You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaln2.f 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608
  1. *> \brief \b SLALN2 solves a 1-by-1 or 2-by-2 linear system of equations of the specified form.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLALN2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaln2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaln2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaln2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLALN2( LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B,
  22. * LDB, WR, WI, X, LDX, SCALE, XNORM, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * LOGICAL LTRANS
  26. * INTEGER INFO, LDA, LDB, LDX, NA, NW
  27. * REAL CA, D1, D2, SCALE, SMIN, WI, WR, XNORM
  28. * ..
  29. * .. Array Arguments ..
  30. * REAL A( LDA, * ), B( LDB, * ), X( LDX, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> SLALN2 solves a system of the form (ca A - w D ) X = s B
  40. *> or (ca A**T - w D) X = s B with possible scaling ("s") and
  41. *> perturbation of A. (A**T means A-transpose.)
  42. *>
  43. *> A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA
  44. *> real diagonal matrix, w is a real or complex value, and X and B are
  45. *> NA x 1 matrices -- real if w is real, complex if w is complex. NA
  46. *> may be 1 or 2.
  47. *>
  48. *> If w is complex, X and B are represented as NA x 2 matrices,
  49. *> the first column of each being the real part and the second
  50. *> being the imaginary part.
  51. *>
  52. *> "s" is a scaling factor (<= 1), computed by SLALN2, which is
  53. *> so chosen that X can be computed without overflow. X is further
  54. *> scaled if necessary to assure that norm(ca A - w D)*norm(X) is less
  55. *> than overflow.
  56. *>
  57. *> If both singular values of (ca A - w D) are less than SMIN,
  58. *> SMIN*identity will be used instead of (ca A - w D). If only one
  59. *> singular value is less than SMIN, one element of (ca A - w D) will be
  60. *> perturbed enough to make the smallest singular value roughly SMIN.
  61. *> If both singular values are at least SMIN, (ca A - w D) will not be
  62. *> perturbed. In any case, the perturbation will be at most some small
  63. *> multiple of max( SMIN, ulp*norm(ca A - w D) ). The singular values
  64. *> are computed by infinity-norm approximations, and thus will only be
  65. *> correct to a factor of 2 or so.
  66. *>
  67. *> Note: all input quantities are assumed to be smaller than overflow
  68. *> by a reasonable factor. (See BIGNUM.)
  69. *> \endverbatim
  70. *
  71. * Arguments:
  72. * ==========
  73. *
  74. *> \param[in] LTRANS
  75. *> \verbatim
  76. *> LTRANS is LOGICAL
  77. *> =.TRUE.: A-transpose will be used.
  78. *> =.FALSE.: A will be used (not transposed.)
  79. *> \endverbatim
  80. *>
  81. *> \param[in] NA
  82. *> \verbatim
  83. *> NA is INTEGER
  84. *> The size of the matrix A. It may (only) be 1 or 2.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] NW
  88. *> \verbatim
  89. *> NW is INTEGER
  90. *> 1 if "w" is real, 2 if "w" is complex. It may only be 1
  91. *> or 2.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] SMIN
  95. *> \verbatim
  96. *> SMIN is REAL
  97. *> The desired lower bound on the singular values of A. This
  98. *> should be a safe distance away from underflow or overflow,
  99. *> say, between (underflow/machine precision) and (machine
  100. *> precision * overflow ). (See BIGNUM and ULP.)
  101. *> \endverbatim
  102. *>
  103. *> \param[in] CA
  104. *> \verbatim
  105. *> CA is REAL
  106. *> The coefficient c, which A is multiplied by.
  107. *> \endverbatim
  108. *>
  109. *> \param[in] A
  110. *> \verbatim
  111. *> A is REAL array, dimension (LDA,NA)
  112. *> The NA x NA matrix A.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LDA
  116. *> \verbatim
  117. *> LDA is INTEGER
  118. *> The leading dimension of A. It must be at least NA.
  119. *> \endverbatim
  120. *>
  121. *> \param[in] D1
  122. *> \verbatim
  123. *> D1 is REAL
  124. *> The 1,1 element in the diagonal matrix D.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] D2
  128. *> \verbatim
  129. *> D2 is REAL
  130. *> The 2,2 element in the diagonal matrix D. Not used if NA=1.
