> Unchanged on exit.
  83. *>
  84. *> A - COMPLEX array, dimension( N*(N+1)/2 )
  85. *> On entry, A contains a block diagonal matrix and the
  86. *> multipliers of the transformations used to obtain it,
  87. *> stored as a packed triangular matrix.
  88. *> Unchanged on exit.
  89. *>
  90. *> IPIV - INTEGER array, dimension( N )
  91. *> On entry, IPIV contains the vector of pivot indices as
  92. *> determined by CSPTRF.
  93. *> If IPIV( K ) = K, no interchange was done.
  94. *> If IPIV( K ) <> K but IPIV( K ) > 0, then row K was inter-
  95. *> changed with row IPIV( K ) and a 1 x 1 pivot block was used.
  96. *> If IPIV( K ) < 0 and UPLO = 'U', then row K-1 was exchanged
  97. *> with row | IPIV( K ) | and a 2 x 2 pivot block was used.
  98. *> If IPIV( K ) < 0 and UPLO = 'L', then row K+1 was exchanged
  99. *> with row | IPIV( K ) | and a 2 x 2 pivot block was used.
  100. *>
  101. *> B - COMPLEX array, dimension( LDB, NRHS )
  102. *> On entry, B contains NRHS vectors of length N.
  103. *> On exit, B is overwritten with the product A * B.
  104. *>
  105. *> LDB - INTEGER
  106. *> On entry, LDB contains the leading dimension of B as
  107. *> declared in the calling program. LDB must be at least
  108. *> max( 1, N ).
  109. *> Unchanged on exit.
  110. *>
  111. *> INFO - INTEGER
  112. *> INFO is the error flag.
  113. *> On exit, a value of 0 indicates a successful exit.
  114. *> A negative value, say -K, indicates that the K-th argument
  115. *> has an illegal value.
  116. *> \endverbatim
  117. *
  118. * Authors:
  119. * ========
  120. *
  121. *> \author Univ. of Tennessee
  122. *> \author Univ. of California Berkeley
  123. *> \author Univ. of Colorado Denver
  124. *> \author NAG Ltd.
  125. *
  126. *> \ingroup complex_lin
  127. *
  128. * =====================================================================
  129. SUBROUTINE CLAVSP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
  130. $ INFO )
  131. *
  132. * -- LAPACK test routine --
  133. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  134. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  135. *
  136. * .. Scalar Arguments ..
  137. CHARACTER DIAG, TRANS, UPLO
  138. INTEGER INFO, LDB, N, NRHS
  139. * ..
  140. * .. Array Arguments ..
  141. INTEGER IPIV( * )
  142. COMPLEX A( * ), B( LDB, * )
  143. * ..
  144. *
  145. * =====================================================================
  146. *
  147. * .. Parameters ..
  148. COMPLEX ONE
  149. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  150. * ..
  151. * .. Local Scalars ..
  152. LOGICAL NOUNIT
  153. INTEGER J, K, KC, KCNEXT, KP
  154. COMPLEX D11, D12, D21, D22, T1, T2
  155. * ..
  156. * .. External Functions ..
  157. LOGICAL LSAME
  158. EXTERNAL LSAME
  159. * ..
  160. * .. External Subroutines ..
  161. EXTERNAL CGEMV, CGERU, CSCAL, CSWAP, XERBLA
  162. * ..
  163. * .. Intrinsic Functions ..
  164. INTRINSIC ABS, MAX
  165. * ..
  166. * .. Executable Statements ..
  167. *
  168. * Test the input parameters.
  169. *
  170. INFO = 0
  171. IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  172. INFO = -1
  173. ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
  174. $ THEN
  175. INFO = -2
  176. ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
  177. $ THEN
  178. INFO = -3
  179. ELSE IF( N.LT.0 ) THEN
  180. INFO = -4
  181. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  182. INFO = -8
  183. END IF
  184. IF( INFO.NE.0 ) THEN
  185. CALL XERBLA( 'CLAVSP ', -INFO )
  186. RETURN
  187. END IF
  188. *
  189. * Quick return if possible.
