You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsytri_rook.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448
  1. *> \brief \b ZSYTRI_ROOK
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZSYTRI_ROOK + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytri_rook.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytri_rook.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytri_rook.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZSYTRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 A( LDA, * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZSYTRI_ROOK computes the inverse of a complex symmetric
  39. *> matrix A using the factorization A = U*D*U**T or A = L*D*L**T
  40. *> computed by ZSYTRF_ROOK.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> Specifies whether the details of the factorization are stored
  50. *> as an upper or lower triangular matrix.
  51. *> = 'U': Upper triangular, form is A = U*D*U**T;
  52. *> = 'L': Lower triangular, form is A = L*D*L**T.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The order of the matrix A. N >= 0.
  59. *> \endverbatim
  60. *>
  61. *> \param[in,out] A
  62. *> \verbatim
  63. *> A is COMPLEX*16 array, dimension (LDA,N)
  64. *> On entry, the block diagonal matrix D and the multipliers
  65. *> used to obtain the factor U or L as computed by ZSYTRF_ROOK.
  66. *>
  67. *> On exit, if INFO = 0, the (symmetric) inverse of the original
  68. *> matrix. If UPLO = 'U', the upper triangular part of the
  69. *> inverse is formed and the part of A below the diagonal is not
  70. *> referenced; if UPLO = 'L' the lower triangular part of the
  71. *> inverse is formed and the part of A above the diagonal is
  72. *> not referenced.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the array A. LDA >= max(1,N).
  79. *> \endverbatim
  80. *>
  81. *> \param[in] IPIV
  82. *> \verbatim
  83. *> IPIV is INTEGER array, dimension (N)
  84. *> Details of the interchanges and the block structure of D
  85. *> as determined by ZSYTRF_ROOK.
  86. *> \endverbatim
  87. *>
  88. *> \param[out] WORK
  89. *> \verbatim
  90. *> WORK is COMPLEX*16 array, dimension (N)
  91. *> \endverbatim
  92. *>
  93. *> \param[out] INFO
  94. *> \verbatim
  95. *> INFO is INTEGER
  96. *> = 0: successful exit
  97. *> < 0: if INFO = -i, the i-th argument had an illegal value
  98. *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
  99. *> inverse could not be computed.
  100. *> \endverbatim
  101. *
  102. * Authors:
  103. * ========
  104. *
  105. *> \author Univ. of Tennessee
  106. *> \author Univ. of California Berkeley
  107. *> \author Univ. of Colorado Denver
  108. *> \author NAG Ltd.
  109. *
  110. *> \ingroup complex16SYcomputational
  111. *
  112. *> \par Contributors:
  113. * ==================
  114. *>
  115. *> \verbatim
  116. *>
  117. *> December 2016, Igor Kozachenko,
  118. *> Computer Science Division,
  119. *> University of California, Berkeley
  120. *>
  121. *> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  122. *> School of Mathematics,
  123. *> University of Manchester
  124. *>
  125. *> \endverbatim
  126. *
  127. * =====================================================================
  128. SUBROUTINE ZSYTRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO )
  129. *
  130. * -- LAPACK computational routine --
  131. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  132. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  133. *
  134. * .. Scalar Arguments ..
  135. CHARACTER UPLO
  136. INTEGER INFO, LDA, N
  137. * ..
  138. * .. Array Arguments ..
  139. INTEGER IPIV( * )
  140. COMPLEX*16 A( LDA, * ), WORK( * )
  141. * ..
  142. *
  143. * =====================================================================
  144. *
  145. * .. Parameters ..
  146. COMPLEX*16 CONE, CZERO
  147. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
  148. $ CZERO = ( 0.0D+0, 0.0D+0 ) )
  149. * ..
  150. * .. Local Scalars ..
  151. LOGICAL UPPER
  152. INTEGER K, KP, KSTEP
  153. COMPLEX*16 AK, AKKP1, AKP1, D, T, TEMP
  154. * ..
  155. * .. External Functions ..
  156. LOGICAL LSAME
  157. COMPLEX*16 ZDOTU
  158. EXTERNAL LSAME, ZDOTU
  159. * ..
  160. * .. External Subroutines ..
  161. EXTERNAL ZCOPY, ZSWAP, ZSYMV, XERBLA
  162. * ..
  163. * .. Intrinsic Functions ..
  164. INTRINSIC MAX
  165. * ..
  166. * .. Executable Statements ..
  167. *
  168. * Test the input parameters.
  169. *
  170. INFO = 0
  171. UPPER = LSAME( UPLO, 'U' )
  172. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  173. INFO = -1
  174. ELSE IF( N.LT.0 ) THEN
  175. INFO = -2
  176. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  177. INFO = -4
  178. END IF
  179. IF( INFO.NE.0 ) THEN
  180. CALL XERBLA( 'ZSYTRI_ROOK', -INFO )
  181. RETURN
  182. END IF
  183. *
  184. * Quick return if possible
  185. *
  186. IF( N.EQ.0 )
  187. $ RETURN
  188. *
  189. * Check that the diagonal matrix D is nonsingular.