  131. *> \endverbatim
  132. *>
  133. *> \param[in] B
  134. *> \verbatim
  135. *> B is REAL array, dimension (LDB,NW)
  136. *> The NA x NW matrix B (right-hand side). If NW=2 ("w" is
  137. *> complex), column 1 contains the real part of B and column 2
  138. *> contains the imaginary part.
  139. *> \endverbatim
  140. *>
  141. *> \param[in] LDB
  142. *> \verbatim
  143. *> LDB is INTEGER
  144. *> The leading dimension of B. It must be at least NA.
  145. *> \endverbatim
  146. *>
  147. *> \param[in] WR
  148. *> \verbatim
  149. *> WR is REAL
  150. *> The real part of the scalar "w".
  151. *> \endverbatim
  152. *>
  153. *> \param[in] WI
  154. *> \verbatim
  155. *> WI is REAL
  156. *> The imaginary part of the scalar "w". Not used if NW=1.
  157. *> \endverbatim
  158. *>
  159. *> \param[out] X
  160. *> \verbatim
  161. *> X is REAL array, dimension (LDX,NW)
  162. *> The NA x NW matrix X (unknowns), as computed by SLALN2.
  163. *> If NW=2 ("w" is complex), on exit, column 1 will contain
  164. *> the real part of X and column 2 will contain the imaginary
  165. *> part.
  166. *> \endverbatim
  167. *>
  168. *> \param[in] LDX
  169. *> \verbatim
  170. *> LDX is INTEGER
  171. *> The leading dimension of X. It must be at least NA.
  172. *> \endverbatim
  173. *>
  174. *> \param[out] SCALE
  175. *> \verbatim
  176. *> SCALE is REAL
  177. *> The scale factor that B must be multiplied by to insure
  178. *> that overflow does not occur when computing X. Thus,
  179. *> (ca A - w D) X will be SCALE*B, not B (ignoring
  180. *> perturbations of A.) It will be at most 1.
  181. *> \endverbatim
  182. *>
  183. *> \param[out] XNORM
  184. *> \verbatim
  185. *> XNORM is REAL
  186. *> The infinity-norm of X, when X is regarded as an NA x NW
  187. *> real matrix.
  188. *> \endverbatim
  189. *>
  190. *> \param[out] INFO
  191. *> \verbatim
  192. *> INFO is INTEGER
  193. *> An error flag. It will be set to zero if no error occurs,
  194. *> a negative number if an argument is in error, or a positive
  195. *> number if ca A - w D had to be perturbed.
  196. *> The possible values are:
  197. *> = 0: No error occurred, and (ca A - w D) did not have to be
  198. *> perturbed.
  199. *> = 1: (ca A - w D) had to be perturbed to make its smallest
  200. *> (or only) singular value greater than SMIN.
  201. *> NOTE: In the interests of speed, this routine does not
  202. *> check the inputs for errors.
  203. *> \endverbatim
  204. *
  205. * Authors:
  206. * ========
  207. *
  208. *> \author Univ. of Tennessee
  209. *> \author Univ. of California Berkeley
  210. *> \author Univ. of Colorado Denver
  211. *> \author NAG Ltd.
  212. *
  213. *> \ingroup realOTHERauxiliary
  214. *
  215. * =====================================================================
  216. SUBROUTINE SLALN2( LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B,
  217. $ LDB, WR, WI, X, LDX, SCALE, XNORM, INFO )
  218. *
  219. * -- LAPACK auxiliary routine --
  220. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  221. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  222. *
  223. * .. Scalar Arguments ..
  224. LOGICAL LTRANS
  225. INTEGER INFO, LDA, LDB, LDX, NA, NW
  226. REAL CA, D1, D2, SCALE, SMIN, WI, WR, XNORM
  227. * ..
  228. * .. Array Arguments ..
  229. REAL A( LDA, * ), B( LDB, * ), X( LDX, * )
  230. * ..
  231. *
  232. * =====================================================================
  233. *
  234. * .. Parameters ..
  235. REAL ZERO, ONE
  236. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
  237. REAL TWO
  238. PARAMETER ( TWO = 2.0E0 )
  239. * ..
