You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssptrf.f 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611
  1. *> \brief \b SSPTRF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSPTRF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssptrf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssptrf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssptrf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSPTRF( UPLO, N, AP, IPIV, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * REAL AP( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> SSPTRF computes the factorization of a real symmetric matrix A stored
  39. *> in packed format using the Bunch-Kaufman diagonal pivoting method:
  40. *>
  41. *> A = U*D*U**T or A = L*D*L**T
  42. *>
  43. *> where U (or L) is a product of permutation and unit upper (lower)
  44. *> triangular matrices, and D is symmetric and block diagonal with
  45. *> 1-by-1 and 2-by-2 diagonal blocks.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': Upper triangle of A is stored;
  55. *> = 'L': Lower triangle of A is stored.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] AP
  65. *> \verbatim
  66. *> AP is REAL array, dimension (N*(N+1)/2)
  67. *> On entry, the upper or lower triangle of the symmetric matrix
  68. *> A, packed columnwise in a linear array. The j-th column of A
  69. *> is stored in the array AP as follows:
  70. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  71. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  72. *>
  73. *> On exit, the block diagonal matrix D and the multipliers used
  74. *> to obtain the factor U or L, stored as a packed triangular
  75. *> matrix overwriting A (see below for further details).
  76. *> \endverbatim
  77. *>
  78. *> \param[out] IPIV
  79. *> \verbatim
  80. *> IPIV is INTEGER array, dimension (N)
  81. *> Details of the interchanges and the block structure of D.
  82. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  83. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  84. *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
  85. *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  86. *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
  87. *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
  88. *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  89. *> \endverbatim
  90. *>
  91. *> \param[out] INFO
  92. *> \verbatim
  93. *> INFO is INTEGER
  94. *> = 0: successful exit
  95. *> < 0: if INFO = -i, the i-th argument had an illegal value
  96. *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
  97. *> has been completed, but the block diagonal matrix D is
  98. *> exactly singular, and division by zero will occur if it
  99. *> is used to solve a system of equations.
  100. *> \endverbatim
  101. *
  102. * Authors:
  103. * ========
  104. *
  105. *> \author Univ. of Tennessee
  106. *> \author Univ. of California Berkeley
  107. *> \author Univ. of Colorado Denver
  108. *> \author NAG Ltd.
  109. *
  110. *> \ingroup realOTHERcomputational
  111. *
  112. *> \par Further Details:
  113. * =====================
  114. *>
  115. *> \verbatim
  116. *>
  117. *> 5-96 - Based on modifications by J. Lewis, Boeing Computer Services
  118. *> Company
  119. *>
  120. *> If UPLO = 'U', then A = U*D*U**T, where
  121. *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
  122. *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  123. *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  124. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  125. *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  126. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  127. *>
  128. *> ( I v 0 ) k-s
  129. *> U(k) = ( 0 I 0 ) s
  130. *> ( 0 0 I ) n-k
  131. *> k-s s n-k
  132. *>
  133. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  134. *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  135. *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
  136. *>
  137. *> If UPLO = 'L', then A = L*D*L**T, where
  138. *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  139. *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  140. *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  141. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  142. *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  143. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  144. *>
  145. *> ( I 0 0 ) k-1
  146. *> L(k) = ( 0 I 0 ) s
  147. *> ( 0 v I ) n-k-s+1
  148. *> k-1 s n-k-s+1
  149. *>
  150. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  151. *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  152. *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  153. *> \endverbatim
  154. *>
  155. * =====================================================================
  156. SUBROUTINE SSPTRF( UPLO, N, AP, IPIV, INFO )
  157. *
  158. * -- LAPACK computational routine --
  159. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  160. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  161. *
  162. * .. Scalar Arguments ..
  163. CHARACTER UPLO
  164. INTEGER INFO, N
  165. * ..
  166. * .. Array Arguments ..
  167. INTEGER IPIV( * )
  168. REAL AP( * )
  169. * ..
  170. *
  171. * =====================================================================
  172. *
  173. * .. Parameters ..
  174. REAL ZERO, ONE
  175. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  176. REAL EIGHT, SEVTEN
  177. PARAMETER ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 )
  178. * ..
  179. * .. Local Scalars ..
  180. LOGICAL UPPER
  181. INTEGER I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
  182. $ KSTEP, KX, NPP
  183. REAL ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1,
  184. $ ROWMAX, T, WK, WKM1, WKP1
  185. * ..
  186. * .. External Functions ..
  187. LOGICAL LSAME
  188. INTEGER ISAMAX
  189. EXTERNAL LSAME, ISAMAX
  190. * ..
  191. * .. External Subroutines ..
  192. EXTERNAL SSCAL, SSPR, SSWAP, XERBLA
  193. * ..
  194. * .. Intrinsic Functions ..
