You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsytd2.f 9.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320
  1. *> \brief \b DSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity transformation (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSYTD2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytd2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytd2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytd2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAU( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
  38. *> form T by an orthogonal similarity transformation: Q**T * A * Q = T.
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] UPLO
  45. *> \verbatim
  46. *> UPLO is CHARACTER*1
  47. *> Specifies whether the upper or lower triangular part of the
  48. *> symmetric matrix A is stored:
  49. *> = 'U': Upper triangular
  50. *> = 'L': Lower triangular
  51. *> \endverbatim
  52. *>
  53. *> \param[in] N
  54. *> \verbatim
  55. *> N is INTEGER
  56. *> The order of the matrix A. N >= 0.
  57. *> \endverbatim
  58. *>
  59. *> \param[in,out] A
  60. *> \verbatim
  61. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  62. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  63. *> n-by-n upper triangular part of A contains the upper
  64. *> triangular part of the matrix A, and the strictly lower
  65. *> triangular part of A is not referenced. If UPLO = 'L', the
  66. *> leading n-by-n lower triangular part of A contains the lower
  67. *> triangular part of the matrix A, and the strictly upper
  68. *> triangular part of A is not referenced.
  69. *> On exit, if UPLO = 'U', the diagonal and first superdiagonal
  70. *> of A are overwritten by the corresponding elements of the
  71. *> tridiagonal matrix T, and the elements above the first
  72. *> superdiagonal, with the array TAU, represent the orthogonal
  73. *> matrix Q as a product of elementary reflectors; if UPLO
  74. *> = 'L', the diagonal and first subdiagonal of A are over-
  75. *> written by the corresponding elements of the tridiagonal
  76. *> matrix T, and the elements below the first subdiagonal, with
  77. *> the array TAU, represent the orthogonal matrix Q as a product
  78. *> of elementary reflectors. See Further Details.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDA
  82. *> \verbatim
  83. *> LDA is INTEGER
  84. *> The leading dimension of the array A. LDA >= max(1,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[out] D
  88. *> \verbatim
  89. *> D is DOUBLE PRECISION array, dimension (N)
  90. *> The diagonal elements of the tridiagonal matrix T:
  91. *> D(i) = A(i,i).
  92. *> \endverbatim
  93. *>
  94. *> \param[out] E
  95. *> \verbatim
  96. *> E is DOUBLE PRECISION array, dimension (N-1)
  97. *> The off-diagonal elements of the tridiagonal matrix T:
  98. *> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
  99. *> \endverbatim
  100. *>
  101. *> \param[out] TAU
  102. *> \verbatim
  103. *> TAU is DOUBLE PRECISION array, dimension (N-1)
  104. *> The scalar factors of the elementary reflectors (see Further
  105. *> Details).
  106. *> \endverbatim
  107. *>
  108. *> \param[out] INFO
  109. *> \verbatim
  110. *> INFO is INTEGER
  111. *> = 0: successful exit
  112. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  113. *> \endverbatim
  114. *
  115. * Authors:
  116. * ========
  117. *
  118. *> \author Univ. of Tennessee
  119. *> \author Univ. of California Berkeley
  120. *> \author Univ. of Colorado Denver
  121. *> \author NAG Ltd.
  122. *
  123. *> \ingroup doubleSYcomputational
  124. *
  125. *> \par Further Details:
  126. * =====================
  127. *>
  128. *> \verbatim
  129. *>
  130. *> If UPLO = 'U', the matrix Q is represented as a product of elementary
  131. *> reflectors
  132. *>
  133. *> Q = H(n-1) . . . H(2) H(1).
  134. *>
  135. *> Each H(i) has the form
  136. *>
  137. *> H(i) = I - tau * v * v**T
  138. *>
  139. *> where tau is a real scalar, and v is a real vector with
  140. *> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
  141. *> A(1:i-1,i+1), and tau in TAU(i).
  142. *>
  143. *> If UPLO = 'L', the matrix Q is represented as a product of elementary
  144. *> reflectors
  145. *>
  146. *> Q = H(1) H(2) . . . H(n-1).
  147. *>
  148. *> Each H(i) has the form
  149. *>
  150. *> H(i) = I - tau * v * v**T
  151. *>
  152. *> where tau is a real scalar, and v is a real vector with
  153. *> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
  154. *> and tau in TAU(i).
  155. *>
  156. *> The contents of A on exit are illustrated by the following examples
  157. *> with n = 5:
  158. *>
  159. *> if UPLO = 'U': if UPLO = 'L':
  160. *>
  161. *> ( d e v2 v3 v4 ) ( d )
  162. *> ( d e v3 v4 ) ( e d )
  163. *> ( d e v4 ) ( v1 e d )
  164. *> ( d e ) ( v1 v2 e d )
  165. *> ( d ) ( v1 v2 v3 e d )
  166. *>
  167. *> where d and e denote diagonal and off-diagonal elements of T, and vi
  168. *> denotes an element of the vector defining H(i).
