You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlantr.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. *> \brief \b ZLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLANTR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlantr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlantr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlantr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION ZLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
  22. * WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORM, UPLO
  26. * INTEGER LDA, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION WORK( * )
  30. * COMPLEX*16 A( LDA, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZLANTR returns the value of the one norm, or the Frobenius norm, or
  40. *> the infinity norm, or the element of largest absolute value of a
  41. *> trapezoidal or triangular matrix A.
  42. *> \endverbatim
  43. *>
  44. *> \return ZLANTR
  45. *> \verbatim
  46. *>
  47. *> ZLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  48. *> (
  49. *> ( norm1(A), NORM = '1', 'O' or 'o'
  50. *> (
  51. *> ( normI(A), NORM = 'I' or 'i'
  52. *> (
  53. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  54. *>
  55. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  56. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  57. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  58. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  59. *> \endverbatim
  60. *
  61. * Arguments:
  62. * ==========
  63. *
  64. *> \param[in] NORM
  65. *> \verbatim
  66. *> NORM is CHARACTER*1
  67. *> Specifies the value to be returned in ZLANTR as described
  68. *> above.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] UPLO
  72. *> \verbatim
  73. *> UPLO is CHARACTER*1
  74. *> Specifies whether the matrix A is upper or lower trapezoidal.
  75. *> = 'U': Upper trapezoidal
  76. *> = 'L': Lower trapezoidal
  77. *> Note that A is triangular instead of trapezoidal if M = N.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] DIAG
  81. *> \verbatim
  82. *> DIAG is CHARACTER*1
  83. *> Specifies whether or not the matrix A has unit diagonal.
  84. *> = 'N': Non-unit diagonal
  85. *> = 'U': Unit diagonal
  86. *> \endverbatim
  87. *>
  88. *> \param[in] M
  89. *> \verbatim
  90. *> M is INTEGER
  91. *> The number of rows of the matrix A. M >= 0, and if
  92. *> UPLO = 'U', M <= N. When M = 0, ZLANTR is set to zero.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] N
  96. *> \verbatim
  97. *> N is INTEGER
  98. *> The number of columns of the matrix A. N >= 0, and if
  99. *> UPLO = 'L', N <= M. When N = 0, ZLANTR is set to zero.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] A
  103. *> \verbatim
  104. *> A is COMPLEX*16 array, dimension (LDA,N)
  105. *> The trapezoidal matrix A (A is triangular if M = N).
  106. *> If UPLO = 'U', the leading m by n upper trapezoidal part of
  107. *> the array A contains the upper trapezoidal matrix, and the
  108. *> strictly lower triangular part of A is not referenced.
  109. *> If UPLO = 'L', the leading m by n lower trapezoidal part of
  110. *> the array A contains the lower trapezoidal matrix, and the
  111. *> strictly upper triangular part of A is not referenced. Note
  112. *> that when DIAG = 'U', the diagonal elements of A are not
  113. *> referenced and are assumed to be one.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] LDA
  117. *> \verbatim
  118. *> LDA is INTEGER
  119. *> The leading dimension of the array A. LDA >= max(M,1).
  120. *> \endverbatim
  121. *>
  122. *> \param[out] WORK
  123. *> \verbatim
  124. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  125. *> where LWORK >= M when NORM = 'I'; otherwise, WORK is not
  126. *> referenced.
  127. *> \endverbatim
  128. *
  129. * Authors:
  130. * ========
  131. *
  132. *> \author Univ. of Tennessee
  133. *> \author Univ. of California Berkeley
  134. *> \author Univ. of Colorado Denver
  135. *> \author NAG Ltd.
  136. *
  137. *> \ingroup complex16OTHERauxiliary
  138. *
  139. * =====================================================================
  140. DOUBLE PRECISION FUNCTION ZLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
  141. $ WORK )
  142. *
  143. * -- LAPACK auxiliary routine --
  144. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  145. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146. *
  147. * .. Scalar Arguments ..
  148. CHARACTER DIAG, NORM, UPLO
  149. INTEGER LDA, M, N
  150. * ..
  151. * .. Array Arguments ..
  152. DOUBLE PRECISION WORK( * )
  153. COMPLEX*16 A( LDA, * )
  154. * ..
  155. *
  156. * =====================================================================
  157. *
  158. * .. Parameters ..
  159. DOUBLE PRECISION ONE, ZERO
  160. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  161. * ..
  162. * .. Local Scalars ..
  163. LOGICAL UDIAG
  164. INTEGER I, J
  165. DOUBLE PRECISION SCALE, SUM, VALUE
  166. * ..
  167. * .. External Functions ..
  168. LOGICAL LSAME, DISNAN
  169. EXTERNAL LSAME, DISNAN
  170. * ..
  171. * .. External Subroutines ..
  172. EXTERNAL ZLASSQ
  173. * ..
  174. * .. Intrinsic Functions ..
  175. INTRINSIC ABS, MIN, SQRT
  176. * ..
  177. * .. Executable Statements ..
  178. *
  179. IF( MIN( M, N ).EQ.0 ) THEN
  180. VALUE = ZERO
  181. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  182. *
  183. * Find max(abs(A(i,j))).