  240. * .. Local Scalars ..
  241. INTEGER ICMAX, J
  242. REAL BBND, BI1, BI2, BIGNUM, BNORM, BR1, BR2, CI21,
  243. $ CI22, CMAX, CNORM, CR21, CR22, CSI, CSR, LI21,
  244. $ LR21, SMINI, SMLNUM, TEMP, U22ABS, UI11, UI11R,
  245. $ UI12, UI12S, UI22, UR11, UR11R, UR12, UR12S,
  246. $ UR22, XI1, XI2, XR1, XR2
  247. * ..
  248. * .. Local Arrays ..
  249. LOGICAL CSWAP( 4 ), RSWAP( 4 )
  250. INTEGER IPIVOT( 4, 4 )
  251. REAL CI( 2, 2 ), CIV( 4 ), CR( 2, 2 ), CRV( 4 )
  252. * ..
  253. * .. External Functions ..
  254. REAL SLAMCH
  255. EXTERNAL SLAMCH
  256. * ..
  257. * .. External Subroutines ..
  258. EXTERNAL SLADIV
  259. * ..
  260. * .. Intrinsic Functions ..
  261. INTRINSIC ABS, MAX
  262. * ..
  263. * .. Equivalences ..
  264. EQUIVALENCE ( CI( 1, 1 ), CIV( 1 ) ),
  265. $ ( CR( 1, 1 ), CRV( 1 ) )
  266. * ..
  267. * .. Data statements ..
  268. DATA CSWAP / .FALSE., .FALSE., .TRUE., .TRUE. /
  269. DATA RSWAP / .FALSE., .TRUE., .FALSE., .TRUE. /
  270. DATA IPIVOT / 1, 2, 3, 4, 2, 1, 4, 3, 3, 4, 1, 2, 4,
  271. $ 3, 2, 1 /
  272. * ..
  273. * .. Executable Statements ..
  274. *
  275. * Compute BIGNUM
  276. *
  277. SMLNUM = TWO*SLAMCH( 'Safe minimum' )
  278. BIGNUM = ONE / SMLNUM
  279. SMINI = MAX( SMIN, SMLNUM )
  280. *
  281. * Don't check for input errors
  282. *
  283. INFO = 0
  284. *
  285. * Standard Initializations
  286. *
  287. SCALE = ONE
  288. *
  289. IF( NA.EQ.1 ) THEN
  290. *
  291. * 1 x 1 (i.e., scalar) system C X = B
  292. *
  293. IF( NW.EQ.1 ) THEN
  294. *
  295. * Real 1x1 system.
  296. *
  297. * C = ca A - w D
  298. *
  299. CSR = CA*A( 1, 1 ) - WR*D1
  300. CNORM = ABS( CSR )
  301. *
  302. * If | C | < SMINI, use C = SMINI
  303. *
  304. IF( CNORM.LT.SMINI ) THEN
  305. CSR = SMINI
  306. CNORM = SMINI
  307. INFO = 1
  308. END IF
  309. *
  310. * Check scaling for X = B / C
  311. *
  312. BNORM = ABS( B( 1, 1 ) )
  313. IF( CNORM.LT.ONE .AND. BNORM.GT.ONE ) THEN
  314. IF( BNORM.GT.BIGNUM*CNORM )
  315. $ SCALE = ONE / BNORM
  316. END IF
  317. *
  318. * Compute X
  319. *
  320. X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / CSR
  321. XNORM = ABS( X( 1, 1 ) )
  322. ELSE
  323. *
  324. * Complex 1x1 system (w is complex)
  325. *
  326. * C = ca A - w D
  327. *
  328. CSR = CA*A( 1, 1 ) - WR*D1
  329. CSI = -WI*D1
  330. CNORM = ABS( CSR ) + ABS( CSI )
  331. *
  332. * If | C | < SMINI, use C = SMINI
  333. *
