You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgghrd.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. *> \brief \b ZGGHRD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGGHRD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgghrd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgghrd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgghrd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
  22. * LDQ, Z, LDZ, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER COMPQ, COMPZ
  26. * INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  30. * $ Z( LDZ, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZGGHRD reduces a pair of complex matrices (A,B) to generalized upper
  40. *> Hessenberg form using unitary transformations, where A is a
  41. *> general matrix and B is upper triangular. The form of the
  42. *> generalized eigenvalue problem is
  43. *> A*x = lambda*B*x,
  44. *> and B is typically made upper triangular by computing its QR
  45. *> factorization and moving the unitary matrix Q to the left side
  46. *> of the equation.
  47. *>
  48. *> This subroutine simultaneously reduces A to a Hessenberg matrix H:
  49. *> Q**H*A*Z = H
  50. *> and transforms B to another upper triangular matrix T:
  51. *> Q**H*B*Z = T
  52. *> in order to reduce the problem to its standard form
  53. *> H*y = lambda*T*y
  54. *> where y = Z**H*x.
  55. *>
  56. *> The unitary matrices Q and Z are determined as products of Givens
  57. *> rotations. They may either be formed explicitly, or they may be
  58. *> postmultiplied into input matrices Q1 and Z1, so that
  59. *> Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H
  60. *> Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H
  61. *> If Q1 is the unitary matrix from the QR factorization of B in the
  62. *> original equation A*x = lambda*B*x, then ZGGHRD reduces the original
  63. *> problem to generalized Hessenberg form.
  64. *> \endverbatim
  65. *
  66. * Arguments:
  67. * ==========
  68. *
  69. *> \param[in] COMPQ
  70. *> \verbatim
  71. *> COMPQ is CHARACTER*1
  72. *> = 'N': do not compute Q;
  73. *> = 'I': Q is initialized to the unit matrix, and the
  74. *> unitary matrix Q is returned;
  75. *> = 'V': Q must contain a unitary matrix Q1 on entry,
  76. *> and the product Q1*Q is returned.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] COMPZ
  80. *> \verbatim
  81. *> COMPZ is CHARACTER*1
  82. *> = 'N': do not compute Z;
  83. *> = 'I': Z is initialized to the unit matrix, and the
  84. *> unitary matrix Z is returned;
  85. *> = 'V': Z must contain a unitary matrix Z1 on entry,
  86. *> and the product Z1*Z is returned.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] N
  90. *> \verbatim
  91. *> N is INTEGER
  92. *> The order of the matrices A and B. N >= 0.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] ILO
  96. *> \verbatim
  97. *> ILO is INTEGER
  98. *> \endverbatim
  99. *>
  100. *> \param[in] IHI
  101. *> \verbatim
  102. *> IHI is INTEGER
  103. *>
  104. *> ILO and IHI mark the rows and columns of A which are to be
  105. *> reduced. It is assumed that A is already upper triangular
  106. *> in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are
  107. *> normally set by a previous call to ZGGBAL; otherwise they
  108. *> should be set to 1 and N respectively.
  109. *> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
  110. *> \endverbatim
  111. *>
  112. *> \param[in,out] A
  113. *> \verbatim
  114. *> A is COMPLEX*16 array, dimension (LDA, N)
  115. *> On entry, the N-by-N general matrix to be reduced.
  116. *> On exit, the upper triangle and the first subdiagonal of A
  117. *> are overwritten with the upper Hessenberg matrix H, and the
  118. *> rest is set to zero.
  119. *> \endverbatim
  120. *>
  121. *> \param[in] LDA
  122. *> \verbatim
  123. *> LDA is INTEGER
  124. *> The leading dimension of the array A. LDA >= max(1,N).
  125. *> \endverbatim
  126. *>
  127. *> \param[in,out] B
  128. *> \verbatim
  129. *> B is COMPLEX*16 array, dimension (LDB, N)
  130. *> On entry, the N-by-N upper triangular matrix B.
  131. *> On exit, the upper triangular matrix T = Q**H B Z. The
  132. *> elements below the diagonal are set to zero.