  190. *
  191. IF( UPPER ) THEN
  192. *
  193. * Upper triangular storage: examine D from bottom to top
  194. *
  195. DO 10 INFO = N, 1, -1
  196. IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
  197. $ RETURN
  198. 10 CONTINUE
  199. ELSE
  200. *
  201. * Lower triangular storage: examine D from top to bottom.
  202. *
  203. DO 20 INFO = 1, N
  204. IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
  205. $ RETURN
  206. 20 CONTINUE
  207. END IF
  208. INFO = 0
  209. *
  210. IF( UPPER ) THEN
  211. *
  212. * Compute inv(A) from the factorization A = U*D*U**T.
  213. *
  214. * K is the main loop index, increasing from 1 to N in steps of
  215. * 1 or 2, depending on the size of the diagonal blocks.
  216. *
  217. K = 1
  218. 30 CONTINUE
  219. *
  220. * If K > N, exit from loop.
  221. *
  222. IF( K.GT.N )
  223. $ GO TO 40
  224. *
  225. IF( IPIV( K ).GT.0 ) THEN
  226. *
  227. * 1 x 1 diagonal block
  228. *
  229. * Invert the diagonal block.
  230. *
  231. A( K, K ) = CONE / A( K, K )
  232. *
  233. * Compute column K of the inverse.
  234. *
  235. IF( K.GT.1 ) THEN
  236. CALL ZCOPY( K-1, A( 1, K ), 1, WORK, 1 )
  237. CALL ZSYMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, CZERO,
  238. $ A( 1, K ), 1 )
  239. A( K, K ) = A( K, K ) - ZDOTU( K-1, WORK, 1, A( 1, K ),
  240. $ 1 )
  241. END IF
  242. KSTEP = 1
  243. ELSE
  244. *
  245. * 2 x 2 diagonal block
  246. *
  247. * Invert the diagonal block.
  248. *
  249. T = A( K, K+1 )
  250. AK = A( K, K ) / T
  251. AKP1 = A( K+1, K+1 ) / T
  252. AKKP1 = A( K, K+1 ) / T
  253. D = T*( AK*AKP1-CONE )
  254. A( K, K ) = AKP1 / D
  255. A( K+1, K+1 ) = AK / D
  256. A( K, K+1 ) = -AKKP1 / D
  257. *
  258. * Compute columns K and K+1 of the inverse.
  259. *
  260. IF( K.GT.1 ) THEN
  261. CALL ZCOPY( K-1, A( 1, K ), 1, WORK, 1 )
  262. CALL ZSYMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, CZERO,
  263. $ A( 1, K ), 1 )
  264. A( K, K ) = A( K, K ) - ZDOTU( K-1, WORK, 1, A( 1, K ),
  265. $ 1 )
  266. A( K, K+1 ) = A( K, K+1 ) -
  267. $ ZDOTU( K-1, A( 1, K ), 1, A( 1, K+1 ), 1 )
  268. CALL ZCOPY( K-1, A( 1, K+1 ), 1, WORK, 1 )
  269. CALL ZSYMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, CZERO,
  270. $ A( 1, K+1 ), 1 )
  271. A( K+1, K+1 ) = A( K+1, K+1 ) -
  272. $ ZDOTU( K-1, WORK, 1, A( 1, K+1 ), 1 )
  273. END IF
  274. KSTEP = 2
  275. END IF
  276. *
  277. IF( KSTEP.EQ.1 ) THEN
  278. *
  279. * Interchange rows and columns K and IPIV(K) in the leading
  280. * submatrix A(1:k+1,1:k+1)
  281. *
  282. KP = IPIV( K )
  283. IF( KP.NE.K ) THEN
  284. IF( KP.GT.1 )
  285. $ CALL ZSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
  286. CALL ZSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
  287. TEMP = A( K, K )
  288. A( K, K ) = A( KP, KP )
  289. A( KP, KP ) = TEMP
  290. END IF
  291. ELSE
  292. *
  293. * Interchange rows and columns K and K+1 with -IPIV(K) and
  294. * -IPIV(K+1)in the leading submatrix A(1:k+1,1:k+1)
  295. *
  296. KP = -IPIV( K )
  297. IF( KP.NE.K ) THEN
  298. IF( KP.GT.1 )
  299. $ CALL ZSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
  300. CALL ZSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
  301. *
  302. TEMP = A( K, K )
  303. A( K, K ) = A( KP, KP )
  304. A( KP, KP ) = TEMP
  305. TEMP = A( K, K+1 )
  306. A( K, K+1 ) = A( KP, K+1 )
  307. A( KP, K+1 ) = TEMP
  308. END IF
  309. *
  310. K = K + 1
  311. KP = -IPIV( K )
  312. IF( KP.NE.K ) THEN
  313. IF( KP.GT.1 )
  314. $ CALL ZSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
  315. CALL ZSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
  316. TEMP = A( K, K )
  317. A( K, K ) = A( KP, KP )
  318. A( KP, KP ) = TEMP
  319. END IF
  320. END IF
  321. *
  322. K = K + 1
  323. GO TO 30
  324. 40 CONTINUE
  325. *
  326. ELSE
  327. *
  328. * Compute inv(A) from the factorization A = L*D*L**T.