  334. IF( CNORM.LT.SMINI ) THEN
  335. CSR = SMINI
  336. CSI = ZERO
  337. CNORM = SMINI
  338. INFO = 1
  339. END IF
  340. *
  341. * Check scaling for X = B / C
  342. *
  343. BNORM = ABS( B( 1, 1 ) ) + ABS( B( 1, 2 ) )
  344. IF( CNORM.LT.ONE .AND. BNORM.GT.ONE ) THEN
  345. IF( BNORM.GT.BIGNUM*CNORM )
  346. $ SCALE = ONE / BNORM
  347. END IF
  348. *
  349. * Compute X
  350. *
  351. CALL SLADIV( SCALE*B( 1, 1 ), SCALE*B( 1, 2 ), CSR, CSI,
  352. $ X( 1, 1 ), X( 1, 2 ) )
  353. XNORM = ABS( X( 1, 1 ) ) + ABS( X( 1, 2 ) )
  354. END IF
  355. *
  356. ELSE
  357. *
  358. * 2x2 System
  359. *
  360. * Compute the real part of C = ca A - w D (or ca A**T - w D )
  361. *
  362. CR( 1, 1 ) = CA*A( 1, 1 ) - WR*D1
  363. CR( 2, 2 ) = CA*A( 2, 2 ) - WR*D2
  364. IF( LTRANS ) THEN
  365. CR( 1, 2 ) = CA*A( 2, 1 )
  366. CR( 2, 1 ) = CA*A( 1, 2 )
  367. ELSE
  368. CR( 2, 1 ) = CA*A( 2, 1 )
  369. CR( 1, 2 ) = CA*A( 1, 2 )
  370. END IF
  371. *
  372. IF( NW.EQ.1 ) THEN
  373. *
  374. * Real 2x2 system (w is real)
  375. *
  376. * Find the largest element in C
  377. *
  378. CMAX = ZERO
  379. ICMAX = 0
  380. *
  381. DO 10 J = 1, 4
  382. IF( ABS( CRV( J ) ).GT.CMAX ) THEN
  383. CMAX = ABS( CRV( J ) )
  384. ICMAX = J
  385. END IF
  386. 10 CONTINUE
  387. *
  388. * If norm(C) < SMINI, use SMINI*identity.
  389. *
  390. IF( CMAX.LT.SMINI ) THEN
  391. BNORM = MAX( ABS( B( 1, 1 ) ), ABS( B( 2, 1 ) ) )
  392. IF( SMINI.LT.ONE .AND. BNORM.GT.ONE ) THEN
  393. IF( BNORM.GT.BIGNUM*SMINI )
  394. $ SCALE = ONE / BNORM
  395. END IF
  396. TEMP = SCALE / SMINI
  397. X( 1, 1 ) = TEMP*B( 1, 1 )
  398. X( 2, 1 ) = TEMP*B( 2, 1 )
  399. XNORM = TEMP*BNORM
  400. INFO = 1
  401. RETURN
  402. END IF
  403. *
  404. * Gaussian elimination with complete pivoting.
  405. *
  406. UR11 = CRV( ICMAX )
  407. CR21 = CRV( IPIVOT( 2, ICMAX ) )
  408. UR12 = CRV( IPIVOT( 3, ICMAX ) )
  409. CR22 = CRV( IPIVOT( 4, ICMAX ) )
  410. UR11R = ONE / UR11
  411. LR21 = UR11R*CR21
  412. UR22 = CR22 - UR12*LR21
  413. *
  414. * If smaller pivot < SMINI, use SMINI
  415. *
  416. IF( ABS( UR22 ).LT.SMINI ) THEN
  417. UR22 = SMINI
  418. INFO = 1
  419. END IF
  420. IF( RSWAP( ICMAX ) ) THEN
  421. BR1 = B( 2, 1 )
  422. BR2 = B( 1, 1 )
  423. ELSE
  424. BR1 = B( 1, 1 )
  425. BR2 = B( 2, 1 )
  426. END IF
  427. BR2 = BR2 - LR21*BR1
  428. BBND = MAX( ABS( BR1*( UR22*UR11R ) ), ABS( BR2 ) )
  429. IF( BBND.GT.ONE .AND. ABS( UR22 ).LT.ONE ) THEN