  190. *
  191. IF( N.EQ.0 )
  192. $ RETURN
  193. *
  194. NOUNIT = LSAME( DIAG, 'N' )
  195. *------------------------------------------
  196. *
  197. * Compute B := A * B (No transpose)
  198. *
  199. *------------------------------------------
  200. IF( LSAME( TRANS, 'N' ) ) THEN
  201. *
  202. * Compute B := U*B
  203. * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
  204. *
  205. IF( LSAME( UPLO, 'U' ) ) THEN
  206. *
  207. * Loop forward applying the transformations.
  208. *
  209. K = 1
  210. KC = 1
  211. 10 CONTINUE
  212. IF( K.GT.N )
  213. $ GO TO 30
  214. *
  215. * 1 x 1 pivot block
  216. *
  217. IF( IPIV( K ).GT.0 ) THEN
  218. *
  219. * Multiply by the diagonal element if forming U * D.
  220. *
  221. IF( NOUNIT )
  222. $ CALL CSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
  223. *
  224. * Multiply by P(K) * inv(U(K)) if K > 1.
  225. *
  226. IF( K.GT.1 ) THEN
  227. *
  228. * Apply the transformation.
  229. *
  230. CALL CGERU( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ),
  231. $ LDB, B( 1, 1 ), LDB )
  232. *
  233. * Interchange if P(K) != I.
  234. *
  235. KP = IPIV( K )
  236. IF( KP.NE.K )
  237. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  238. END IF
  239. KC = KC + K
  240. K = K + 1
  241. ELSE
  242. *
  243. * 2 x 2 pivot block
  244. *
  245. KCNEXT = KC + K
  246. *
  247. * Multiply by the diagonal block if forming U * D.
  248. *
  249. IF( NOUNIT ) THEN
  250. D11 = A( KCNEXT-1 )
  251. D22 = A( KCNEXT+K )
  252. D12 = A( KCNEXT+K-1 )
  253. D21 = D12
  254. DO 20 J = 1, NRHS
  255. T1 = B( K, J )
  256. T2 = B( K+1, J )
  257. B( K, J ) = D11*T1 + D12*T2
  258. B( K+1, J ) = D21*T1 + D22*T2
  259. 20 CONTINUE
  260. END IF
  261. *
  262. * Multiply by P(K) * inv(U(K)) if K > 1.
  263. *
  264. IF( K.GT.1 ) THEN
  265. *
  266. * Apply the transformations.
  267. *
  268. CALL CGERU( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ),
  269. $ LDB, B( 1, 1 ), LDB )
  270. CALL CGERU( K-1, NRHS, ONE, A( KCNEXT ), 1,
  271. $ B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
  272. *
  273. * Interchange if P(K) != I.
  274. *
  275. KP = ABS( IPIV( K ) )
  276. IF( KP.NE.K )
  277. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  278. END IF
  279. KC = KCNEXT + K + 1
  280. K = K + 2
  281. END IF
  282. GO TO 10
  283. 30 CONTINUE
  284. *
  285. * Compute B := L*B
  286. * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
  287. *
  288. ELSE
  289. *
  290. * Loop backward applying the transformations to B.
  291. *
  292. K = N
  293. KC = N*( N+1 ) / 2 + 1
  294. 40 CONTINUE
  295. IF( K.LT.1 )
  296. $ GO TO 60
  297. KC = KC - ( N-K+1 )
  298. *
  299. * Test the pivot index. If greater than zero, a 1 x 1
  300. * pivot was used, otherwise a 2 x 2 pivot was used.
  301. *
  302. IF( IPIV( K ).GT.0 ) THEN
  303. *
  304. * 1 x 1 pivot block:
  305. *
  306. * Multiply by the diagonal element if forming L * D.
  307. *
  308. IF( NOUNIT )
  309. $ CALL CSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
  310. *
  311. * Multiply by P(K) * inv(L(K)) if K < N.