  329. *
  330. * K is the main loop index, increasing from 1 to N in steps of
  331. * 1 or 2, depending on the size of the diagonal blocks.
  332. *
  333. K = N
  334. 50 CONTINUE
  335. *
  336. * If K < 1, exit from loop.
  337. *
  338. IF( K.LT.1 )
  339. $ GO TO 60
  340. *
  341. IF( IPIV( K ).GT.0 ) THEN
  342. *
  343. * 1 x 1 diagonal block
  344. *
  345. * Invert the diagonal block.
  346. *
  347. A( K, K ) = CONE / A( K, K )
  348. *
  349. * Compute column K of the inverse.
  350. *
  351. IF( K.LT.N ) THEN
  352. CALL ZCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
  353. CALL ZSYMV( UPLO, N-K,-CONE, A( K+1, K+1 ), LDA, WORK, 1,
  354. $ CZERO, A( K+1, K ), 1 )
  355. A( K, K ) = A( K, K ) - ZDOTU( N-K, WORK, 1, A( K+1, K ),
  356. $ 1 )
  357. END IF
  358. KSTEP = 1
  359. ELSE
  360. *
  361. * 2 x 2 diagonal block
  362. *
  363. * Invert the diagonal block.
  364. *
  365. T = A( K, K-1 )
  366. AK = A( K-1, K-1 ) / T
  367. AKP1 = A( K, K ) / T
  368. AKKP1 = A( K, K-1 ) / T
  369. D = T*( AK*AKP1-CONE )
  370. A( K-1, K-1 ) = AKP1 / D
  371. A( K, K ) = AK / D
  372. A( K, K-1 ) = -AKKP1 / D
  373. *
  374. * Compute columns K-1 and K of the inverse.
  375. *
  376. IF( K.LT.N ) THEN
  377. CALL ZCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
  378. CALL ZSYMV( UPLO, N-K,-CONE, A( K+1, K+1 ), LDA, WORK, 1,
  379. $ CZERO, A( K+1, K ), 1 )
  380. A( K, K ) = A( K, K ) - ZDOTU( N-K, WORK, 1, A( K+1, K ),
  381. $ 1 )
  382. A( K, K-1 ) = A( K, K-1 ) -
  383. $ ZDOTU( N-K, A( K+1, K ), 1, A( K+1, K-1 ),
  384. $ 1 )
  385. CALL ZCOPY( N-K, A( K+1, K-1 ), 1, WORK, 1 )
  386. CALL ZSYMV( UPLO, N-K,-CONE, A( K+1, K+1 ), LDA, WORK, 1,
  387. $ CZERO, A( K+1, K-1 ), 1 )
  388. A( K-1, K-1 ) = A( K-1, K-1 ) -
  389. $ ZDOTU( N-K, WORK, 1, A( K+1, K-1 ), 1 )
  390. END IF
  391. KSTEP = 2
  392. END IF
  393. *
  394. IF( KSTEP.EQ.1 ) THEN
  395. *
  396. * Interchange rows and columns K and IPIV(K) in the trailing
  397. * submatrix A(k-1:n,k-1:n)
  398. *
  399. KP = IPIV( K )
  400. IF( KP.NE.K ) THEN
  401. IF( KP.LT.N )
  402. $ CALL ZSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
  403. CALL ZSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
  404. TEMP = A( K, K )
  405. A( K, K ) = A( KP, KP )
  406. A( KP, KP ) = TEMP
  407. END IF
  408. ELSE
  409. *
  410. * Interchange rows and columns K and K-1 with -IPIV(K) and
  411. * -IPIV(K-1) in the trailing submatrix A(k-1:n,k-1:n)
  412. *
  413. KP = -IPIV( K )
  414. IF( KP.NE.K ) THEN
  415. IF( KP.LT.N )
  416. $ CALL ZSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
  417. CALL ZSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
  418. *
  419. TEMP = A( K, K )
  420. A( K, K ) = A( KP, KP )
  421. A( KP, KP ) = TEMP
  422. TEMP = A( K, K-1 )
  423. A( K, K-1 ) = A( KP, K-1 )
  424. A( KP, K-1 ) = TEMP
  425. END IF
  426. *
  427. K = K - 1
  428. KP = -IPIV( K )
  429. IF( KP.NE.K ) THEN
  430. IF( KP.LT.N )
  431. $ CALL ZSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
  432. CALL ZSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
  433. TEMP = A( K, K )
  434. A( K, K ) = A( KP, KP )
  435. A( KP, KP ) = TEMP
  436. END IF
  437. END IF
  438. *
  439. K = K - 1
  440. GO TO 50
  441. 60 CONTINUE
  442. END IF
  443. *
  444. RETURN
  445. *
  446. * End of ZSYTRI_ROOK
  447. *
  448. END