You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slatps.f 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792
  1. *> \brief \b SLATPS solves a triangular system of equations with the matrix held in packed storage.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLATPS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slatps.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slatps.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slatps.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
  22. * CNORM, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORMIN, TRANS, UPLO
  26. * INTEGER INFO, N
  27. * REAL SCALE
  28. * ..
  29. * .. Array Arguments ..
  30. * REAL AP( * ), CNORM( * ), X( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> SLATPS solves one of the triangular systems
  40. *>
  41. *> A *x = s*b or A**T*x = s*b
  42. *>
  43. *> with scaling to prevent overflow, where A is an upper or lower
  44. *> triangular matrix stored in packed form. Here A**T denotes the
  45. *> transpose of A, x and b are n-element vectors, and s is a scaling
  46. *> factor, usually less than or equal to 1, chosen so that the
  47. *> components of x will be less than the overflow threshold. If the
  48. *> unscaled problem will not cause overflow, the Level 2 BLAS routine
  49. *> STPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
  50. *> then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] UPLO
  57. *> \verbatim
  58. *> UPLO is CHARACTER*1
  59. *> Specifies whether the matrix A is upper or lower triangular.
  60. *> = 'U': Upper triangular
  61. *> = 'L': Lower triangular
  62. *> \endverbatim
  63. *>
  64. *> \param[in] TRANS
  65. *> \verbatim
  66. *> TRANS is CHARACTER*1
  67. *> Specifies the operation applied to A.
  68. *> = 'N': Solve A * x = s*b (No transpose)
  69. *> = 'T': Solve A**T* x = s*b (Transpose)
  70. *> = 'C': Solve A**T* x = s*b (Conjugate transpose = Transpose)
  71. *> \endverbatim
  72. *>
  73. *> \param[in] DIAG
  74. *> \verbatim
  75. *> DIAG is CHARACTER*1
  76. *> Specifies whether or not the matrix A is unit triangular.
  77. *> = 'N': Non-unit triangular
  78. *> = 'U': Unit triangular
  79. *> \endverbatim
  80. *>
  81. *> \param[in] NORMIN
  82. *> \verbatim
  83. *> NORMIN is CHARACTER*1
  84. *> Specifies whether CNORM has been set or not.
  85. *> = 'Y': CNORM contains the column norms on entry
  86. *> = 'N': CNORM is not set on entry. On exit, the norms will
  87. *> be computed and stored in CNORM.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] N
  91. *> \verbatim
  92. *> N is INTEGER
  93. *> The order of the matrix A. N >= 0.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] AP
  97. *> \verbatim
  98. *> AP is REAL array, dimension (N*(N+1)/2)
  99. *> The upper or lower triangular matrix A, packed columnwise in
  100. *> a linear array. The j-th column of A is stored in the array
  101. *> AP as follows:
  102. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  103. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  104. *> \endverbatim
  105. *>
  106. *> \param[in,out] X
  107. *> \verbatim
  108. *> X is REAL array, dimension (N)
  109. *> On entry, the right hand side b of the triangular system.
  110. *> On exit, X is overwritten by the solution vector x.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] SCALE
  114. *> \verbatim
  115. *> SCALE is REAL
  116. *> The scaling factor s for the triangular system
  117. *> A * x = s*b or A**T* x = s*b.
  118. *> If SCALE = 0, the matrix A is singular or badly scaled, and
  119. *> the vector x is an exact or approximate solution to A*x = 0.
  120. *> \endverbatim
  121. *>
  122. *> \param[in,out] CNORM
  123. *> \verbatim
  124. *> CNORM is REAL array, dimension (N)
  125. *>
  126. *> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  127. *> contains the norm of the off-diagonal part of the j-th column
  128. *> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
  129. *> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  130. *> must be greater than or equal to the 1-norm.
  131. *>
  132. *> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  133. *> returns the 1-norm of the offdiagonal part of the j-th column
  134. *> of A.
  135. *> \endverbatim
  136. *>
  137. *> \param[out] INFO
  138. *> \verbatim
  139. *> INFO is INTEGER
  140. *> = 0: successful exit
  141. *> < 0: if INFO = -k, the k-th argument had an illegal value
  142. *> \endverbatim
  143. *
  144. * Authors:
  145. * ========
  146. *
  147. *> \author Univ. of Tennessee
  148. *> \author Univ. of California Berkeley
  149. *> \author Univ. of Colorado Denver
  150. *> \author NAG Ltd.