  312. *
  313. IF( K.NE.N ) THEN
  314. KP = IPIV( K )
  315. *
  316. * Apply the transformation.
  317. *
  318. CALL CGERU( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
  319. $ LDB, B( K+1, 1 ), LDB )
  320. *
  321. * Interchange if a permutation was applied at the
  322. * K-th step of the factorization.
  323. *
  324. IF( KP.NE.K )
  325. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  326. END IF
  327. K = K - 1
  328. *
  329. ELSE
  330. *
  331. * 2 x 2 pivot block:
  332. *
  333. KCNEXT = KC - ( N-K+2 )
  334. *
  335. * Multiply by the diagonal block if forming L * D.
  336. *
  337. IF( NOUNIT ) THEN
  338. D11 = A( KCNEXT )
  339. D22 = A( KC )
  340. D21 = A( KCNEXT+1 )
  341. D12 = D21
  342. DO 50 J = 1, NRHS
  343. T1 = B( K-1, J )
  344. T2 = B( K, J )
  345. B( K-1, J ) = D11*T1 + D12*T2
  346. B( K, J ) = D21*T1 + D22*T2
  347. 50 CONTINUE
  348. END IF
  349. *
  350. * Multiply by P(K) * inv(L(K)) if K < N.
  351. *
  352. IF( K.NE.N ) THEN
  353. *
  354. * Apply the transformation.
  355. *
  356. CALL CGERU( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
  357. $ LDB, B( K+1, 1 ), LDB )
  358. CALL CGERU( N-K, NRHS, ONE, A( KCNEXT+2 ), 1,
  359. $ B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
  360. *
  361. * Interchange if a permutation was applied at the
  362. * K-th step of the factorization.
  363. *
  364. KP = ABS( IPIV( K ) )
  365. IF( KP.NE.K )
  366. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  367. END IF
  368. KC = KCNEXT
  369. K = K - 2
  370. END IF
  371. GO TO 40
  372. 60 CONTINUE
  373. END IF
  374. *-------------------------------------------------
  375. *
  376. * Compute B := A^T * B (transpose)
  377. *
  378. *-------------------------------------------------
  379. ELSE
  380. *
  381. * Form B := U^T*B
  382. * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
  383. * and U^T = inv(U^T(1))*P(1)* ... *inv(U^T(m))*P(m)
  384. *
  385. IF( LSAME( UPLO, 'U' ) ) THEN
  386. *
  387. * Loop backward applying the transformations.
  388. *
  389. K = N
  390. KC = N*( N+1 ) / 2 + 1
  391. 70 IF( K.LT.1 )
  392. $ GO TO 90
  393. KC = KC - K
  394. *
  395. * 1 x 1 pivot block.
  396. *
  397. IF( IPIV( K ).GT.0 ) THEN
  398. IF( K.GT.1 ) THEN
  399. *
  400. * Interchange if P(K) != I.
  401. *
  402. KP = IPIV( K )
  403. IF( KP.NE.K )
  404. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  405. *
  406. * Apply the transformation:
  407. * y := y - B' * conjg(x)
  408. * where x is a column of A and y is a row of B.
  409. *
  410. CALL CGEMV( 'Transpose', K-1, NRHS, ONE, B, LDB,
  411. $ A( KC ), 1, ONE, B( K, 1 ), LDB )
  412. END IF
  413. IF( NOUNIT )
  414. $ CALL CSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
  415. K = K - 1
  416. *
  417. * 2 x 2 pivot block.
  418. *
  419. ELSE
  420. KCNEXT = KC - ( K-1 )
  421. IF( K.GT.2 ) THEN
  422. *
  423. * Interchange if P(K) != I.
  424. *
  425. KP = ABS( IPIV( K ) )
  426. IF( KP.NE.K-1 )
  427. $ CALL CSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
  428. $ LDB )
  429. *
  430. * Apply the transformations.
