You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zuncsd2by1.f 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776
  1. *> \brief \b ZUNCSD2BY1
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZUNCSD2BY1 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zuncsd2by1.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zuncsd2by1.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zuncsd2by1.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  22. * X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  23. * LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
  24. * INFO )
  25. *
  26. * .. Scalar Arguments ..
  27. * CHARACTER JOBU1, JOBU2, JOBV1T
  28. * INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  29. * $ M, P, Q
  30. * INTEGER LRWORK, LRWORKMIN, LRWORKOPT
  31. * ..
  32. * .. Array Arguments ..
  33. * DOUBLE PRECISION RWORK(*)
  34. * DOUBLE PRECISION THETA(*)
  35. * COMPLEX*16 U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  36. * $ X11(LDX11,*), X21(LDX21,*)
  37. * INTEGER IWORK(*)
  38. * ..
  39. *
  40. *
  41. *> \par Purpose:
  42. * =============
  43. *>
  44. *>\verbatim
  45. *>
  46. *> ZUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
  47. *> orthonormal columns that has been partitioned into a 2-by-1 block
  48. *> structure:
  49. *>
  50. *> [ I1 0 0 ]
  51. *> [ 0 C 0 ]
  52. *> [ X11 ] [ U1 | ] [ 0 0 0 ]
  53. *> X = [-----] = [---------] [----------] V1**T .
  54. *> [ X21 ] [ | U2 ] [ 0 0 0 ]
  55. *> [ 0 S 0 ]
  56. *> [ 0 0 I2]
  57. *>
  58. *> X11 is P-by-Q. The unitary matrices U1, U2, and V1 are P-by-P,
  59. *> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R
  60. *> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which
  61. *> R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a
  62. *> K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0).
  63. *> \endverbatim
  64. *
  65. * Arguments:
  66. * ==========
  67. *
  68. *> \param[in] JOBU1
  69. *> \verbatim
  70. *> JOBU1 is CHARACTER
  71. *> = 'Y': U1 is computed;
  72. *> otherwise: U1 is not computed.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] JOBU2
  76. *> \verbatim
  77. *> JOBU2 is CHARACTER
  78. *> = 'Y': U2 is computed;
  79. *> otherwise: U2 is not computed.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] JOBV1T
  83. *> \verbatim
  84. *> JOBV1T is CHARACTER
  85. *> = 'Y': V1T is computed;
  86. *> otherwise: V1T is not computed.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] M
  90. *> \verbatim
  91. *> M is INTEGER
  92. *> The number of rows in X.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] P
  96. *> \verbatim
  97. *> P is INTEGER
  98. *> The number of rows in X11. 0 <= P <= M.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] Q
  102. *> \verbatim
  103. *> Q is INTEGER
  104. *> The number of columns in X11 and X21. 0 <= Q <= M.
  105. *> \endverbatim
  106. *>
  107. *> \param[in,out] X11
  108. *> \verbatim
  109. *> X11 is COMPLEX*16 array, dimension (LDX11,Q)
  110. *> On entry, part of the unitary matrix whose CSD is desired.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] LDX11
  114. *> \verbatim
  115. *> LDX11 is INTEGER
  116. *> The leading dimension of X11. LDX11 >= MAX(1,P).
  117. *> \endverbatim
  118. *>
  119. *> \param[in,out] X21
  120. *> \verbatim
  121. *> X21 is COMPLEX*16 array, dimension (LDX21,Q)
  122. *> On entry, part of the unitary matrix whose CSD is desired.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] LDX21
  126. *> \verbatim
  127. *> LDX21 is INTEGER
  128. *> The leading dimension of X21. LDX21 >= MAX(1,M-P).
  129. *> \endverbatim
  130. *>
  131. *> \param[out] THETA
  132. *> \verbatim
  133. *> THETA is DOUBLE PRECISION array, dimension (R), in which R =
  134. *> MIN(P,M-P,Q,M-Q).
  135. *> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  136. *> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  137. *> \endverbatim
  138. *>
  139. *> \param[out] U1
  140. *> \verbatim
  141. *> U1 is COMPLEX*16 array, dimension (P)
  142. *> If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
  143. *> \endverbatim
  144. *>
  145. *> \param[in] LDU1
  146. *> \verbatim
  147. *> LDU1 is INTEGER
  148. *> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  149. *> MAX(1,P).
  150. *> \endverbatim
  151. *>
  152. *> \param[out] U2
  153. *> \verbatim
  154. *> U2 is COMPLEX*16 array, dimension (M-P)
  155. *> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
  156. *> matrix U2.