  151. *
  152. *> \ingroup realOTHERauxiliary
  153. *
  154. *> \par Further Details:
  155. * =====================
  156. *>
  157. *> \verbatim
  158. *>
  159. *> A rough bound on x is computed; if that is less than overflow, STPSV
  160. *> is called, otherwise, specific code is used which checks for possible
  161. *> overflow or divide-by-zero at every operation.
  162. *>
  163. *> A columnwise scheme is used for solving A*x = b. The basic algorithm
  164. *> if A is lower triangular is
  165. *>
  166. *> x[1:n] := b[1:n]
  167. *> for j = 1, ..., n
  168. *> x(j) := x(j) / A(j,j)
  169. *> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  170. *> end
  171. *>
  172. *> Define bounds on the components of x after j iterations of the loop:
  173. *> M(j) = bound on x[1:j]
  174. *> G(j) = bound on x[j+1:n]
  175. *> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  176. *>
  177. *> Then for iteration j+1 we have
  178. *> M(j+1) <= G(j) / | A(j+1,j+1) |
  179. *> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  180. *> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  181. *>
  182. *> where CNORM(j+1) is greater than or equal to the infinity-norm of
  183. *> column j+1 of A, not counting the diagonal. Hence
  184. *>
  185. *> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  186. *> 1<=i<=j
  187. *> and
  188. *>
  189. *> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  190. *> 1<=i< j
  191. *>
  192. *> Since |x(j)| <= M(j), we use the Level 2 BLAS routine STPSV if the
  193. *> reciprocal of the largest M(j), j=1,..,n, is larger than
  194. *> max(underflow, 1/overflow).
  195. *>
  196. *> The bound on x(j) is also used to determine when a step in the
  197. *> columnwise method can be performed without fear of overflow. If
  198. *> the computed bound is greater than a large constant, x is scaled to
  199. *> prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  200. *> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  201. *>
  202. *> Similarly, a row-wise scheme is used to solve A**T*x = b. The basic
  203. *> algorithm for A upper triangular is
  204. *>
  205. *> for j = 1, ..., n
  206. *> x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
  207. *> end
  208. *>
  209. *> We simultaneously compute two bounds
  210. *> G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
  211. *> M(j) = bound on x(i), 1<=i<=j
  212. *>
  213. *> The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  214. *> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  215. *> Then the bound on x(j) is
  216. *>
  217. *> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  218. *>
  219. *> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  220. *> 1<=i<=j
  221. *>
  222. *> and we can safely call STPSV if 1/M(n) and 1/G(n) are both greater
  223. *> than max(underflow, 1/overflow).
  224. *> \endverbatim
  225. *>
  226. * =====================================================================
  227. SUBROUTINE SLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
  228. $ CNORM, INFO )
  229. *
  230. * -- LAPACK auxiliary routine --
  231. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  232. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  233. *
  234. * .. Scalar Arguments ..
  235. CHARACTER DIAG, NORMIN, TRANS, UPLO
  236. INTEGER INFO, N
  237. REAL SCALE
  238. * ..
  239. * .. Array Arguments ..
  240. REAL AP( * ), CNORM( * ), X( * )
  241. * ..
  242. *
  243. * =====================================================================
  244. *
  245. * .. Parameters ..
  246. REAL ZERO, HALF, ONE
  247. PARAMETER ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0 )
  248. * ..
  249. * .. Local Scalars ..
  250. LOGICAL NOTRAN, NOUNIT, UPPER
  251. INTEGER I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
  252. REAL BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
  253. $ TMAX, TSCAL, USCAL, XBND, XJ, XMAX
  254. * ..
  255. * .. External Functions ..
  256. LOGICAL LSAME
  257. INTEGER ISAMAX
  258. REAL SASUM, SDOT, SLAMCH
  259. EXTERNAL LSAME, ISAMAX, SASUM, SDOT, SLAMCH
  260. * ..
  261. * .. External Subroutines ..
  262. EXTERNAL SAXPY, SSCAL, STPSV, XERBLA
  263. * ..
  264. * .. Intrinsic Functions ..
  265. INTRINSIC ABS, MAX, MIN
  266. * ..
  267. * .. Executable Statements ..
  268. *
  269. INFO = 0
  270. UPPER = LSAME( UPLO, 'U' )
  271. NOTRAN = LSAME( TRANS, 'N' )
  272. NOUNIT = LSAME( DIAG, 'N' )
  273. *
  274. * Test the input parameters.