  195. INTRINSIC ABS, MAX, SQRT
  196. * ..
  197. * .. Executable Statements ..
  198. *
  199. * Test the input parameters.
  200. *
  201. INFO = 0
  202. UPPER = LSAME( UPLO, 'U' )
  203. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  204. INFO = -1
  205. ELSE IF( N.LT.0 ) THEN
  206. INFO = -2
  207. END IF
  208. IF( INFO.NE.0 ) THEN
  209. CALL XERBLA( 'SSPTRF', -INFO )
  210. RETURN
  211. END IF
  212. *
  213. * Initialize ALPHA for use in choosing pivot block size.
  214. *
  215. ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  216. *
  217. IF( UPPER ) THEN
  218. *
  219. * Factorize A as U*D*U**T using the upper triangle of A
  220. *
  221. * K is the main loop index, decreasing from N to 1 in steps of
  222. * 1 or 2
  223. *
  224. K = N
  225. KC = ( N-1 )*N / 2 + 1
  226. 10 CONTINUE
  227. KNC = KC
  228. *
  229. * If K < 1, exit from loop
  230. *
  231. IF( K.LT.1 )
  232. $ GO TO 110
  233. KSTEP = 1
  234. *
  235. * Determine rows and columns to be interchanged and whether
  236. * a 1-by-1 or 2-by-2 pivot block will be used
  237. *
  238. ABSAKK = ABS( AP( KC+K-1 ) )
  239. *
  240. * IMAX is the row-index of the largest off-diagonal element in
  241. * column K, and COLMAX is its absolute value
  242. *
  243. IF( K.GT.1 ) THEN
  244. IMAX = ISAMAX( K-1, AP( KC ), 1 )
  245. COLMAX = ABS( AP( KC+IMAX-1 ) )
  246. ELSE
  247. COLMAX = ZERO
  248. END IF
  249. *
  250. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  251. *
  252. * Column K is zero: set INFO and continue
  253. *
  254. IF( INFO.EQ.0 )
  255. $ INFO = K
  256. KP = K
  257. ELSE
  258. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  259. *
  260. * no interchange, use 1-by-1 pivot block
  261. *
  262. KP = K
  263. ELSE
  264. *
  265. ROWMAX = ZERO
  266. JMAX = IMAX
  267. KX = IMAX*( IMAX+1 ) / 2 + IMAX
  268. DO 20 J = IMAX + 1, K
  269. IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN
  270. ROWMAX = ABS( AP( KX ) )
  271. JMAX = J
  272. END IF
  273. KX = KX + J
  274. 20 CONTINUE
  275. KPC = ( IMAX-1 )*IMAX / 2 + 1
  276. IF( IMAX.GT.1 ) THEN
  277. JMAX = ISAMAX( IMAX-1, AP( KPC ), 1 )
  278. ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-1 ) ) )
  279. END IF
  280. *
  281. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  282. *
  283. * no interchange, use 1-by-1 pivot block
  284. *
  285. KP = K
  286. ELSE IF( ABS( AP( KPC+IMAX-1 ) ).GE.ALPHA*ROWMAX ) THEN
  287. *
  288. * interchange rows and columns K and IMAX, use 1-by-1
  289. * pivot block
  290. *
  291. KP = IMAX
  292. ELSE
  293. *
  294. * interchange rows and columns K-1 and IMAX, use 2-by-2
  295. * pivot block
  296. *
  297. KP = IMAX
  298. KSTEP = 2
  299. END IF
  300. END IF
  301. *
  302. KK = K - KSTEP + 1
  303. IF( KSTEP.EQ.2 )
  304. $ KNC = KNC - K + 1
  305. IF( KP.NE.KK ) THEN
  306. *
  307. * Interchange rows and columns KK and KP in the leading
  308. * submatrix A(1:k,1:k)
  309. *
  310. CALL SSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
  311. KX = KPC + KP - 1
  312. DO 30 J = KP + 1, KK - 1
  313. KX = KX + J - 1
  314. T = AP( KNC+J-1 )
  315. AP( KNC+J-1 ) = AP( KX )
  316. AP( KX ) = T
  317. 30 CONTINUE
  318. T = AP( KNC+KK-1 )
  319. AP( KNC+KK-1 ) = AP( KPC+KP-1 )
  320. AP( KPC+KP-1 ) = T
  321. IF( KSTEP.EQ.2 ) THEN
  322. T = AP( KC+K-2 )
  323. AP( KC+K-2 ) = AP( KC+KP-1 )
  324. AP( KC+KP-1 ) = T
  325. END IF
  326. END IF
  327. *
  328. * Update the leading submatrix
  329. *
  330. IF( KSTEP.EQ.1 ) THEN
  331. *
  332. * 1-by-1 pivot block D(k): column k now holds
  333. *
  334. * W(k) = U(k)*D(k)
  335. *
  336. * where U(k) is the k-th column of U
  337. *
  338. * Perform a rank-1 update of A(1:k-1,1:k-1) as
