You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtftri.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469
  1. *> \brief \b DTFTRI
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DTFTRI + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtftri.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtftri.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtftri.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER TRANSR, UPLO, DIAG
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION A( 0: * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DTFTRI computes the inverse of a triangular matrix A stored in RFP
  38. *> format.
  39. *>
  40. *> This is a Level 3 BLAS version of the algorithm.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] TRANSR
  47. *> \verbatim
  48. *> TRANSR is CHARACTER*1
  49. *> = 'N': The Normal TRANSR of RFP A is stored;
  50. *> = 'T': The Transpose TRANSR of RFP A is stored.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] UPLO
  54. *> \verbatim
  55. *> UPLO is CHARACTER*1
  56. *> = 'U': A is upper triangular;
  57. *> = 'L': A is lower triangular.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] DIAG
  61. *> \verbatim
  62. *> DIAG is CHARACTER*1
  63. *> = 'N': A is non-unit triangular;
  64. *> = 'U': A is unit triangular.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] N
  68. *> \verbatim
  69. *> N is INTEGER
  70. *> The order of the matrix A. N >= 0.
  71. *> \endverbatim
  72. *>
  73. *> \param[in,out] A
  74. *> \verbatim
  75. *> A is DOUBLE PRECISION array, dimension (0:nt-1);
  76. *> nt=N*(N+1)/2. On entry, the triangular factor of a Hermitian
  77. *> Positive Definite matrix A in RFP format. RFP format is
  78. *> described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
  79. *> then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
  80. *> (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
  81. *> the transpose of RFP A as defined when
  82. *> TRANSR = 'N'. The contents of RFP A are defined by UPLO as
  83. *> follows: If UPLO = 'U' the RFP A contains the nt elements of
  84. *> upper packed A; If UPLO = 'L' the RFP A contains the nt
  85. *> elements of lower packed A. The LDA of RFP A is (N+1)/2 when
  86. *> TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is
  87. *> even and N is odd. See the Note below for more details.
  88. *>
  89. *> On exit, the (triangular) inverse of the original matrix, in
  90. *> the same storage format.
  91. *> \endverbatim
  92. *>
  93. *> \param[out] INFO
  94. *> \verbatim
  95. *> INFO is INTEGER
  96. *> = 0: successful exit
  97. *> < 0: if INFO = -i, the i-th argument had an illegal value
  98. *> > 0: if INFO = i, A(i,i) is exactly zero. The triangular
  99. *> matrix is singular and its inverse can not be computed.
  100. *> \endverbatim
  101. *
  102. * Authors:
  103. * ========
  104. *
  105. *> \author Univ. of Tennessee
  106. *> \author Univ. of California Berkeley
  107. *> \author Univ. of Colorado Denver
  108. *> \author NAG Ltd.
  109. *
  110. *> \ingroup doubleOTHERcomputational
  111. *
  112. *> \par Further Details:
  113. * =====================
  114. *>
  115. *> \verbatim
  116. *>
  117. *> We first consider Rectangular Full Packed (RFP) Format when N is
  118. *> even. We give an example where N = 6.
  119. *>
  120. *> AP is Upper AP is Lower
  121. *>
  122. *> 00 01 02 03 04 05 00
  123. *> 11 12 13 14 15 10 11
  124. *> 22 23 24 25 20 21 22
  125. *> 33 34 35 30 31 32 33
  126. *> 44 45 40 41 42 43 44
  127. *> 55 50 51 52 53 54 55
  128. *>
  129. *>
  130. *> Let TRANSR = 'N'. RFP holds AP as follows:
  131. *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  132. *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  133. *> the transpose of the first three columns of AP upper.
  134. *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  135. *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  136. *> the transpose of the last three columns of AP lower.
  137. *> This covers the case N even and TRANSR = 'N'.
  138. *>
  139. *> RFP A RFP A
  140. *>
  141. *> 03 04 05 33 43 53
  142. *> 13 14 15 00 44 54
  143. *> 23 24 25 10 11 55
  144. *> 33 34 35 20 21 22
  145. *> 00 44 45 30 31 32
  146. *> 01 11 55 40 41 42
  147. *> 02 12 22 50 51 52
  148. *>
  149. *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  150. *> transpose of RFP A above. One therefore gets:
  151. *>
  152. *>
  153. *> RFP A RFP A
  154. *>
  155. *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
  156. *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
  157. *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
  158. *>
  159. *>
  160. *> We then consider Rectangular Full Packed (RFP) Format when N is
  161. *> odd. We give an example where N = 5.