  157. *> \endverbatim
  158. *>
  159. *> \param[in] LDU2
  160. *> \verbatim
  161. *> LDU2 is INTEGER
  162. *> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  163. *> MAX(1,M-P).
  164. *> \endverbatim
  165. *>
  166. *> \param[out] V1T
  167. *> \verbatim
  168. *> V1T is COMPLEX*16 array, dimension (Q)
  169. *> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
  170. *> matrix V1**T.
  171. *> \endverbatim
  172. *>
  173. *> \param[in] LDV1T
  174. *> \verbatim
  175. *> LDV1T is INTEGER
  176. *> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  177. *> MAX(1,Q).
  178. *> \endverbatim
  179. *>
  180. *> \param[out] WORK
  181. *> \verbatim
  182. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  183. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  184. *> \endverbatim
  185. *>
  186. *> \param[in] LWORK
  187. *> \verbatim
  188. *> LWORK is INTEGER
  189. *> The dimension of the array WORK.
  190. *>
  191. *> If LWORK = -1, then a workspace query is assumed; the routine
  192. *> only calculates the optimal size of the WORK and RWORK
  193. *> arrays, returns this value as the first entry of the WORK
  194. *> and RWORK array, respectively, and no error message related
  195. *> to LWORK or LRWORK is issued by XERBLA.
  196. *> \endverbatim
  197. *>
  198. *> \param[out] RWORK
  199. *> \verbatim
  200. *> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  201. *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  202. *> If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
  203. *> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  204. *> define the matrix in intermediate bidiagonal-block form
  205. *> remaining after nonconvergence. INFO specifies the number
  206. *> of nonzero PHI's.
  207. *> \endverbatim
  208. *>
  209. *> \param[in] LRWORK
  210. *> \verbatim
  211. *> LRWORK is INTEGER
  212. *> The dimension of the array RWORK.
  213. *>
  214. *> If LRWORK=-1, then a workspace query is assumed; the routine
  215. *> only calculates the optimal size of the WORK and RWORK
  216. *> arrays, returns this value as the first entry of the WORK
  217. *> and RWORK array, respectively, and no error message related
  218. *> to LWORK or LRWORK is issued by XERBLA.
  219. *> \endverbatim
  220. *>
  221. *> \param[out] IWORK
  222. *> \verbatim
  223. *> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
  224. *> \endverbatim
  225. *>
  226. *> \param[out] INFO
  227. *> \verbatim
  228. *> INFO is INTEGER
  229. *> = 0: successful exit.
  230. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  231. *> > 0: ZBBCSD did not converge. See the description of WORK
  232. *> above for details.
  233. *> \endverbatim
  234. *
  235. *> \par References:
  236. * ================
  237. *>
  238. *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  239. *> Algorithms, 50(1):33-65, 2009.
  240. *
  241. * Authors:
  242. * ========
  243. *
  244. *> \author Univ. of Tennessee
  245. *> \author Univ. of California Berkeley
  246. *> \author Univ. of Colorado Denver
  247. *> \author NAG Ltd.
  248. *
  249. *> \ingroup complex16OTHERcomputational
  250. *
  251. * =====================================================================
  252. SUBROUTINE ZUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  253. $ X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  254. $ LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
  255. $ INFO )
  256. *
  257. * -- LAPACK computational routine --
  258. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  259. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  260. *
  261. * .. Scalar Arguments ..
  262. CHARACTER JOBU1, JOBU2, JOBV1T
  263. INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  264. $ M, P, Q
  265. INTEGER LRWORK, LRWORKMIN, LRWORKOPT
  266. * ..
  267. * .. Array Arguments ..
  268. DOUBLE PRECISION RWORK(*)
  269. DOUBLE PRECISION THETA(*)
  270. COMPLEX*16 U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  271. $ X11(LDX11,*), X21(LDX21,*)
  272. INTEGER IWORK(*)
  273. * ..
  274. *
  275. * =====================================================================
  276. *
  277. * .. Parameters ..
  278. COMPLEX*16 ONE, ZERO
  279. PARAMETER ( ONE = (1.0D0,0.0D0), ZERO = (0.0D0,0.0D0) )
  280. * ..
  281. * .. Local Scalars ..
  282. INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  283. $ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  284. $ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  285. $ J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
  286. $ LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
  287. $ LWORKMIN, LWORKOPT, R
  288. LOGICAL LQUERY, WANTU1, WANTU2, WANTV1T
  289. * ..