  339. *
  340. * A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
  341. *
  342. R1 = ONE / AP( KC+K-1 )
  343. CALL SSPR( UPLO, K-1, -R1, AP( KC ), 1, AP )
  344. *
  345. * Store U(k) in column k
  346. *
  347. CALL SSCAL( K-1, R1, AP( KC ), 1 )
  348. ELSE
  349. *
  350. * 2-by-2 pivot block D(k): columns k and k-1 now hold
  351. *
  352. * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  353. *
  354. * where U(k) and U(k-1) are the k-th and (k-1)-th columns
  355. * of U
  356. *
  357. * Perform a rank-2 update of A(1:k-2,1:k-2) as
  358. *
  359. * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  360. * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
  361. *
  362. IF( K.GT.2 ) THEN
  363. *
  364. D12 = AP( K-1+( K-1 )*K / 2 )
  365. D22 = AP( K-1+( K-2 )*( K-1 ) / 2 ) / D12
  366. D11 = AP( K+( K-1 )*K / 2 ) / D12
  367. T = ONE / ( D11*D22-ONE )
  368. D12 = T / D12
  369. *
  370. DO 50 J = K - 2, 1, -1
  371. WKM1 = D12*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
  372. $ AP( J+( K-1 )*K / 2 ) )
  373. WK = D12*( D22*AP( J+( K-1 )*K / 2 )-
  374. $ AP( J+( K-2 )*( K-1 ) / 2 ) )
  375. DO 40 I = J, 1, -1
  376. AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) -
  377. $ AP( I+( K-1 )*K / 2 )*WK -
  378. $ AP( I+( K-2 )*( K-1 ) / 2 )*WKM1
  379. 40 CONTINUE
  380. AP( J+( K-1 )*K / 2 ) = WK
  381. AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
  382. 50 CONTINUE
  383. *
  384. END IF
  385. *
  386. END IF
  387. END IF
  388. *
  389. * Store details of the interchanges in IPIV
  390. *
  391. IF( KSTEP.EQ.1 ) THEN
  392. IPIV( K ) = KP
  393. ELSE
  394. IPIV( K ) = -KP
  395. IPIV( K-1 ) = -KP
  396. END IF
  397. *
  398. * Decrease K and return to the start of the main loop
  399. *
  400. K = K - KSTEP
  401. KC = KNC - K
  402. GO TO 10
  403. *
  404. ELSE
  405. *
  406. * Factorize A as L*D*L**T using the lower triangle of A
  407. *
  408. * K is the main loop index, increasing from 1 to N in steps of
  409. * 1 or 2
  410. *
  411. K = 1
  412. KC = 1
  413. NPP = N*( N+1 ) / 2
  414. 60 CONTINUE
  415. KNC = KC
  416. *
  417. * If K > N, exit from loop
  418. *
  419. IF( K.GT.N )
  420. $ GO TO 110
  421. KSTEP = 1
  422. *
  423. * Determine rows and columns to be interchanged and whether
  424. * a 1-by-1 or 2-by-2 pivot block will be used
  425. *
  426. ABSAKK = ABS( AP( KC ) )
  427. *
  428. * IMAX is the row-index of the largest off-diagonal element in
  429. * column K, and COLMAX is its absolute value
  430. *
  431. IF( K.LT.N ) THEN
  432. IMAX = K + ISAMAX( N-K, AP( KC+1 ), 1 )
  433. COLMAX = ABS( AP( KC+IMAX-K ) )
  434. ELSE
  435. COLMAX = ZERO
  436. END IF
  437. *
  438. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  439. *
  440. * Column K is zero: set INFO and continue
  441. *
  442. IF( INFO.EQ.0 )
  443. $ INFO = K
  444. KP = K
  445. ELSE
  446. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  447. *
  448. * no interchange, use 1-by-1 pivot block
  449. *
  450. KP = K
  451. ELSE
  452. *
  453. * JMAX is the column-index of the largest off-diagonal
  454. * element in row IMAX, and ROWMAX is its absolute value
  455. *
  456. ROWMAX = ZERO
  457. KX = KC + IMAX - K
  458. DO 70 J = K, IMAX - 1
  459. IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN
  460. ROWMAX = ABS( AP( KX ) )
  461. JMAX = J
  462. END IF
  463. KX = KX + N - J
  464. 70 CONTINUE
  465. KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
  466. IF( IMAX.LT.N ) THEN
  467. JMAX = IMAX + ISAMAX( N-IMAX, AP( KPC+1 ), 1 )
  468. ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-IMAX ) ) )
  469. END IF
  470. *
  471. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  472. *