  275. *
  276. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  277. INFO = -1
  278. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  279. $ LSAME( TRANS, 'C' ) ) THEN
  280. INFO = -2
  281. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  282. INFO = -3
  283. ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  284. $ LSAME( NORMIN, 'N' ) ) THEN
  285. INFO = -4
  286. ELSE IF( N.LT.0 ) THEN
  287. INFO = -5
  288. END IF
  289. IF( INFO.NE.0 ) THEN
  290. CALL XERBLA( 'SLATPS', -INFO )
  291. RETURN
  292. END IF
  293. *
  294. * Quick return if possible
  295. *
  296. IF( N.EQ.0 )
  297. $ RETURN
  298. *
  299. * Determine machine dependent parameters to control overflow.
  300. *
  301. SMLNUM = SLAMCH( 'Safe minimum' ) / SLAMCH( 'Precision' )
  302. BIGNUM = ONE / SMLNUM
  303. SCALE = ONE
  304. *
  305. IF( LSAME( NORMIN, 'N' ) ) THEN
  306. *
  307. * Compute the 1-norm of each column, not including the diagonal.
  308. *
  309. IF( UPPER ) THEN
  310. *
  311. * A is upper triangular.
  312. *
  313. IP = 1
  314. DO 10 J = 1, N
  315. CNORM( J ) = SASUM( J-1, AP( IP ), 1 )
  316. IP = IP + J
  317. 10 CONTINUE
  318. ELSE
  319. *
  320. * A is lower triangular.
  321. *
  322. IP = 1
  323. DO 20 J = 1, N - 1
  324. CNORM( J ) = SASUM( N-J, AP( IP+1 ), 1 )
  325. IP = IP + N - J + 1
  326. 20 CONTINUE
  327. CNORM( N ) = ZERO
  328. END IF
  329. END IF
  330. *
  331. * Scale the column norms by TSCAL if the maximum element in CNORM is
  332. * greater than BIGNUM.
  333. *
  334. IMAX = ISAMAX( N, CNORM, 1 )
  335. TMAX = CNORM( IMAX )
  336. IF( TMAX.LE.BIGNUM ) THEN
  337. TSCAL = ONE
  338. ELSE
  339. TSCAL = ONE / ( SMLNUM*TMAX )
  340. CALL SSCAL( N, TSCAL, CNORM, 1 )
  341. END IF
  342. *
  343. * Compute a bound on the computed solution vector to see if the
  344. * Level 2 BLAS routine STPSV can be used.
  345. *
  346. J = ISAMAX( N, X, 1 )
  347. XMAX = ABS( X( J ) )
  348. XBND = XMAX
  349. IF( NOTRAN ) THEN
  350. *
  351. * Compute the growth in A * x = b.
  352. *
  353. IF( UPPER ) THEN
  354. JFIRST = N
  355. JLAST = 1
  356. JINC = -1
  357. ELSE
  358. JFIRST = 1
  359. JLAST = N
  360. JINC = 1
  361. END IF
  362. *
  363. IF( TSCAL.NE.ONE ) THEN
  364. GROW = ZERO
  365. GO TO 50
  366. END IF
  367. *
  368. IF( NOUNIT ) THEN
  369. *
  370. * A is non-unit triangular.
  371. *
  372. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  373. * Initially, G(0) = max{x(i), i=1,...,n}.
  374. *
  375. GROW = ONE / MAX( XBND, SMLNUM )
  376. XBND = GROW
  377. IP = JFIRST*( JFIRST+1 ) / 2
  378. JLEN = N
  379. DO 30 J = JFIRST, JLAST, JINC
  380. *
  381. * Exit the loop if the growth factor is too small.
  382. *
  383. IF( GROW.LE.SMLNUM )
  384. $ GO TO 50
  385. *
  386. * M(j) = G(j-1) / abs(A(j,j))
  387. *
  388. TJJ = ABS( AP( IP ) )
  389. XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  390. IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  391. *
  392. * G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  393. *
  394. GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  395. ELSE
  396. *
  397. * G(j) could overflow, set GROW to 0.
  398. *
  399. GROW = ZERO
  400. END IF
  401. IP = IP + JINC*JLEN
  402. JLEN = JLEN - 1
  403. 30 CONTINUE
  404. GROW = XBND
  405. ELSE
  406. *
  407. * A is unit triangular.