  430. IF( BBND.GE.BIGNUM*ABS( UR22 ) )
  431. $ SCALE = ONE / BBND
  432. END IF
  433. *
  434. XR2 = ( BR2*SCALE ) / UR22
  435. XR1 = ( SCALE*BR1 )*UR11R - XR2*( UR11R*UR12 )
  436. IF( CSWAP( ICMAX ) ) THEN
  437. X( 1, 1 ) = XR2
  438. X( 2, 1 ) = XR1
  439. ELSE
  440. X( 1, 1 ) = XR1
  441. X( 2, 1 ) = XR2
  442. END IF
  443. XNORM = MAX( ABS( XR1 ), ABS( XR2 ) )
  444. *
  445. * Further scaling if norm(A) norm(X) > overflow
  446. *
  447. IF( XNORM.GT.ONE .AND. CMAX.GT.ONE ) THEN
  448. IF( XNORM.GT.BIGNUM / CMAX ) THEN
  449. TEMP = CMAX / BIGNUM
  450. X( 1, 1 ) = TEMP*X( 1, 1 )
  451. X( 2, 1 ) = TEMP*X( 2, 1 )
  452. XNORM = TEMP*XNORM
  453. SCALE = TEMP*SCALE
  454. END IF
  455. END IF
  456. ELSE
  457. *
  458. * Complex 2x2 system (w is complex)
  459. *
  460. * Find the largest element in C
  461. *
  462. CI( 1, 1 ) = -WI*D1
  463. CI( 2, 1 ) = ZERO
  464. CI( 1, 2 ) = ZERO
  465. CI( 2, 2 ) = -WI*D2
  466. CMAX = ZERO
  467. ICMAX = 0
  468. *
  469. DO 20 J = 1, 4
  470. IF( ABS( CRV( J ) )+ABS( CIV( J ) ).GT.CMAX ) THEN
  471. CMAX = ABS( CRV( J ) ) + ABS( CIV( J ) )
  472. ICMAX = J
  473. END IF
  474. 20 CONTINUE
  475. *
  476. * If norm(C) < SMINI, use SMINI*identity.
  477. *
  478. IF( CMAX.LT.SMINI ) THEN
  479. BNORM = MAX( ABS( B( 1, 1 ) )+ABS( B( 1, 2 ) ),
  480. $ ABS( B( 2, 1 ) )+ABS( B( 2, 2 ) ) )
  481. IF( SMINI.LT.ONE .AND. BNORM.GT.ONE ) THEN
  482. IF( BNORM.GT.BIGNUM*SMINI )
  483. $ SCALE = ONE / BNORM
  484. END IF
  485. TEMP = SCALE / SMINI
  486. X( 1, 1 ) = TEMP*B( 1, 1 )
  487. X( 2, 1 ) = TEMP*B( 2, 1 )
  488. X( 1, 2 ) = TEMP*B( 1, 2 )
  489. X( 2, 2 ) = TEMP*B( 2, 2 )
  490. XNORM = TEMP*BNORM
  491. INFO = 1
  492. RETURN
  493. END IF
  494. *
  495. * Gaussian elimination with complete pivoting.
  496. *
  497. UR11 = CRV( ICMAX )
  498. UI11 = CIV( ICMAX )
  499. CR21 = CRV( IPIVOT( 2, ICMAX ) )
  500. CI21 = CIV( IPIVOT( 2, ICMAX ) )
  501. UR12 = CRV( IPIVOT( 3, ICMAX ) )
  502. UI12 = CIV( IPIVOT( 3, ICMAX ) )
  503. CR22 = CRV( IPIVOT( 4, ICMAX ) )
  504. CI22 = CIV( IPIVOT( 4, ICMAX ) )
  505. IF( ICMAX.EQ.1 .OR. ICMAX.EQ.4 ) THEN
  506. *
  507. * Code when off-diagonals of pivoted C are real
  508. *
  509. IF( ABS( UR11 ).GT.ABS( UI11 ) ) THEN
  510. TEMP = UI11 / UR11
  511. UR11R = ONE / ( UR11*( ONE+TEMP**2 ) )
  512. UI11R = -TEMP*UR11R
  513. ELSE
  514. TEMP = UR11 / UI11
  515. UI11R = -ONE / ( UI11*( ONE+TEMP**2 ) )