  431. *
  432. CALL CGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
  433. $ A( KC ), 1, ONE, B( K, 1 ), LDB )
  434. *
  435. CALL CGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
  436. $ A( KCNEXT ), 1, ONE, B( K-1, 1 ), LDB )
  437. END IF
  438. *
  439. * Multiply by the diagonal block if non-unit.
  440. *
  441. IF( NOUNIT ) THEN
  442. D11 = A( KC-1 )
  443. D22 = A( KC+K-1 )
  444. D12 = A( KC+K-2 )
  445. D21 = D12
  446. DO 80 J = 1, NRHS
  447. T1 = B( K-1, J )
  448. T2 = B( K, J )
  449. B( K-1, J ) = D11*T1 + D12*T2
  450. B( K, J ) = D21*T1 + D22*T2
  451. 80 CONTINUE
  452. END IF
  453. KC = KCNEXT
  454. K = K - 2
  455. END IF
  456. GO TO 70
  457. 90 CONTINUE
  458. *
  459. * Form B := L^T*B
  460. * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
  461. * and L^T = inv(L(m))*P(m)* ... *inv(L(1))*P(1)
  462. *
  463. ELSE
  464. *
  465. * Loop forward applying the L-transformations.
  466. *
  467. K = 1
  468. KC = 1
  469. 100 CONTINUE
  470. IF( K.GT.N )
  471. $ GO TO 120
  472. *
  473. * 1 x 1 pivot block
  474. *
  475. IF( IPIV( K ).GT.0 ) THEN
  476. IF( K.LT.N ) THEN
  477. *
  478. * Interchange if P(K) != I.
  479. *
  480. KP = IPIV( K )
  481. IF( KP.NE.K )
  482. $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  483. *
  484. * Apply the transformation
  485. *
  486. CALL CGEMV( 'Transpose', N-K, NRHS, ONE, B( K+1, 1 ),
  487. $ LDB, A( KC+1 ), 1, ONE, B( K, 1 ), LDB )
  488. END IF
  489. IF( NOUNIT )
  490. $ CALL CSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
  491. KC = KC + N - K + 1
  492. K = K + 1
  493. *
  494. * 2 x 2 pivot block.
  495. *
  496. ELSE
  497. KCNEXT = KC + N - K + 1
  498. IF( K.LT.N-1 ) THEN
  499. *
  500. * Interchange if P(K) != I.
  501. *
  502. KP = ABS( IPIV( K ) )
  503. IF( KP.NE.K+1 )
  504. $ CALL CSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
  505. $ LDB )
  506. *
  507. * Apply the transformation
  508. *
  509. CALL CGEMV( 'Transpose', N-K-1, NRHS, ONE,
  510. $ B( K+2, 1 ), LDB, A( KCNEXT+1 ), 1, ONE,
  511. $ B( K+1, 1 ), LDB )
  512. *
  513. CALL CGEMV( 'Transpose', N-K-1, NRHS, ONE,
  514. $ B( K+2, 1 ), LDB, A( KC+2 ), 1, ONE,
  515. $ B( K, 1 ), LDB )
  516. END IF
  517. *
  518. * Multiply by the diagonal block if non-unit.
  519. *
  520. IF( NOUNIT ) THEN
  521. D11 = A( KC )
  522. D22 = A( KCNEXT )
  523. D21 = A( KC+1 )
  524. D12 = D21
  525. DO 110 J = 1, NRHS
  526. T1 = B( K, J )
  527. T2 = B( K+1, J )
  528. B( K, J ) = D11*T1 + D12*T2
  529. B( K+1, J ) = D21*T1 + D22*T2
  530. 110 CONTINUE
  531. END IF
  532. KC = KCNEXT + ( N-K )
  533. K = K + 2
  534. END IF
  535. GO TO 100
  536. 120 CONTINUE
  537. END IF
  538. *
  539. END IF
  540. RETURN
  541. *
  542. * End of CLAVSP
  543. *
  544. END