  408. *
  409. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  410. *
  411. GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  412. DO 40 J = JFIRST, JLAST, JINC
  413. *
  414. * Exit the loop if the growth factor is too small.
  415. *
  416. IF( GROW.LE.SMLNUM )
  417. $ GO TO 50
  418. *
  419. * G(j) = G(j-1)*( 1 + CNORM(j) )
  420. *
  421. GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  422. 40 CONTINUE
  423. END IF
  424. 50 CONTINUE
  425. *
  426. ELSE
  427. *
  428. * Compute the growth in A**T * x = b.
  429. *
  430. IF( UPPER ) THEN
  431. JFIRST = 1
  432. JLAST = N
  433. JINC = 1
  434. ELSE
  435. JFIRST = N
  436. JLAST = 1
  437. JINC = -1
  438. END IF
  439. *
  440. IF( TSCAL.NE.ONE ) THEN
  441. GROW = ZERO
  442. GO TO 80
  443. END IF
  444. *
  445. IF( NOUNIT ) THEN
  446. *
  447. * A is non-unit triangular.
  448. *
  449. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  450. * Initially, M(0) = max{x(i), i=1,...,n}.
  451. *
  452. GROW = ONE / MAX( XBND, SMLNUM )
  453. XBND = GROW
  454. IP = JFIRST*( JFIRST+1 ) / 2
  455. JLEN = 1
  456. DO 60 J = JFIRST, JLAST, JINC
  457. *
  458. * Exit the loop if the growth factor is too small.
  459. *
  460. IF( GROW.LE.SMLNUM )
  461. $ GO TO 80
  462. *
  463. * G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  464. *
  465. XJ = ONE + CNORM( J )
  466. GROW = MIN( GROW, XBND / XJ )
  467. *
  468. * M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  469. *
  470. TJJ = ABS( AP( IP ) )
  471. IF( XJ.GT.TJJ )
  472. $ XBND = XBND*( TJJ / XJ )
  473. JLEN = JLEN + 1
  474. IP = IP + JINC*JLEN
  475. 60 CONTINUE
  476. GROW = MIN( GROW, XBND )
  477. ELSE
  478. *
  479. * A is unit triangular.
  480. *
  481. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  482. *
  483. GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  484. DO 70 J = JFIRST, JLAST, JINC
  485. *
  486. * Exit the loop if the growth factor is too small.
  487. *
  488. IF( GROW.LE.SMLNUM )
  489. $ GO TO 80
  490. *
  491. * G(j) = ( 1 + CNORM(j) )*G(j-1)
  492. *
  493. XJ = ONE + CNORM( J )
  494. GROW = GROW / XJ
  495. 70 CONTINUE
  496. END IF
  497. 80 CONTINUE
  498. END IF
  499. *
  500. IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  501. *
  502. * Use the Level 2 BLAS solve if the reciprocal of the bound on
  503. * elements of X is not too small.
  504. *
  505. CALL STPSV( UPLO, TRANS, DIAG, N, AP, X, 1 )
  506. ELSE
  507. *
  508. * Use a Level 1 BLAS solve, scaling intermediate results.
  509. *
  510. IF( XMAX.GT.BIGNUM ) THEN
  511. *
  512. * Scale X so that its components are less than or equal to
  513. * BIGNUM in absolute value.
  514. *
  515. SCALE = BIGNUM / XMAX
  516. CALL SSCAL( N, SCALE, X, 1 )
  517. XMAX = BIGNUM
  518. END IF
  519. *
  520. IF( NOTRAN ) THEN
  521. *
  522. * Solve A * x = b
  523. *
  524. IP = JFIRST*( JFIRST+1 ) / 2
  525. DO 100 J = JFIRST, JLAST, JINC
  526. *
  527. * Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  528. *
  529. XJ = ABS( X( J ) )
  530. IF( NOUNIT ) THEN
  531. TJJS = AP( IP )*TSCAL
  532. ELSE
  533. TJJS = TSCAL
  534. IF( TSCAL.EQ.ONE )
  535. $ GO TO 95
  536. END IF
  537. TJJ = ABS( TJJS )
  538. IF( TJJ.GT.SMLNUM ) THEN
  539. *
  540. * abs(A(j,j)) > SMLNUM:
  541. *
  542. IF( TJJ.LT.ONE ) THEN
  543. IF( XJ.GT.TJJ*BIGNUM ) THEN
  544. *
  545. * Scale x by 1/b(j).