  290. * .. Local Arrays ..
  291. DOUBLE PRECISION DUM( 1 )
  292. COMPLEX*16 CDUM( 1, 1 )
  293. * ..
  294. * .. External Subroutines ..
  295. EXTERNAL ZBBCSD, ZCOPY, ZLACPY, ZLAPMR, ZLAPMT, ZUNBDB1,
  296. $ ZUNBDB2, ZUNBDB3, ZUNBDB4, ZUNGLQ, ZUNGQR,
  297. $ XERBLA
  298. * ..
  299. * .. External Functions ..
  300. LOGICAL LSAME
  301. EXTERNAL LSAME
  302. * ..
  303. * .. Intrinsic Function ..
  304. INTRINSIC INT, MAX, MIN
  305. * ..
  306. * .. Executable Statements ..
  307. *
  308. * Test input arguments
  309. *
  310. INFO = 0
  311. WANTU1 = LSAME( JOBU1, 'Y' )
  312. WANTU2 = LSAME( JOBU2, 'Y' )
  313. WANTV1T = LSAME( JOBV1T, 'Y' )
  314. LQUERY = ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 )
  315. *
  316. IF( M .LT. 0 ) THEN
  317. INFO = -4
  318. ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  319. INFO = -5
  320. ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  321. INFO = -6
  322. ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  323. INFO = -8
  324. ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  325. INFO = -10
  326. ELSE IF( WANTU1 .AND. LDU1 .LT. MAX( 1, P ) ) THEN
  327. INFO = -13
  328. ELSE IF( WANTU2 .AND. LDU2 .LT. MAX( 1, M - P ) ) THEN
  329. INFO = -15
  330. ELSE IF( WANTV1T .AND. LDV1T .LT. MAX( 1, Q ) ) THEN
  331. INFO = -17
  332. END IF
  333. *
  334. R = MIN( P, M-P, Q, M-Q )
  335. *
  336. * Compute workspace
  337. *
  338. * WORK layout:
  339. * |-----------------------------------------|
  340. * | LWORKOPT (1) |
  341. * |-----------------------------------------|
  342. * | TAUP1 (MAX(1,P)) |
  343. * | TAUP2 (MAX(1,M-P)) |
  344. * | TAUQ1 (MAX(1,Q)) |
  345. * |-----------------------------------------|
  346. * | ZUNBDB WORK | ZUNGQR WORK | ZUNGLQ WORK |
  347. * | | | |
  348. * | | | |
  349. * | | | |
  350. * | | | |
  351. * |-----------------------------------------|
  352. * RWORK layout:
  353. * |------------------|
  354. * | LRWORKOPT (1) |
  355. * |------------------|
  356. * | PHI (MAX(1,R-1)) |
  357. * |------------------|
  358. * | B11D (R) |
  359. * | B11E (R-1) |
  360. * | B12D (R) |
  361. * | B12E (R-1) |
  362. * | B21D (R) |
  363. * | B21E (R-1) |
  364. * | B22D (R) |
  365. * | B22E (R-1) |
  366. * | ZBBCSD RWORK |
  367. * |------------------|
  368. *
  369. IF( INFO .EQ. 0 ) THEN
  370. IPHI = 2
  371. IB11D = IPHI + MAX( 1, R-1 )
  372. IB11E = IB11D + MAX( 1, R )
  373. IB12D = IB11E + MAX( 1, R - 1 )
  374. IB12E = IB12D + MAX( 1, R )
  375. IB21D = IB12E + MAX( 1, R - 1 )
  376. IB21E = IB21D + MAX( 1, R )
  377. IB22D = IB21E + MAX( 1, R - 1 )
  378. IB22E = IB22D + MAX( 1, R )
  379. IBBCSD = IB22E + MAX( 1, R - 1 )
  380. ITAUP1 = 2
  381. ITAUP2 = ITAUP1 + MAX( 1, P )
  382. ITAUQ1 = ITAUP2 + MAX( 1, M-P )
  383. IORBDB = ITAUQ1 + MAX( 1, Q )
  384. IORGQR = ITAUQ1 + MAX( 1, Q )
  385. IORGLQ = ITAUQ1 + MAX( 1, Q )
  386. LORGQRMIN = 1
  387. LORGQROPT = 1
  388. LORGLQMIN = 1
  389. LORGLQOPT = 1
  390. IF( R .EQ. Q ) THEN
  391. CALL ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  392. $ CDUM, CDUM, CDUM, WORK, -1, CHILDINFO )
  393. LORBDB = INT( WORK(1) )
  394. IF( WANTU1 .AND. P .GT. 0 ) THEN
  395. CALL ZUNGQR( P, P, Q, U1, LDU1, CDUM, WORK(1), -1,
  396. $ CHILDINFO )
  397. LORGQRMIN = MAX( LORGQRMIN, P )
  398. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  399. ENDIF
  400. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  401. CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, CDUM, WORK(1), -1,
  402. $ CHILDINFO )
  403. LORGQRMIN = MAX( LORGQRMIN, M-P )
  404. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  405. END IF
  406. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  407. CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T, LDV1T,
  408. $ CDUM, WORK(1), -1, CHILDINFO )
  409. LORGLQMIN = MAX( LORGLQMIN, Q-1 )
  410. LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  411. END IF