  133. *> \endverbatim
  134. *>
  135. *> \param[in] LDB
  136. *> \verbatim
  137. *> LDB is INTEGER
  138. *> The leading dimension of the array B. LDB >= max(1,N).
  139. *> \endverbatim
  140. *>
  141. *> \param[in,out] Q
  142. *> \verbatim
  143. *> Q is COMPLEX*16 array, dimension (LDQ, N)
  144. *> On entry, if COMPQ = 'V', the unitary matrix Q1, typically
  145. *> from the QR factorization of B.
  146. *> On exit, if COMPQ='I', the unitary matrix Q, and if
  147. *> COMPQ = 'V', the product Q1*Q.
  148. *> Not referenced if COMPQ='N'.
  149. *> \endverbatim
  150. *>
  151. *> \param[in] LDQ
  152. *> \verbatim
  153. *> LDQ is INTEGER
  154. *> The leading dimension of the array Q.
  155. *> LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
  156. *> \endverbatim
  157. *>
  158. *> \param[in,out] Z
  159. *> \verbatim
  160. *> Z is COMPLEX*16 array, dimension (LDZ, N)
  161. *> On entry, if COMPZ = 'V', the unitary matrix Z1.
  162. *> On exit, if COMPZ='I', the unitary matrix Z, and if
  163. *> COMPZ = 'V', the product Z1*Z.
  164. *> Not referenced if COMPZ='N'.
  165. *> \endverbatim
  166. *>
  167. *> \param[in] LDZ
  168. *> \verbatim
  169. *> LDZ is INTEGER
  170. *> The leading dimension of the array Z.
  171. *> LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
  172. *> \endverbatim
  173. *>
  174. *> \param[out] INFO
  175. *> \verbatim
  176. *> INFO is INTEGER
  177. *> = 0: successful exit.
  178. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  179. *> \endverbatim
  180. *
  181. * Authors:
  182. * ========
  183. *
  184. *> \author Univ. of Tennessee
  185. *> \author Univ. of California Berkeley
  186. *> \author Univ. of Colorado Denver
  187. *> \author NAG Ltd.
  188. *
  189. *> \ingroup complex16OTHERcomputational
  190. *
  191. *> \par Further Details:
  192. * =====================
  193. *>
  194. *> \verbatim
  195. *>
  196. *> This routine reduces A to Hessenberg and B to triangular form by
  197. *> an unblocked reduction, as described in _Matrix_Computations_,
  198. *> by Golub and van Loan (Johns Hopkins Press).
  199. *> \endverbatim
  200. *>
  201. * =====================================================================
  202. SUBROUTINE ZGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
  203. $ LDQ, Z, LDZ, INFO )
  204. *
  205. * -- LAPACK computational routine --
  206. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  207. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  208. *
  209. * .. Scalar Arguments ..
  210. CHARACTER COMPQ, COMPZ
  211. INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N
  212. * ..
  213. * .. Array Arguments ..
  214. COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  215. $ Z( LDZ, * )
  216. * ..
  217. *
  218. * =====================================================================
  219. *
  220. * .. Parameters ..
  221. COMPLEX*16 CONE, CZERO
  222. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
  223. $ CZERO = ( 0.0D+0, 0.0D+0 ) )
  224. * ..
  225. * .. Local Scalars ..
  226. LOGICAL ILQ, ILZ
  227. INTEGER ICOMPQ, ICOMPZ, JCOL, JROW
  228. DOUBLE PRECISION C
  229. COMPLEX*16 CTEMP, S
  230. * ..
  231. * .. External Functions ..
  232. LOGICAL LSAME
  233. EXTERNAL LSAME
  234. * ..
  235. * .. External Subroutines ..
  236. EXTERNAL XERBLA, ZLARTG, ZLASET, ZROT
  237. * ..
  238. * .. Intrinsic Functions ..
  239. INTRINSIC DCONJG, MAX
  240. * ..
  241. * .. Executable Statements ..