  546. *
  547. REC = ONE / XJ
  548. CALL SSCAL( N, REC, X, 1 )
  549. SCALE = SCALE*REC
  550. XMAX = XMAX*REC
  551. END IF
  552. END IF
  553. X( J ) = X( J ) / TJJS
  554. XJ = ABS( X( J ) )
  555. ELSE IF( TJJ.GT.ZERO ) THEN
  556. *
  557. * 0 < abs(A(j,j)) <= SMLNUM:
  558. *
  559. IF( XJ.GT.TJJ*BIGNUM ) THEN
  560. *
  561. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  562. * to avoid overflow when dividing by A(j,j).
  563. *
  564. REC = ( TJJ*BIGNUM ) / XJ
  565. IF( CNORM( J ).GT.ONE ) THEN
  566. *
  567. * Scale by 1/CNORM(j) to avoid overflow when
  568. * multiplying x(j) times column j.
  569. *
  570. REC = REC / CNORM( J )
  571. END IF
  572. CALL SSCAL( N, REC, X, 1 )
  573. SCALE = SCALE*REC
  574. XMAX = XMAX*REC
  575. END IF
  576. X( J ) = X( J ) / TJJS
  577. XJ = ABS( X( J ) )
  578. ELSE
  579. *
  580. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  581. * scale = 0, and compute a solution to A*x = 0.
  582. *
  583. DO 90 I = 1, N
  584. X( I ) = ZERO
  585. 90 CONTINUE
  586. X( J ) = ONE
  587. XJ = ONE
  588. SCALE = ZERO
  589. XMAX = ZERO
  590. END IF
  591. 95 CONTINUE
  592. *
  593. * Scale x if necessary to avoid overflow when adding a
  594. * multiple of column j of A.
  595. *
  596. IF( XJ.GT.ONE ) THEN
  597. REC = ONE / XJ
  598. IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  599. *
  600. * Scale x by 1/(2*abs(x(j))).
  601. *
  602. REC = REC*HALF
  603. CALL SSCAL( N, REC, X, 1 )
  604. SCALE = SCALE*REC
  605. END IF
  606. ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  607. *
  608. * Scale x by 1/2.
  609. *
  610. CALL SSCAL( N, HALF, X, 1 )
  611. SCALE = SCALE*HALF
  612. END IF
  613. *
  614. IF( UPPER ) THEN
  615. IF( J.GT.1 ) THEN
  616. *
  617. * Compute the update
  618. * x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
  619. *
  620. CALL SAXPY( J-1, -X( J )*TSCAL, AP( IP-J+1 ), 1, X,
  621. $ 1 )
  622. I = ISAMAX( J-1, X, 1 )
  623. XMAX = ABS( X( I ) )
  624. END IF
  625. IP = IP - J
  626. ELSE
  627. IF( J.LT.N ) THEN
  628. *
  629. * Compute the update
  630. * x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
  631. *
  632. CALL SAXPY( N-J, -X( J )*TSCAL, AP( IP+1 ), 1,
  633. $ X( J+1 ), 1 )
  634. I = J + ISAMAX( N-J, X( J+1 ), 1 )
  635. XMAX = ABS( X( I ) )
  636. END IF
  637. IP = IP + N - J + 1
  638. END IF
  639. 100 CONTINUE
  640. *
  641. ELSE
  642. *
  643. * Solve A**T * x = b
  644. *
  645. IP = JFIRST*( JFIRST+1 ) / 2
  646. JLEN = 1
  647. DO 140 J = JFIRST, JLAST, JINC
  648. *
  649. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  650. * k<>j
  651. *
  652. XJ = ABS( X( J ) )
  653. USCAL = TSCAL
  654. REC = ONE / MAX( XMAX, ONE )
  655. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  656. *
  657. * If x(j) could overflow, scale x by 1/(2*XMAX).
