You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztptri.f 6.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239
  1. *> \brief \b ZTPTRI
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZTPTRI + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztptri.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztptri.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztptri.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZTPTRI( UPLO, DIAG, N, AP, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER DIAG, UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX*16 AP( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> ZTPTRI computes the inverse of a complex upper or lower triangular
  38. *> matrix A stored in packed format.
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] UPLO
  45. *> \verbatim
  46. *> UPLO is CHARACTER*1
  47. *> = 'U': A is upper triangular;
  48. *> = 'L': A is lower triangular.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] DIAG
  52. *> \verbatim
  53. *> DIAG is CHARACTER*1
  54. *> = 'N': A is non-unit triangular;
  55. *> = 'U': A is unit triangular.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] AP
  65. *> \verbatim
  66. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  67. *> On entry, the upper or lower triangular matrix A, stored
  68. *> columnwise in a linear array. The j-th column of A is stored
  69. *> in the array AP as follows:
  70. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  71. *> if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
  72. *> See below for further details.
  73. *> On exit, the (triangular) inverse of the original matrix, in
  74. *> the same packed storage format.
  75. *> \endverbatim
  76. *>
  77. *> \param[out] INFO
  78. *> \verbatim
  79. *> INFO is INTEGER
  80. *> = 0: successful exit
  81. *> < 0: if INFO = -i, the i-th argument had an illegal value
  82. *> > 0: if INFO = i, A(i,i) is exactly zero. The triangular
  83. *> matrix is singular and its inverse can not be computed.
  84. *> \endverbatim
  85. *
  86. * Authors:
  87. * ========
  88. *
  89. *> \author Univ. of Tennessee
  90. *> \author Univ. of California Berkeley
  91. *> \author Univ. of Colorado Denver
  92. *> \author NAG Ltd.
  93. *
  94. *> \ingroup complex16OTHERcomputational
  95. *
  96. *> \par Further Details:
  97. * =====================
  98. *>
  99. *> \verbatim
  100. *>
  101. *> A triangular matrix A can be transferred to packed storage using one
  102. *> of the following program segments:
  103. *>
  104. *> UPLO = 'U': UPLO = 'L':
  105. *>
  106. *> JC = 1 JC = 1
  107. *> DO 2 J = 1, N DO 2 J = 1, N
  108. *> DO 1 I = 1, J DO 1 I = J, N
  109. *> AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J)
  110. *> 1 CONTINUE 1 CONTINUE
  111. *> JC = JC + J JC = JC + N - J + 1
  112. *> 2 CONTINUE 2 CONTINUE
  113. *> \endverbatim
  114. *>
  115. * =====================================================================
  116. SUBROUTINE ZTPTRI( UPLO, DIAG, N, AP, INFO )
  117. *
  118. * -- LAPACK computational routine --
  119. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  120. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  121. *
  122. * .. Scalar Arguments ..
  123. CHARACTER DIAG, UPLO
  124. INTEGER INFO, N
  125. * ..
  126. * .. Array Arguments ..
  127. COMPLEX*16 AP( * )
  128. * ..
  129. *
  130. * =====================================================================
  131. *
  132. * .. Parameters ..
  133. COMPLEX*16 ONE, ZERO
  134. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
  135. $ ZERO = ( 0.0D+0, 0.0D+0 ) )
  136. * ..
  137. * .. Local Scalars ..
  138. LOGICAL NOUNIT, UPPER
  139. INTEGER J, JC, JCLAST, JJ
  140. COMPLEX*16 AJJ
  141. * ..
  142. * .. External Functions ..
  143. LOGICAL LSAME
  144. EXTERNAL LSAME
  145. * ..
  146. * .. External Subroutines ..
  147. EXTERNAL XERBLA, ZSCAL, ZTPMV
  148. * ..
  149. * .. Executable Statements ..
  150. *
  151. * Test the input parameters.
  152. *
  153. INFO = 0
  154. UPPER = LSAME( UPLO, 'U' )
  155. NOUNIT = LSAME( DIAG, 'N' )
  156. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  157. INFO = -1
  158. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  159. INFO = -2
  160. ELSE IF( N.LT.0 ) THEN
  161. INFO = -3
  162. END IF
  163. IF( INFO.NE.0 ) THEN
  164. CALL XERBLA( 'ZTPTRI', -INFO )
  165. RETURN
  166. END IF
  167. *
  168. * Check for singularity if non-unit.
  169. *
  170. IF( NOUNIT ) THEN
  171. IF( UPPER ) THEN
  172. JJ = 0
  173. DO 10 INFO = 1, N
  174. JJ = JJ + INFO
  175. IF( AP( JJ ).EQ.ZERO )
  176. $ RETURN
  177. 10 CONTINUE
  178. ELSE
  179. JJ = 1
  180. DO 20 INFO = 1, N
  181. IF( AP( JJ ).EQ.ZERO )
  182. $ RETURN
  183. JJ = JJ + N - INFO + 1
  184. 20 CONTINUE
  185. END IF
  186. INFO = 0
  187. END IF
  188. *
  189. IF( UPPER ) THEN
  190. *
  191. * Compute inverse of upper triangular matrix.
  192. *
  193. JC = 1
  194. DO 30 J = 1, N
  195. IF( NOUNIT ) THEN
  196. AP( JC+J-1 ) = ONE / AP( JC+J-1 )
  197. AJJ = -AP( JC+J-1 )
  198. ELSE
  199. AJJ = -ONE
  200. END IF
  201. *
  202. * Compute elements 1:j-1 of j-th column.
  203. *
  204. CALL ZTPMV( 'Upper', 'No transpose', DIAG, J-1, AP,
  205. $ AP( JC ), 1 )
  206. CALL ZSCAL( J-1, AJJ, AP( JC ), 1 )
  207. JC = JC + J
  208. 30 CONTINUE
  209. *
  210. ELSE
  211. *
  212. * Compute inverse of lower triangular matrix.
  213. *
  214. JC = N*( N+1 ) / 2
  215. DO 40 J = N, 1, -1
  216. IF( NOUNIT ) THEN
  217. AP( JC ) = ONE / AP( JC )
  218. AJJ = -AP( JC )
  219. ELSE
  220. AJJ = -ONE
  221. END IF
  222. IF( J.LT.N ) THEN
  223. *
  224. * Compute elements j+1:n of j-th column.
  225. *
  226. CALL ZTPMV( 'Lower', 'No transpose', DIAG, N-J,
  227. $ AP( JCLAST ), AP( JC+1 ), 1 )
  228. CALL ZSCAL( N-J, AJJ, AP( JC+1 ), 1 )
  229. END IF
  230. JCLAST = JC
  231. JC = JC - N + J - 2
  232. 40 CONTINUE
  233. END IF
  234. *
  235. RETURN
  236. *
  237. * End of ZTPTRI
  238. *
  239. END