  473. * no interchange, use 1-by-1 pivot block
  474. *
  475. KP = K
  476. ELSE IF( ABS( AP( KPC ) ).GE.ALPHA*ROWMAX ) THEN
  477. *
  478. * interchange rows and columns K and IMAX, use 1-by-1
  479. * pivot block
  480. *
  481. KP = IMAX
  482. ELSE
  483. *
  484. * interchange rows and columns K+1 and IMAX, use 2-by-2
  485. * pivot block
  486. *
  487. KP = IMAX
  488. KSTEP = 2
  489. END IF
  490. END IF
  491. *
  492. KK = K + KSTEP - 1
  493. IF( KSTEP.EQ.2 )
  494. $ KNC = KNC + N - K + 1
  495. IF( KP.NE.KK ) THEN
  496. *
  497. * Interchange rows and columns KK and KP in the trailing
  498. * submatrix A(k:n,k:n)
  499. *
  500. IF( KP.LT.N )
  501. $ CALL SSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
  502. $ 1 )
  503. KX = KNC + KP - KK
  504. DO 80 J = KK + 1, KP - 1
  505. KX = KX + N - J + 1
  506. T = AP( KNC+J-KK )
  507. AP( KNC+J-KK ) = AP( KX )
  508. AP( KX ) = T
  509. 80 CONTINUE
  510. T = AP( KNC )
  511. AP( KNC ) = AP( KPC )
  512. AP( KPC ) = T
  513. IF( KSTEP.EQ.2 ) THEN
  514. T = AP( KC+1 )
  515. AP( KC+1 ) = AP( KC+KP-K )
  516. AP( KC+KP-K ) = T
  517. END IF
  518. END IF
  519. *
  520. * Update the trailing submatrix
  521. *
  522. IF( KSTEP.EQ.1 ) THEN
  523. *
  524. * 1-by-1 pivot block D(k): column k now holds
  525. *
  526. * W(k) = L(k)*D(k)
  527. *
  528. * where L(k) is the k-th column of L
  529. *
  530. IF( K.LT.N ) THEN
  531. *
  532. * Perform a rank-1 update of A(k+1:n,k+1:n) as
  533. *
  534. * A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
  535. *
  536. R1 = ONE / AP( KC )
  537. CALL SSPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
  538. $ AP( KC+N-K+1 ) )
  539. *
  540. * Store L(k) in column K
  541. *
  542. CALL SSCAL( N-K, R1, AP( KC+1 ), 1 )
  543. END IF
  544. ELSE
  545. *
  546. * 2-by-2 pivot block D(k): columns K and K+1 now hold
  547. *
  548. * ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  549. *
  550. * where L(k) and L(k+1) are the k-th and (k+1)-th columns
  551. * of L
  552. *
  553. IF( K.LT.N-1 ) THEN
  554. *
  555. * Perform a rank-2 update of A(k+2:n,k+2:n) as
  556. *
  557. * A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
  558. * = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
  559. *
  560. * where L(k) and L(k+1) are the k-th and (k+1)-th
  561. * columns of L
  562. *
  563. D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 )
  564. D11 = AP( K+1+K*( 2*N-K-1 ) / 2 ) / D21
  565. D22 = AP( K+( K-1 )*( 2*N-K ) / 2 ) / D21
  566. T = ONE / ( D11*D22-ONE )
  567. D21 = T / D21
  568. *
  569. DO 100 J = K + 2, N
  570. WK = D21*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )-
  571. $ AP( J+K*( 2*N-K-1 ) / 2 ) )
  572. WKP1 = D21*( D22*AP( J+K*( 2*N-K-1 ) / 2 )-
  573. $ AP( J+( K-1 )*( 2*N-K ) / 2 ) )
  574. *
  575. DO 90 I = J, N
  576. AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )*
  577. $ ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) /
  578. $ 2 )*WK - AP( I+K*( 2*N-K-1 ) / 2 )*WKP1
  579. 90 CONTINUE
  580. *
  581. AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK
  582. AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1
  583. *
  584. 100 CONTINUE
  585. END IF
  586. END IF
  587. END IF
  588. *
  589. * Store details of the interchanges in IPIV
  590. *
  591. IF( KSTEP.EQ.1 ) THEN
  592. IPIV( K ) = KP
  593. ELSE
  594. IPIV( K ) = -KP
  595. IPIV( K+1 ) = -KP
  596. END IF
  597. *
  598. * Increase K and return to the start of the main loop
  599. *
  600. K = K + KSTEP
  601. KC = KNC + N - K + 2
  602. GO TO 60
  603. *
  604. END IF
  605. *
  606. 110 CONTINUE
  607. RETURN
  608. *
  609. * End of SSPTRF
  610. *
  611. END