  516. UR11R = -TEMP*UI11R
  517. END IF
  518. LR21 = CR21*UR11R
  519. LI21 = CR21*UI11R
  520. UR12S = UR12*UR11R
  521. UI12S = UR12*UI11R
  522. UR22 = CR22 - UR12*LR21
  523. UI22 = CI22 - UR12*LI21
  524. ELSE
  525. *
  526. * Code when diagonals of pivoted C are real
  527. *
  528. UR11R = ONE / UR11
  529. UI11R = ZERO
  530. LR21 = CR21*UR11R
  531. LI21 = CI21*UR11R
  532. UR12S = UR12*UR11R
  533. UI12S = UI12*UR11R
  534. UR22 = CR22 - UR12*LR21 + UI12*LI21
  535. UI22 = -UR12*LI21 - UI12*LR21
  536. END IF
  537. U22ABS = ABS( UR22 ) + ABS( UI22 )
  538. *
  539. * If smaller pivot < SMINI, use SMINI
  540. *
  541. IF( U22ABS.LT.SMINI ) THEN
  542. UR22 = SMINI
  543. UI22 = ZERO
  544. INFO = 1
  545. END IF
  546. IF( RSWAP( ICMAX ) ) THEN
  547. BR2 = B( 1, 1 )
  548. BR1 = B( 2, 1 )
  549. BI2 = B( 1, 2 )
  550. BI1 = B( 2, 2 )
  551. ELSE
  552. BR1 = B( 1, 1 )
  553. BR2 = B( 2, 1 )
  554. BI1 = B( 1, 2 )
  555. BI2 = B( 2, 2 )
  556. END IF
  557. BR2 = BR2 - LR21*BR1 + LI21*BI1
  558. BI2 = BI2 - LI21*BR1 - LR21*BI1
  559. BBND = MAX( ( ABS( BR1 )+ABS( BI1 ) )*
  560. $ ( U22ABS*( ABS( UR11R )+ABS( UI11R ) ) ),
  561. $ ABS( BR2 )+ABS( BI2 ) )
  562. IF( BBND.GT.ONE .AND. U22ABS.LT.ONE ) THEN
  563. IF( BBND.GE.BIGNUM*U22ABS ) THEN
  564. SCALE = ONE / BBND
  565. BR1 = SCALE*BR1
  566. BI1 = SCALE*BI1
  567. BR2 = SCALE*BR2
  568. BI2 = SCALE*BI2
  569. END IF
  570. END IF
  571. *
  572. CALL SLADIV( BR2, BI2, UR22, UI22, XR2, XI2 )
  573. XR1 = UR11R*BR1 - UI11R*BI1 - UR12S*XR2 + UI12S*XI2
  574. XI1 = UI11R*BR1 + UR11R*BI1 - UI12S*XR2 - UR12S*XI2
  575. IF( CSWAP( ICMAX ) ) THEN
  576. X( 1, 1 ) = XR2
  577. X( 2, 1 ) = XR1
  578. X( 1, 2 ) = XI2
  579. X( 2, 2 ) = XI1
  580. ELSE
  581. X( 1, 1 ) = XR1
  582. X( 2, 1 ) = XR2
  583. X( 1, 2 ) = XI1
  584. X( 2, 2 ) = XI2
  585. END IF
  586. XNORM = MAX( ABS( XR1 )+ABS( XI1 ), ABS( XR2 )+ABS( XI2 ) )
  587. *
  588. * Further scaling if norm(A) norm(X) > overflow
  589. *
  590. IF( XNORM.GT.ONE .AND. CMAX.GT.ONE ) THEN
  591. IF( XNORM.GT.BIGNUM / CMAX ) THEN
  592. TEMP = CMAX / BIGNUM
  593. X( 1, 1 ) = TEMP*X( 1, 1 )
  594. X( 2, 1 ) = TEMP*X( 2, 1 )
  595. X( 1, 2 ) = TEMP*X( 1, 2 )
  596. X( 2, 2 ) = TEMP*X( 2, 2 )
  597. XNORM = TEMP*XNORM
  598. SCALE = TEMP*SCALE
  599. END IF
  600. END IF
  601. END IF
  602. END IF
  603. *
  604. RETURN
  605. *
  606. * End of SLALN2
  607. *
  608. END