  242. *
  243. * Decode COMPQ
  244. *
  245. IF( LSAME( COMPQ, 'N' ) ) THEN
  246. ILQ = .FALSE.
  247. ICOMPQ = 1
  248. ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
  249. ILQ = .TRUE.
  250. ICOMPQ = 2
  251. ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
  252. ILQ = .TRUE.
  253. ICOMPQ = 3
  254. ELSE
  255. ICOMPQ = 0
  256. END IF
  257. *
  258. * Decode COMPZ
  259. *
  260. IF( LSAME( COMPZ, 'N' ) ) THEN
  261. ILZ = .FALSE.
  262. ICOMPZ = 1
  263. ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
  264. ILZ = .TRUE.
  265. ICOMPZ = 2
  266. ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
  267. ILZ = .TRUE.
  268. ICOMPZ = 3
  269. ELSE
  270. ICOMPZ = 0
  271. END IF
  272. *
  273. * Test the input parameters.
  274. *
  275. INFO = 0
  276. IF( ICOMPQ.LE.0 ) THEN
  277. INFO = -1
  278. ELSE IF( ICOMPZ.LE.0 ) THEN
  279. INFO = -2
  280. ELSE IF( N.LT.0 ) THEN
  281. INFO = -3
  282. ELSE IF( ILO.LT.1 ) THEN
  283. INFO = -4
  284. ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
  285. INFO = -5
  286. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  287. INFO = -7
  288. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  289. INFO = -9
  290. ELSE IF( ( ILQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
  291. INFO = -11
  292. ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
  293. INFO = -13
  294. END IF
  295. IF( INFO.NE.0 ) THEN
  296. CALL XERBLA( 'ZGGHRD', -INFO )
  297. RETURN
  298. END IF
  299. *
  300. * Initialize Q and Z if desired.
  301. *
  302. IF( ICOMPQ.EQ.3 )
  303. $ CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
  304. IF( ICOMPZ.EQ.3 )
  305. $ CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )
  306. *
  307. * Quick return if possible
  308. *
  309. IF( N.LE.1 )
  310. $ RETURN
  311. *
  312. * Zero out lower triangle of B
  313. *
  314. DO 20 JCOL = 1, N - 1
  315. DO 10 JROW = JCOL + 1, N
  316. B( JROW, JCOL ) = CZERO
  317. 10 CONTINUE
  318. 20 CONTINUE
  319. *
  320. * Reduce A and B
  321. *
  322. DO 40 JCOL = ILO, IHI - 2
  323. *
  324. DO 30 JROW = IHI, JCOL + 2, -1
  325. *
  326. * Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL)
  327. *
  328. CTEMP = A( JROW-1, JCOL )
  329. CALL ZLARTG( CTEMP, A( JROW, JCOL ), C, S,
  330. $ A( JROW-1, JCOL ) )
  331. A( JROW, JCOL ) = CZERO
  332. CALL ZROT( N-JCOL, A( JROW-1, JCOL+1 ), LDA,
  333. $ A( JROW, JCOL+1 ), LDA, C, S )
  334. CALL ZROT( N+2-JROW, B( JROW-1, JROW-1 ), LDB,
  335. $ B( JROW, JROW-1 ), LDB, C, S )
  336. IF( ILQ )
  337. $ CALL ZROT( N, Q( 1, JROW-1 ), 1, Q( 1, JROW ), 1, C,
  338. $ DCONJG( S ) )
  339. *
  340. * Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1)
  341. *
  342. CTEMP = B( JROW, JROW )
  343. CALL ZLARTG( CTEMP, B( JROW, JROW-1 ), C, S,
  344. $ B( JROW, JROW ) )
  345. B( JROW, JROW-1 ) = CZERO
  346. CALL ZROT( IHI, A( 1, JROW ), 1, A( 1, JROW-1 ), 1, C, S )
  347. CALL ZROT( JROW-1, B( 1, JROW ), 1, B( 1, JROW-1 ), 1, C,
  348. $ S )
  349. IF( ILZ )
  350. $ CALL ZROT( N, Z( 1, JROW ), 1, Z( 1, JROW-1 ), 1, C, S )
  351. 30 CONTINUE
  352. 40 CONTINUE
  353. *
  354. RETURN
  355. *
  356. * End of ZGGHRD
  357. *
  358. END