  412. CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  413. $ DUM, U1, LDU1, U2, LDU2, V1T, LDV1T, CDUM, 1,
  414. $ DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  415. $ RWORK(1), -1, CHILDINFO )
  416. LBBCSD = INT( RWORK(1) )
  417. ELSE IF( R .EQ. P ) THEN
  418. CALL ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  419. $ CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO )
  420. LORBDB = INT( WORK(1) )
  421. IF( WANTU1 .AND. P .GT. 0 ) THEN
  422. CALL ZUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, CDUM, WORK(1),
  423. $ -1, CHILDINFO )
  424. LORGQRMIN = MAX( LORGQRMIN, P-1 )
  425. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  426. END IF
  427. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  428. CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, CDUM, WORK(1), -1,
  429. $ CHILDINFO )
  430. LORGQRMIN = MAX( LORGQRMIN, M-P )
  431. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  432. END IF
  433. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  434. CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, CDUM, WORK(1), -1,
  435. $ CHILDINFO )
  436. LORGLQMIN = MAX( LORGLQMIN, Q )
  437. LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  438. END IF
  439. CALL ZBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  440. $ DUM, V1T, LDV1T, CDUM, 1, U1, LDU1, U2, LDU2,
  441. $ DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  442. $ RWORK(1), -1, CHILDINFO )
  443. LBBCSD = INT( RWORK(1) )
  444. ELSE IF( R .EQ. M-P ) THEN
  445. CALL ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  446. $ CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO )
  447. LORBDB = INT( WORK(1) )
  448. IF( WANTU1 .AND. P .GT. 0 ) THEN
  449. CALL ZUNGQR( P, P, Q, U1, LDU1, CDUM, WORK(1), -1,
  450. $ CHILDINFO )
  451. LORGQRMIN = MAX( LORGQRMIN, P )
  452. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  453. END IF
  454. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  455. CALL ZUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, CDUM,
  456. $ WORK(1), -1, CHILDINFO )
  457. LORGQRMIN = MAX( LORGQRMIN, M-P-1 )
  458. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  459. END IF
  460. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  461. CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, CDUM, WORK(1), -1,
  462. $ CHILDINFO )
  463. LORGLQMIN = MAX( LORGLQMIN, Q )
  464. LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  465. END IF
  466. CALL ZBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  467. $ THETA, DUM, CDUM, 1, V1T, LDV1T, U2, LDU2, U1,
  468. $ LDU1, DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  469. $ RWORK(1), -1, CHILDINFO )
  470. LBBCSD = INT( RWORK(1) )
  471. ELSE
  472. CALL ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  473. $ CDUM, CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO
  474. $ )
  475. LORBDB = M + INT( WORK(1) )
  476. IF( WANTU1 .AND. P .GT. 0 ) THEN
  477. CALL ZUNGQR( P, P, M-Q, U1, LDU1, CDUM, WORK(1), -1,
  478. $ CHILDINFO )
  479. LORGQRMIN = MAX( LORGQRMIN, P )
  480. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  481. END IF
  482. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  483. CALL ZUNGQR( M-P, M-P, M-Q, U2, LDU2, CDUM, WORK(1), -1,
  484. $ CHILDINFO )
  485. LORGQRMIN = MAX( LORGQRMIN, M-P )
  486. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  487. END IF
  488. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  489. CALL ZUNGLQ( Q, Q, Q, V1T, LDV1T, CDUM, WORK(1), -1,
  490. $ CHILDINFO )
  491. LORGLQMIN = MAX( LORGLQMIN, Q )
  492. LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  493. END IF
  494. CALL ZBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  495. $ THETA, DUM, U2, LDU2, U1, LDU1, CDUM, 1, V1T,
  496. $ LDV1T, DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  497. $ RWORK(1), -1, CHILDINFO )
  498. LBBCSD = INT( RWORK(1) )
  499. END IF
  500. LRWORKMIN = IBBCSD+LBBCSD-1
  501. LRWORKOPT = LRWORKMIN