  162. *>
  163. *> AP is Upper AP is Lower
  164. *>
  165. *> 00 01 02 03 04 00
  166. *> 11 12 13 14 10 11
  167. *> 22 23 24 20 21 22
  168. *> 33 34 30 31 32 33
  169. *> 44 40 41 42 43 44
  170. *>
  171. *>
  172. *> Let TRANSR = 'N'. RFP holds AP as follows:
  173. *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  174. *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  175. *> the transpose of the first two columns of AP upper.
  176. *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  177. *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  178. *> the transpose of the last two columns of AP lower.
  179. *> This covers the case N odd and TRANSR = 'N'.
  180. *>
  181. *> RFP A RFP A
  182. *>
  183. *> 02 03 04 00 33 43
  184. *> 12 13 14 10 11 44
  185. *> 22 23 24 20 21 22
  186. *> 00 33 34 30 31 32
  187. *> 01 11 44 40 41 42
  188. *>
  189. *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  190. *> transpose of RFP A above. One therefore gets:
  191. *>
  192. *> RFP A RFP A
  193. *>
  194. *> 02 12 22 00 01 00 10 20 30 40 50
  195. *> 03 13 23 33 11 33 11 21 31 41 51
  196. *> 04 14 24 34 44 43 44 22 32 42 52
  197. *> \endverbatim
  198. *>
  199. * =====================================================================
  200. SUBROUTINE DTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
  201. *
  202. * -- LAPACK computational routine --
  203. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  204. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  205. *
  206. * .. Scalar Arguments ..
  207. CHARACTER TRANSR, UPLO, DIAG
  208. INTEGER INFO, N
  209. * ..
  210. * .. Array Arguments ..
  211. DOUBLE PRECISION A( 0: * )
  212. * ..
  213. *
  214. * =====================================================================
  215. *
  216. * .. Parameters ..
  217. DOUBLE PRECISION ONE
  218. PARAMETER ( ONE = 1.0D+0 )
  219. * ..
  220. * .. Local Scalars ..
  221. LOGICAL LOWER, NISODD, NORMALTRANSR
  222. INTEGER N1, N2, K
  223. * ..
  224. * .. External Functions ..
  225. LOGICAL LSAME
  226. EXTERNAL LSAME
  227. * ..
  228. * .. External Subroutines ..
  229. EXTERNAL XERBLA, DTRMM, DTRTRI
  230. * ..
  231. * .. Intrinsic Functions ..
  232. INTRINSIC MOD
  233. * ..
  234. * .. Executable Statements ..
  235. *
  236. * Test the input parameters.
  237. *
  238. INFO = 0
  239. NORMALTRANSR = LSAME( TRANSR, 'N' )
  240. LOWER = LSAME( UPLO, 'L' )
  241. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  242. INFO = -1
  243. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  244. INFO = -2
  245. ELSE IF( .NOT.LSAME( DIAG, 'N' ) .AND. .NOT.LSAME( DIAG, 'U' ) )
  246. $ THEN
  247. INFO = -3
  248. ELSE IF( N.LT.0 ) THEN
  249. INFO = -4
  250. END IF
  251. IF( INFO.NE.0 ) THEN
  252. CALL XERBLA( 'DTFTRI', -INFO )
  253. RETURN
  254. END IF
  255. *
  256. * Quick return if possible
  257. *
  258. IF( N.EQ.0 )
  259. $ RETURN
  260. *
  261. * If N is odd, set NISODD = .TRUE.
  262. * If N is even, set K = N/2 and NISODD = .FALSE.
