You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztrexc.f 6.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238
  1. *> \brief \b ZTREXC
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZTREXC + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrexc.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrexc.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrexc.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZTREXC( COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER COMPQ
  25. * INTEGER IFST, ILST, INFO, LDQ, LDT, N
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX*16 Q( LDQ, * ), T( LDT, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> ZTREXC reorders the Schur factorization of a complex matrix
  38. *> A = Q*T*Q**H, so that the diagonal element of T with row index IFST
  39. *> is moved to row ILST.
  40. *>
  41. *> The Schur form T is reordered by a unitary similarity transformation
  42. *> Z**H*T*Z, and optionally the matrix Q of Schur vectors is updated by
  43. *> postmultiplying it with Z.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] COMPQ
  50. *> \verbatim
  51. *> COMPQ is CHARACTER*1
  52. *> = 'V': update the matrix Q of Schur vectors;
  53. *> = 'N': do not update Q.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The order of the matrix T. N >= 0.
  60. *> If N == 0 arguments ILST and IFST may be any value.
  61. *> \endverbatim
  62. *>
  63. *> \param[in,out] T
  64. *> \verbatim
  65. *> T is COMPLEX*16 array, dimension (LDT,N)
  66. *> On entry, the upper triangular matrix T.
  67. *> On exit, the reordered upper triangular matrix.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] LDT
  71. *> \verbatim
  72. *> LDT is INTEGER
  73. *> The leading dimension of the array T. LDT >= max(1,N).
  74. *> \endverbatim
  75. *>
  76. *> \param[in,out] Q
  77. *> \verbatim
  78. *> Q is COMPLEX*16 array, dimension (LDQ,N)
  79. *> On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
  80. *> On exit, if COMPQ = 'V', Q has been postmultiplied by the
  81. *> unitary transformation matrix Z which reorders T.
  82. *> If COMPQ = 'N', Q is not referenced.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] LDQ
  86. *> \verbatim
  87. *> LDQ is INTEGER
  88. *> The leading dimension of the array Q. LDQ >= 1, and if
  89. *> COMPQ = 'V', LDQ >= max(1,N).
  90. *> \endverbatim
  91. *>
  92. *> \param[in] IFST
  93. *> \verbatim
  94. *> IFST is INTEGER
  95. *> \endverbatim
  96. *>
  97. *> \param[in] ILST
  98. *> \verbatim
  99. *> ILST is INTEGER
  100. *>
  101. *> Specify the reordering of the diagonal elements of T:
  102. *> The element with row index IFST is moved to row ILST by a
  103. *> sequence of transpositions between adjacent elements.
  104. *> 1 <= IFST <= N; 1 <= ILST <= N.
  105. *> \endverbatim
  106. *>
  107. *> \param[out] INFO
  108. *> \verbatim
  109. *> INFO is INTEGER
  110. *> = 0: successful exit
  111. *> < 0: if INFO = -i, the i-th argument had an illegal value
  112. *> \endverbatim
  113. *
  114. * Authors:
  115. * ========
  116. *
  117. *> \author Univ. of Tennessee
  118. *> \author Univ. of California Berkeley
  119. *> \author Univ. of Colorado Denver
  120. *> \author NAG Ltd.
  121. *
  122. *> \ingroup complex16OTHERcomputational
  123. *
  124. * =====================================================================
  125. SUBROUTINE ZTREXC( COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, INFO )
  126. *
  127. * -- LAPACK computational routine --
  128. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  129. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  130. *
  131. * .. Scalar Arguments ..
  132. CHARACTER COMPQ
  133. INTEGER IFST, ILST, INFO, LDQ, LDT, N
  134. * ..
  135. * .. Array Arguments ..
  136. COMPLEX*16 Q( LDQ, * ), T( LDT, * )
  137. * ..
  138. *
  139. * =====================================================================
  140. *
  141. * .. Local Scalars ..
  142. LOGICAL WANTQ
  143. INTEGER K, M1, M2, M3
  144. DOUBLE PRECISION CS
  145. COMPLEX*16 SN, T11, T22, TEMP
  146. * ..
  147. * .. External Functions ..
  148. LOGICAL LSAME
  149. EXTERNAL LSAME
  150. * ..
  151. * .. External Subroutines ..
  152. EXTERNAL XERBLA, ZLARTG, ZROT
  153. * ..
  154. * .. Intrinsic Functions ..
  155. INTRINSIC DCONJG, MAX
  156. * ..
  157. * .. Executable Statements ..
  158. *
  159. * Decode and test the input parameters.
  160. *
  161. INFO = 0
  162. WANTQ = LSAME( COMPQ, 'V' )
  163. IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
  164. INFO = -1
  165. ELSE IF( N.LT.0 ) THEN
  166. INFO = -2
  167. ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
  168. INFO = -4
  169. ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.MAX( 1, N ) ) ) THEN
  170. INFO = -6
  171. ELSE IF(( IFST.LT.1 .OR. IFST.GT.N ).AND.( N.GT.0 )) THEN
  172. INFO = -7
  173. ELSE IF(( ILST.LT.1 .OR. ILST.GT.N ).AND.( N.GT.0 )) THEN
  174. INFO = -8
  175. END IF
  176. IF( INFO.NE.0 ) THEN
  177. CALL XERBLA( 'ZTREXC', -INFO )
  178. RETURN
  179. END IF
  180. *
  181. * Quick return if possible
  182. *
  183. IF( N.LE.1 .OR. IFST.EQ.ILST )
  184. $ RETURN
  185. *
  186. IF( IFST.LT.ILST ) THEN
  187. *
  188. * Move the IFST-th diagonal element forward down the diagonal.
  189. *
  190. M1 = 0
  191. M2 = -1
  192. M3 = 1
  193. ELSE
  194. *
  195. * Move the IFST-th diagonal element backward up the diagonal.
  196. *
  197. M1 = -1
  198. M2 = 0
  199. M3 = -1
  200. END IF
  201. *
  202. DO 10 K = IFST + M1, ILST + M2, M3
  203. *
  204. * Interchange the k-th and (k+1)-th diagonal elements.
  205. *
  206. T11 = T( K, K )
  207. T22 = T( K+1, K+1 )
  208. *
  209. * Determine the transformation to perform the interchange.
  210. *
  211. CALL ZLARTG( T( K, K+1 ), T22-T11, CS, SN, TEMP )
  212. *
  213. * Apply transformation to the matrix T.
  214. *
  215. IF( K+2.LE.N )
  216. $ CALL ZROT( N-K-1, T( K, K+2 ), LDT, T( K+1, K+2 ), LDT, CS,
  217. $ SN )
  218. CALL ZROT( K-1, T( 1, K ), 1, T( 1, K+1 ), 1, CS,
  219. $ DCONJG( SN ) )
  220. *
  221. T( K, K ) = T22
  222. T( K+1, K+1 ) = T11
  223. *
  224. IF( WANTQ ) THEN
  225. *
  226. * Accumulate transformation in the matrix Q.
  227. *
  228. CALL ZROT( N, Q( 1, K ), 1, Q( 1, K+1 ), 1, CS,
  229. $ DCONJG( SN ) )
  230. END IF
  231. *
  232. 10 CONTINUE
  233. *
  234. RETURN
  235. *
  236. * End of ZTREXC
  237. *
  238. END