  502. RWORK(1) = LRWORKOPT
  503. LWORKMIN = MAX( IORBDB+LORBDB-1,
  504. $ IORGQR+LORGQRMIN-1,
  505. $ IORGLQ+LORGLQMIN-1 )
  506. LWORKOPT = MAX( IORBDB+LORBDB-1,
  507. $ IORGQR+LORGQROPT-1,
  508. $ IORGLQ+LORGLQOPT-1 )
  509. WORK(1) = LWORKOPT
  510. IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  511. INFO = -19
  512. END IF
  513. IF( LRWORK .LT. LRWORKMIN .AND. .NOT.LQUERY ) THEN
  514. INFO = -21
  515. END IF
  516. END IF
  517. IF( INFO .NE. 0 ) THEN
  518. CALL XERBLA( 'ZUNCSD2BY1', -INFO )
  519. RETURN
  520. ELSE IF( LQUERY ) THEN
  521. RETURN
  522. END IF
  523. LORGQR = LWORK-IORGQR+1
  524. LORGLQ = LWORK-IORGLQ+1
  525. *
  526. * Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
  527. * in which R = MIN(P,M-P,Q,M-Q)
  528. *
  529. IF( R .EQ. Q ) THEN
  530. *
  531. * Case 1: R = Q
  532. *
  533. * Simultaneously bidiagonalize X11 and X21
  534. *
  535. CALL ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  536. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  537. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  538. *
  539. * Accumulate Householder reflectors
  540. *
  541. IF( WANTU1 .AND. P .GT. 0 ) THEN
  542. CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  543. CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  544. $ LORGQR, CHILDINFO )
  545. END IF
  546. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  547. CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  548. CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  549. $ WORK(IORGQR), LORGQR, CHILDINFO )
  550. END IF
  551. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  552. V1T(1,1) = ONE
  553. DO J = 2, Q
  554. V1T(1,J) = ZERO
  555. V1T(J,1) = ZERO
  556. END DO
  557. CALL ZLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
  558. $ LDV1T )
  559. CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  560. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  561. END IF
  562. *
  563. * Simultaneously diagonalize X11 and X21.
  564. *
  565. CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  566. $ RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, CDUM,
  567. $ 1, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  568. $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  569. $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD),
  570. $ LRWORK-IBBCSD+1, CHILDINFO )
  571. *
  572. * Permute rows and columns to place zero submatrices in
  573. * preferred positions
  574. *
  575. IF( Q .GT. 0 .AND. WANTU2 ) THEN
  576. DO I = 1, Q
  577. IWORK(I) = M - P - Q + I
  578. END DO
  579. DO I = Q + 1, M - P
  580. IWORK(I) = I - Q
  581. END DO
  582. CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  583. END IF
  584. ELSE IF( R .EQ. P ) THEN
  585. *
  586. * Case 2: R = P
  587. *
  588. * Simultaneously bidiagonalize X11 and X21
  589. *
  590. CALL ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  591. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  592. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  593. *
  594. * Accumulate Householder reflectors
  595. *
  596. IF( WANTU1 .AND. P .GT. 0 ) THEN
  597. U1(1,1) = ONE
  598. DO J = 2, P
  599. U1(1,J) = ZERO
  600. U1(J,1) = ZERO
  601. END DO
  602. CALL ZLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
  603. CALL ZUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
  604. $ WORK(IORGQR), LORGQR, CHILDINFO )
  605. END IF
  606. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  607. CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  608. CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  609. $ WORK(IORGQR), LORGQR, CHILDINFO )
  610. END IF
  611. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  612. CALL ZLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
  613. CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  614. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  615. END IF
  616. *
  617. * Simultaneously diagonalize X11 and X21.
