You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sopgtr.f 6.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229
  1. *> \brief \b SOPGTR
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SOPGTR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sopgtr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sopgtr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sopgtr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SOPGTR( UPLO, N, AP, TAU, Q, LDQ, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDQ, N
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL AP( * ), Q( LDQ, * ), TAU( * ), WORK( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> SOPGTR generates a real orthogonal matrix Q which is defined as the
  38. *> product of n-1 elementary reflectors H(i) of order n, as returned by
  39. *> SSPTRD using packed storage:
  40. *>
  41. *> if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
  42. *>
  43. *> if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] UPLO
  50. *> \verbatim
  51. *> UPLO is CHARACTER*1
  52. *> = 'U': Upper triangular packed storage used in previous
  53. *> call to SSPTRD;
  54. *> = 'L': Lower triangular packed storage used in previous
  55. *> call to SSPTRD.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix Q. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] AP
  65. *> \verbatim
  66. *> AP is REAL array, dimension (N*(N+1)/2)
  67. *> The vectors which define the elementary reflectors, as
  68. *> returned by SSPTRD.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] TAU
  72. *> \verbatim
  73. *> TAU is REAL array, dimension (N-1)
  74. *> TAU(i) must contain the scalar factor of the elementary
  75. *> reflector H(i), as returned by SSPTRD.
  76. *> \endverbatim
  77. *>
  78. *> \param[out] Q
  79. *> \verbatim
  80. *> Q is REAL array, dimension (LDQ,N)
  81. *> The N-by-N orthogonal matrix Q.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] LDQ
  85. *> \verbatim
  86. *> LDQ is INTEGER
  87. *> The leading dimension of the array Q. LDQ >= max(1,N).
  88. *> \endverbatim
  89. *>
  90. *> \param[out] WORK
  91. *> \verbatim
  92. *> WORK is REAL array, dimension (N-1)
  93. *> \endverbatim
  94. *>
  95. *> \param[out] INFO
  96. *> \verbatim
  97. *> INFO is INTEGER
  98. *> = 0: successful exit
  99. *> < 0: if INFO = -i, the i-th argument had an illegal value
  100. *> \endverbatim
  101. *
  102. * Authors:
  103. * ========
  104. *
  105. *> \author Univ. of Tennessee
  106. *> \author Univ. of California Berkeley
  107. *> \author Univ. of Colorado Denver
  108. *> \author NAG Ltd.
  109. *
  110. *> \ingroup realOTHERcomputational
  111. *
  112. * =====================================================================
  113. SUBROUTINE SOPGTR( UPLO, N, AP, TAU, Q, LDQ, WORK, INFO )
  114. *
  115. * -- LAPACK computational routine --
  116. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  117. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  118. *
  119. * .. Scalar Arguments ..
  120. CHARACTER UPLO
  121. INTEGER INFO, LDQ, N
  122. * ..
  123. * .. Array Arguments ..
  124. REAL AP( * ), Q( LDQ, * ), TAU( * ), WORK( * )
  125. * ..
  126. *
  127. * =====================================================================
  128. *
  129. * .. Parameters ..
  130. REAL ZERO, ONE
  131. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  132. * ..
  133. * .. Local Scalars ..
  134. LOGICAL UPPER
  135. INTEGER I, IINFO, IJ, J
  136. * ..
  137. * .. External Functions ..
  138. LOGICAL LSAME
  139. EXTERNAL LSAME
  140. * ..
  141. * .. External Subroutines ..
  142. EXTERNAL SORG2L, SORG2R, XERBLA
  143. * ..
  144. * .. Intrinsic Functions ..
  145. INTRINSIC MAX
  146. * ..
  147. * .. Executable Statements ..
  148. *
  149. * Test the input arguments
  150. *
  151. INFO = 0
  152. UPPER = LSAME( UPLO, 'U' )
  153. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  154. INFO = -1
  155. ELSE IF( N.LT.0 ) THEN
  156. INFO = -2
  157. ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
  158. INFO = -6
  159. END IF
  160. IF( INFO.NE.0 ) THEN
  161. CALL XERBLA( 'SOPGTR', -INFO )
  162. RETURN
  163. END IF
  164. *
  165. * Quick return if possible
  166. *
  167. IF( N.EQ.0 )
  168. $ RETURN
  169. *
  170. IF( UPPER ) THEN
  171. *
  172. * Q was determined by a call to SSPTRD with UPLO = 'U'
  173. *
  174. * Unpack the vectors which define the elementary reflectors and
  175. * set the last row and column of Q equal to those of the unit
  176. * matrix
  177. *
  178. IJ = 2
  179. DO 20 J = 1, N - 1
  180. DO 10 I = 1, J - 1
  181. Q( I, J ) = AP( IJ )
  182. IJ = IJ + 1
  183. 10 CONTINUE
  184. IJ = IJ + 2
  185. Q( N, J ) = ZERO
  186. 20 CONTINUE
  187. DO 30 I = 1, N - 1
  188. Q( I, N ) = ZERO
  189. 30 CONTINUE
  190. Q( N, N ) = ONE
  191. *
  192. * Generate Q(1:n-1,1:n-1)
  193. *
  194. CALL SORG2L( N-1, N-1, N-1, Q, LDQ, TAU, WORK, IINFO )
  195. *
  196. ELSE
  197. *
  198. * Q was determined by a call to SSPTRD with UPLO = 'L'.
  199. *
  200. * Unpack the vectors which define the elementary reflectors and
  201. * set the first row and column of Q equal to those of the unit
  202. * matrix
  203. *
  204. Q( 1, 1 ) = ONE
  205. DO 40 I = 2, N
  206. Q( I, 1 ) = ZERO
  207. 40 CONTINUE
  208. IJ = 3
  209. DO 60 J = 2, N
  210. Q( 1, J ) = ZERO
  211. DO 50 I = J + 1, N
  212. Q( I, J ) = AP( IJ )
  213. IJ = IJ + 1
  214. 50 CONTINUE
  215. IJ = IJ + 2
  216. 60 CONTINUE
  217. IF( N.GT.1 ) THEN
  218. *
  219. * Generate Q(2:n,2:n)
  220. *
  221. CALL SORG2R( N-1, N-1, N-1, Q( 2, 2 ), LDQ, TAU, WORK,
  222. $ IINFO )
  223. END IF
  224. END IF
  225. RETURN
  226. *
  227. * End of SOPGTR
  228. *
  229. END