  263. *
  264. IF( MOD( N, 2 ).EQ.0 ) THEN
  265. K = N / 2
  266. NISODD = .FALSE.
  267. ELSE
  268. NISODD = .TRUE.
  269. END IF
  270. *
  271. * Set N1 and N2 depending on LOWER
  272. *
  273. IF( LOWER ) THEN
  274. N2 = N / 2
  275. N1 = N - N2
  276. ELSE
  277. N1 = N / 2
  278. N2 = N - N1
  279. END IF
  280. *
  281. *
  282. * start execution: there are eight cases
  283. *
  284. IF( NISODD ) THEN
  285. *
  286. * N is odd
  287. *
  288. IF( NORMALTRANSR ) THEN
  289. *
  290. * N is odd and TRANSR = 'N'
  291. *
  292. IF( LOWER ) THEN
  293. *
  294. * SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  295. * T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  296. * T1 -> a(0), T2 -> a(n), S -> a(n1)
  297. *
  298. CALL DTRTRI( 'L', DIAG, N1, A( 0 ), N, INFO )
  299. IF( INFO.GT.0 )
  300. $ RETURN
  301. CALL DTRMM( 'R', 'L', 'N', DIAG, N2, N1, -ONE, A( 0 ),
  302. $ N, A( N1 ), N )
  303. CALL DTRTRI( 'U', DIAG, N2, A( N ), N, INFO )
  304. IF( INFO.GT.0 )
  305. $ INFO = INFO + N1
  306. IF( INFO.GT.0 )
  307. $ RETURN
  308. CALL DTRMM( 'L', 'U', 'T', DIAG, N2, N1, ONE, A( N ), N,
  309. $ A( N1 ), N )
  310. *
  311. ELSE
  312. *
  313. * SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  314. * T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  315. * T1 -> a(n2), T2 -> a(n1), S -> a(0)
  316. *
  317. CALL DTRTRI( 'L', DIAG, N1, A( N2 ), N, INFO )
  318. IF( INFO.GT.0 )
  319. $ RETURN
  320. CALL DTRMM( 'L', 'L', 'T', DIAG, N1, N2, -ONE, A( N2 ),
  321. $ N, A( 0 ), N )
  322. CALL DTRTRI( 'U', DIAG, N2, A( N1 ), N, INFO )
  323. IF( INFO.GT.0 )
  324. $ INFO = INFO + N1
  325. IF( INFO.GT.0 )
  326. $ RETURN
  327. CALL DTRMM( 'R', 'U', 'N', DIAG, N1, N2, ONE, A( N1 ),
  328. $ N, A( 0 ), N )
  329. *
  330. END IF
  331. *
  332. ELSE
  333. *
  334. * N is odd and TRANSR = 'T'
  335. *
  336. IF( LOWER ) THEN
  337. *
  338. * SRPA for LOWER, TRANSPOSE and N is odd
  339. * T1 -> a(0), T2 -> a(1), S -> a(0+n1*n1)
  340. *
  341. CALL DTRTRI( 'U', DIAG, N1, A( 0 ), N1, INFO )
  342. IF( INFO.GT.0 )
  343. $ RETURN
  344. CALL DTRMM( 'L', 'U', 'N', DIAG, N1, N2, -ONE, A( 0 ),
  345. $ N1, A( N1*N1 ), N1 )
  346. CALL DTRTRI( 'L', DIAG, N2, A( 1 ), N1, INFO )
  347. IF( INFO.GT.0 )
  348. $ INFO = INFO + N1
  349. IF( INFO.GT.0 )
  350. $ RETURN
  351. CALL DTRMM( 'R', 'L', 'T', DIAG, N1, N2, ONE, A( 1 ),
  352. $ N1, A( N1*N1 ), N1 )
  353. *
  354. ELSE
  355. *
  356. * SRPA for UPPER, TRANSPOSE and N is odd
  357. * T1 -> a(0+n2*n2), T2 -> a(0+n1*n2), S -> a(0)
  358. *
  359. CALL DTRTRI( 'U', DIAG, N1, A( N2*N2 ), N2, INFO )
  360. IF( INFO.GT.0 )
  361. $ RETURN
  362. CALL DTRMM( 'R', 'U', 'T', DIAG, N2, N1, -ONE,
  363. $ A( N2*N2 ), N2, A( 0 ), N2 )
  364. CALL DTRTRI( 'L', DIAG, N2, A( N1*N2 ), N2, INFO )
  365. IF( INFO.GT.0 )
  366. $ INFO = INFO + N1
  367. IF( INFO.GT.0 )
  368. $ RETURN
  369. CALL DTRMM( 'L', 'L', 'N', DIAG, N2, N1, ONE,