  618. *
  619. CALL ZBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  620. $ RWORK(IPHI), V1T, LDV1T, CDUM, 1, U1, LDU1, U2,
  621. $ LDU2, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  622. $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  623. $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  624. $ CHILDINFO )
  625. *
  626. * Permute rows and columns to place identity submatrices in
  627. * preferred positions
  628. *
  629. IF( Q .GT. 0 .AND. WANTU2 ) THEN
  630. DO I = 1, Q
  631. IWORK(I) = M - P - Q + I
  632. END DO
  633. DO I = Q + 1, M - P
  634. IWORK(I) = I - Q
  635. END DO
  636. CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  637. END IF
  638. ELSE IF( R .EQ. M-P ) THEN
  639. *
  640. * Case 3: R = M-P
  641. *
  642. * Simultaneously bidiagonalize X11 and X21
  643. *
  644. CALL ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  645. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  646. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  647. *
  648. * Accumulate Householder reflectors
  649. *
  650. IF( WANTU1 .AND. P .GT. 0 ) THEN
  651. CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  652. CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  653. $ LORGQR, CHILDINFO )
  654. END IF
  655. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  656. U2(1,1) = ONE
  657. DO J = 2, M-P
  658. U2(1,J) = ZERO
  659. U2(J,1) = ZERO
  660. END DO
  661. CALL ZLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
  662. $ LDU2 )
  663. CALL ZUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  664. $ WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
  665. END IF
  666. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  667. CALL ZLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
  668. CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  669. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  670. END IF
  671. *
  672. * Simultaneously diagonalize X11 and X21.
  673. *
  674. CALL ZBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  675. $ THETA, RWORK(IPHI), CDUM, 1, V1T, LDV1T, U2, LDU2,
  676. $ U1, LDU1, RWORK(IB11D), RWORK(IB11E),
  677. $ RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
  678. $ RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
  679. $ RWORK(IBBCSD), LBBCSD, CHILDINFO )
  680. *
  681. * Permute rows and columns to place identity submatrices in
  682. * preferred positions
  683. *
  684. IF( Q .GT. R ) THEN
  685. DO I = 1, R
  686. IWORK(I) = Q - R + I
  687. END DO
  688. DO I = R + 1, Q
  689. IWORK(I) = I - R
  690. END DO
  691. IF( WANTU1 ) THEN
  692. CALL ZLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
  693. END IF
  694. IF( WANTV1T ) THEN
  695. CALL ZLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
  696. END IF
  697. END IF
  698. ELSE
  699. *
  700. * Case 4: R = M-Q
  701. *
  702. * Simultaneously bidiagonalize X11 and X21
  703. *
  704. CALL ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  705. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  706. $ WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
  707. $ LORBDB-M, CHILDINFO )
  708. *
  709. * Accumulate Householder reflectors
  710. *
  711. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  712. CALL ZCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
  713. END IF
  714. IF( WANTU1 .AND. P .GT. 0 ) THEN
  715. CALL ZCOPY( P, WORK(IORBDB), 1, U1, 1 )
  716. DO J = 2, P
  717. U1(1,J) = ZERO
  718. END DO
  719. CALL ZLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
  720. $ LDU1 )
  721. CALL ZUNGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
  722. $ WORK(IORGQR), LORGQR, CHILDINFO )
  723. END IF
  724. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  725. DO J = 2, M-P
  726. U2(1,J) = ZERO
  727. END DO
  728. CALL ZLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
  729. $ LDU2 )
  730. CALL ZUNGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
  731. $ WORK(IORGQR), LORGQR, CHILDINFO )
  732. END IF
  733. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  734. CALL ZLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
  735. CALL ZLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
  736. $ V1T(M-Q+1,M-Q+1), LDV1T )
  737. CALL ZLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
  738. $ V1T(P+1,P+1), LDV1T )
  739. CALL ZUNGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
  740. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  741. END IF
  742. *
  743. * Simultaneously diagonalize X11 and X21.
  744. *
  745. CALL ZBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  746. $ THETA, RWORK(IPHI), U2, LDU2, U1, LDU1, CDUM, 1,
  747. $ V1T, LDV1T, RWORK(IB11D), RWORK(IB11E),
  748. $ RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
  749. $ RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
  750. $ RWORK(IBBCSD), LBBCSD, CHILDINFO )
  751. *
  752. * Permute rows and columns to place identity submatrices in
  753. * preferred positions
  754. *
  755. IF( P .GT. R ) THEN
  756. DO I = 1, R
  757. IWORK(I) = P - R + I
  758. END DO
  759. DO I = R + 1, P
  760. IWORK(I) = I - R
  761. END DO
  762. IF( WANTU1 ) THEN
  763. CALL ZLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
  764. END IF
  765. IF( WANTV1T ) THEN
  766. CALL ZLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
  767. END IF
  768. END IF
  769. END IF
  770. *
  771. RETURN
  772. *
  773. * End of ZUNCSD2BY1
  774. *
  775. END