  658. *
  659. REC = REC*HALF
  660. IF( NOUNIT ) THEN
  661. TJJS = AP( IP )*TSCAL
  662. ELSE
  663. TJJS = TSCAL
  664. END IF
  665. TJJ = ABS( TJJS )
  666. IF( TJJ.GT.ONE ) THEN
  667. *
  668. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  669. *
  670. REC = MIN( ONE, REC*TJJ )
  671. USCAL = USCAL / TJJS
  672. END IF
  673. IF( REC.LT.ONE ) THEN
  674. CALL SSCAL( N, REC, X, 1 )
  675. SCALE = SCALE*REC
  676. XMAX = XMAX*REC
  677. END IF
  678. END IF
  679. *
  680. SUMJ = ZERO
  681. IF( USCAL.EQ.ONE ) THEN
  682. *
  683. * If the scaling needed for A in the dot product is 1,
  684. * call SDOT to perform the dot product.
  685. *
  686. IF( UPPER ) THEN
  687. SUMJ = SDOT( J-1, AP( IP-J+1 ), 1, X, 1 )
  688. ELSE IF( J.LT.N ) THEN
  689. SUMJ = SDOT( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
  690. END IF
  691. ELSE
  692. *
  693. * Otherwise, use in-line code for the dot product.
  694. *
  695. IF( UPPER ) THEN
  696. DO 110 I = 1, J - 1
  697. SUMJ = SUMJ + ( AP( IP-J+I )*USCAL )*X( I )
  698. 110 CONTINUE
  699. ELSE IF( J.LT.N ) THEN
  700. DO 120 I = 1, N - J
  701. SUMJ = SUMJ + ( AP( IP+I )*USCAL )*X( J+I )
  702. 120 CONTINUE
  703. END IF
  704. END IF
  705. *
  706. IF( USCAL.EQ.TSCAL ) THEN
  707. *
  708. * Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
  709. * was not used to scale the dotproduct.
  710. *
  711. X( J ) = X( J ) - SUMJ
  712. XJ = ABS( X( J ) )
  713. IF( NOUNIT ) THEN
  714. *
  715. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  716. *
  717. TJJS = AP( IP )*TSCAL
  718. ELSE
  719. TJJS = TSCAL
  720. IF( TSCAL.EQ.ONE )
  721. $ GO TO 135
  722. END IF
  723. TJJ = ABS( TJJS )
  724. IF( TJJ.GT.SMLNUM ) THEN
  725. *
  726. * abs(A(j,j)) > SMLNUM:
  727. *
  728. IF( TJJ.LT.ONE ) THEN
  729. IF( XJ.GT.TJJ*BIGNUM ) THEN
  730. *
  731. * Scale X by 1/abs(x(j)).
  732. *
  733. REC = ONE / XJ
  734. CALL SSCAL( N, REC, X, 1 )
  735. SCALE = SCALE*REC
  736. XMAX = XMAX*REC
  737. END IF
  738. END IF
  739. X( J ) = X( J ) / TJJS
  740. ELSE IF( TJJ.GT.ZERO ) THEN
  741. *
  742. * 0 < abs(A(j,j)) <= SMLNUM:
  743. *
  744. IF( XJ.GT.TJJ*BIGNUM ) THEN
  745. *
  746. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  747. *
  748. REC = ( TJJ*BIGNUM ) / XJ
  749. CALL SSCAL( N, REC, X, 1 )
  750. SCALE = SCALE*REC
  751. XMAX = XMAX*REC
  752. END IF
  753. X( J ) = X( J ) / TJJS
  754. ELSE
  755. *
  756. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  757. * scale = 0, and compute a solution to A**T*x = 0.
  758. *
  759. DO 130 I = 1, N
  760. X( I ) = ZERO
  761. 130 CONTINUE
  762. X( J ) = ONE
  763. SCALE = ZERO
  764. XMAX = ZERO
  765. END IF
  766. 135 CONTINUE
  767. ELSE
  768. *
  769. * Compute x(j) := x(j) / A(j,j) - sumj if the dot
  770. * product has already been divided by 1/A(j,j).
  771. *
  772. X( J ) = X( J ) / TJJS - SUMJ
  773. END IF
  774. XMAX = MAX( XMAX, ABS( X( J ) ) )
  775. JLEN = JLEN + 1
  776. IP = IP + JINC*JLEN
  777. 140 CONTINUE
  778. END IF
  779. SCALE = SCALE / TSCAL
  780. END IF
  781. *
  782. * Scale the column norms by 1/TSCAL for return.
  783. *
  784. IF( TSCAL.NE.ONE ) THEN
  785. CALL SSCAL( N, ONE / TSCAL, CNORM, 1 )
  786. END IF
  787. *
  788. RETURN
  789. *
  790. * End of SLATPS
  791. *
  792. END