  370. $ A( N1*N2 ), N2, A( 0 ), N2 )
  371. END IF
  372. *
  373. END IF
  374. *
  375. ELSE
  376. *
  377. * N is even
  378. *
  379. IF( NORMALTRANSR ) THEN
  380. *
  381. * N is even and TRANSR = 'N'
  382. *
  383. IF( LOWER ) THEN
  384. *
  385. * SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  386. * T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  387. * T1 -> a(1), T2 -> a(0), S -> a(k+1)
  388. *
  389. CALL DTRTRI( 'L', DIAG, K, A( 1 ), N+1, INFO )
  390. IF( INFO.GT.0 )
  391. $ RETURN
  392. CALL DTRMM( 'R', 'L', 'N', DIAG, K, K, -ONE, A( 1 ),
  393. $ N+1, A( K+1 ), N+1 )
  394. CALL DTRTRI( 'U', DIAG, K, A( 0 ), N+1, INFO )
  395. IF( INFO.GT.0 )
  396. $ INFO = INFO + K
  397. IF( INFO.GT.0 )
  398. $ RETURN
  399. CALL DTRMM( 'L', 'U', 'T', DIAG, K, K, ONE, A( 0 ), N+1,
  400. $ A( K+1 ), N+1 )
  401. *
  402. ELSE
  403. *
  404. * SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  405. * T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
  406. * T1 -> a(k+1), T2 -> a(k), S -> a(0)
  407. *
  408. CALL DTRTRI( 'L', DIAG, K, A( K+1 ), N+1, INFO )
  409. IF( INFO.GT.0 )
  410. $ RETURN
  411. CALL DTRMM( 'L', 'L', 'T', DIAG, K, K, -ONE, A( K+1 ),
  412. $ N+1, A( 0 ), N+1 )
  413. CALL DTRTRI( 'U', DIAG, K, A( K ), N+1, INFO )
  414. IF( INFO.GT.0 )
  415. $ INFO = INFO + K
  416. IF( INFO.GT.0 )
  417. $ RETURN
  418. CALL DTRMM( 'R', 'U', 'N', DIAG, K, K, ONE, A( K ), N+1,
  419. $ A( 0 ), N+1 )
  420. END IF
  421. ELSE
  422. *
  423. * N is even and TRANSR = 'T'
  424. *
  425. IF( LOWER ) THEN
  426. *
  427. * SRPA for LOWER, TRANSPOSE and N is even (see paper)
  428. * T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
  429. * T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  430. *
  431. CALL DTRTRI( 'U', DIAG, K, A( K ), K, INFO )
  432. IF( INFO.GT.0 )
  433. $ RETURN
  434. CALL DTRMM( 'L', 'U', 'N', DIAG, K, K, -ONE, A( K ), K,
  435. $ A( K*( K+1 ) ), K )
  436. CALL DTRTRI( 'L', DIAG, K, A( 0 ), K, INFO )
  437. IF( INFO.GT.0 )
  438. $ INFO = INFO + K
  439. IF( INFO.GT.0 )
  440. $ RETURN
  441. CALL DTRMM( 'R', 'L', 'T', DIAG, K, K, ONE, A( 0 ), K,
  442. $ A( K*( K+1 ) ), K )
  443. ELSE
  444. *
  445. * SRPA for UPPER, TRANSPOSE and N is even (see paper)
  446. * T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0)
  447. * T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  448. *
  449. CALL DTRTRI( 'U', DIAG, K, A( K*( K+1 ) ), K, INFO )
  450. IF( INFO.GT.0 )
  451. $ RETURN
  452. CALL DTRMM( 'R', 'U', 'T', DIAG, K, K, -ONE,
  453. $ A( K*( K+1 ) ), K, A( 0 ), K )
  454. CALL DTRTRI( 'L', DIAG, K, A( K*K ), K, INFO )
  455. IF( INFO.GT.0 )
  456. $ INFO = INFO + K
  457. IF( INFO.GT.0 )
  458. $ RETURN
  459. CALL DTRMM( 'L', 'L', 'N', DIAG, K, K, ONE, A( K*K ), K,
  460. $ A( 0 ), K )
  461. END IF
  462. END IF
  463. END IF
  464. *
  465. RETURN
  466. *
  467. * End of DTFTRI
  468. *
  469. END