  184. *
  185. IF( LSAME( DIAG, 'U' ) ) THEN
  186. VALUE = ONE
  187. IF( LSAME( UPLO, 'U' ) ) THEN
  188. DO 20 J = 1, N
  189. DO 10 I = 1, MIN( M, J-1 )
  190. SUM = ABS( A( I, J ) )
  191. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  192. 10 CONTINUE
  193. 20 CONTINUE
  194. ELSE
  195. DO 40 J = 1, N
  196. DO 30 I = J + 1, M
  197. SUM = ABS( A( I, J ) )
  198. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  199. 30 CONTINUE
  200. 40 CONTINUE
  201. END IF
  202. ELSE
  203. VALUE = ZERO
  204. IF( LSAME( UPLO, 'U' ) ) THEN
  205. DO 60 J = 1, N
  206. DO 50 I = 1, MIN( M, J )
  207. SUM = ABS( A( I, J ) )
  208. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  209. 50 CONTINUE
  210. 60 CONTINUE
  211. ELSE
  212. DO 80 J = 1, N
  213. DO 70 I = J, M
  214. SUM = ABS( A( I, J ) )
  215. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  216. 70 CONTINUE
  217. 80 CONTINUE
  218. END IF
  219. END IF
  220. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  221. *
  222. * Find norm1(A).
  223. *
  224. VALUE = ZERO
  225. UDIAG = LSAME( DIAG, 'U' )
  226. IF( LSAME( UPLO, 'U' ) ) THEN
  227. DO 110 J = 1, N
  228. IF( ( UDIAG ) .AND. ( J.LE.M ) ) THEN
  229. SUM = ONE
  230. DO 90 I = 1, J - 1
  231. SUM = SUM + ABS( A( I, J ) )
  232. 90 CONTINUE
  233. ELSE
  234. SUM = ZERO
  235. DO 100 I = 1, MIN( M, J )
  236. SUM = SUM + ABS( A( I, J ) )
  237. 100 CONTINUE
  238. END IF
  239. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  240. 110 CONTINUE
  241. ELSE
  242. DO 140 J = 1, N
  243. IF( UDIAG ) THEN
  244. SUM = ONE
  245. DO 120 I = J + 1, M
  246. SUM = SUM + ABS( A( I, J ) )
  247. 120 CONTINUE
  248. ELSE
  249. SUM = ZERO
  250. DO 130 I = J, M
  251. SUM = SUM + ABS( A( I, J ) )
  252. 130 CONTINUE
  253. END IF
  254. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  255. 140 CONTINUE
  256. END IF
  257. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  258. *
  259. * Find normI(A).
  260. *
  261. IF( LSAME( UPLO, 'U' ) ) THEN
  262. IF( LSAME( DIAG, 'U' ) ) THEN
  263. DO 150 I = 1, M
  264. WORK( I ) = ONE
  265. 150 CONTINUE
  266. DO 170 J = 1, N
  267. DO 160 I = 1, MIN( M, J-1 )
  268. WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  269. 160 CONTINUE
  270. 170 CONTINUE
  271. ELSE
  272. DO 180 I = 1, M
  273. WORK( I ) = ZERO
  274. 180 CONTINUE
  275. DO 200 J = 1, N
  276. DO 190 I = 1, MIN( M, J )
  277. WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  278. 190 CONTINUE
  279. 200 CONTINUE
  280. END IF
  281. ELSE
  282. IF( LSAME( DIAG, 'U' ) ) THEN
  283. DO 210 I = 1, MIN( M, N )
  284. WORK( I ) = ONE
  285. 210 CONTINUE
  286. DO 220 I = N + 1, M
  287. WORK( I ) = ZERO
  288. 220 CONTINUE
  289. DO 240 J = 1, N
  290. DO 230 I = J + 1, M
  291. WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  292. 230 CONTINUE
  293. 240 CONTINUE
  294. ELSE
  295. DO 250 I = 1, M
  296. WORK( I ) = ZERO
  297. 250 CONTINUE
  298. DO 270 J = 1, N
  299. DO 260 I = J, M
  300. WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  301. 260 CONTINUE
  302. 270 CONTINUE
  303. END IF
  304. END IF
  305. VALUE = ZERO
  306. DO 280 I = 1, M
  307. SUM = WORK( I )
  308. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  309. 280 CONTINUE
  310. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  311. *
  312. * Find normF(A).
  313. *
  314. IF( LSAME( UPLO, 'U' ) ) THEN
  315. IF( LSAME( DIAG, 'U' ) ) THEN
  316. SCALE = ONE
  317. SUM = MIN( M, N )
  318. DO 290 J = 2, N
  319. CALL ZLASSQ( MIN( M, J-1 ), A( 1, J ), 1, SCALE, SUM )
  320. 290 CONTINUE
  321. ELSE
  322. SCALE = ZERO
  323. SUM = ONE
  324. DO 300 J = 1, N
  325. CALL ZLASSQ( MIN( M, J ), A( 1, J ), 1, SCALE, SUM )
  326. 300 CONTINUE
  327. END IF
  328. ELSE
  329. IF( LSAME( DIAG, 'U' ) ) THEN
  330. SCALE = ONE
  331. SUM = MIN( M, N )
  332. DO 310 J = 1, N
  333. CALL ZLASSQ( M-J, A( MIN( M, J+1 ), J ), 1, SCALE,
  334. $ SUM )
  335. 310 CONTINUE
  336. ELSE
  337. SCALE = ZERO
  338. SUM = ONE
  339. DO 320 J = 1, N
  340. CALL ZLASSQ( M-J+1, A( J, J ), 1, SCALE, SUM )
  341. 320 CONTINUE
  342. END IF
  343. END IF
  344. VALUE = SCALE*SQRT( SUM )
  345. END IF
  346. *
  347. ZLANTR = VALUE
  348. RETURN
  349. *
  350. * End of ZLANTR
  351. *
  352. END