  169. *> \endverbatim
  170. *>
  171. * =====================================================================
  172. SUBROUTINE DSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
  173. *
  174. * -- LAPACK computational routine --
  175. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  176. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  177. *
  178. * .. Scalar Arguments ..
  179. CHARACTER UPLO
  180. INTEGER INFO, LDA, N
  181. * ..
  182. * .. Array Arguments ..
  183. DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAU( * )
  184. * ..
  185. *
  186. * =====================================================================
  187. *
  188. * .. Parameters ..
  189. DOUBLE PRECISION ONE, ZERO, HALF
  190. PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0,
  191. $ HALF = 1.0D0 / 2.0D0 )
  192. * ..
  193. * .. Local Scalars ..
  194. LOGICAL UPPER
  195. INTEGER I
  196. DOUBLE PRECISION ALPHA, TAUI
  197. * ..
  198. * .. External Subroutines ..
  199. EXTERNAL DAXPY, DLARFG, DSYMV, DSYR2, XERBLA
  200. * ..
  201. * .. External Functions ..
  202. LOGICAL LSAME
  203. DOUBLE PRECISION DDOT
  204. EXTERNAL LSAME, DDOT
  205. * ..
  206. * .. Intrinsic Functions ..
  207. INTRINSIC MAX, MIN
  208. * ..
  209. * .. Executable Statements ..
  210. *
  211. * Test the input parameters
  212. *
  213. INFO = 0
  214. UPPER = LSAME( UPLO, 'U' )
  215. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  216. INFO = -1
  217. ELSE IF( N.LT.0 ) THEN
  218. INFO = -2
  219. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  220. INFO = -4
  221. END IF
  222. IF( INFO.NE.0 ) THEN
  223. CALL XERBLA( 'DSYTD2', -INFO )
  224. RETURN
  225. END IF
  226. *
  227. * Quick return if possible
  228. *
  229. IF( N.LE.0 )
  230. $ RETURN
  231. *
  232. IF( UPPER ) THEN
  233. *
  234. * Reduce the upper triangle of A
  235. *
  236. DO 10 I = N - 1, 1, -1
  237. *
  238. * Generate elementary reflector H(i) = I - tau * v * v**T
  239. * to annihilate A(1:i-1,i+1)
  240. *
  241. CALL DLARFG( I, A( I, I+1 ), A( 1, I+1 ), 1, TAUI )
  242. E( I ) = A( I, I+1 )
  243. *
  244. IF( TAUI.NE.ZERO ) THEN
  245. *
  246. * Apply H(i) from both sides to A(1:i,1:i)
  247. *
  248. A( I, I+1 ) = ONE
  249. *
  250. * Compute x := tau * A * v storing x in TAU(1:i)
  251. *
  252. CALL DSYMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
  253. $ TAU, 1 )
  254. *
  255. * Compute w := x - 1/2 * tau * (x**T * v) * v
  256. *
  257. ALPHA = -HALF*TAUI*DDOT( I, TAU, 1, A( 1, I+1 ), 1 )
  258. CALL DAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
  259. *
  260. * Apply the transformation as a rank-2 update:
  261. * A := A - v * w**T - w * v**T
  262. *
  263. CALL DSYR2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
  264. $ LDA )
  265. *
  266. A( I, I+1 ) = E( I )
  267. END IF
  268. D( I+1 ) = A( I+1, I+1 )
  269. TAU( I ) = TAUI
  270. 10 CONTINUE
  271. D( 1 ) = A( 1, 1 )
  272. ELSE
  273. *
  274. * Reduce the lower triangle of A
  275. *
  276. DO 20 I = 1, N - 1
  277. *
  278. * Generate elementary reflector H(i) = I - tau * v * v**T
  279. * to annihilate A(i+2:n,i)
  280. *
  281. CALL DLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
  282. $ TAUI )
  283. E( I ) = A( I+1, I )
  284. *
  285. IF( TAUI.NE.ZERO ) THEN
  286. *
  287. * Apply H(i) from both sides to A(i+1:n,i+1:n)
  288. *
  289. A( I+1, I ) = ONE
  290. *
  291. * Compute x := tau * A * v storing y in TAU(i:n-1)
  292. *
  293. CALL DSYMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
  294. $ A( I+1, I ), 1, ZERO, TAU( I ), 1 )
  295. *
  296. * Compute w := x - 1/2 * tau * (x**T * v) * v
  297. *
  298. ALPHA = -HALF*TAUI*DDOT( N-I, TAU( I ), 1, A( I+1, I ),
  299. $ 1 )
  300. CALL DAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
  301. *
  302. * Apply the transformation as a rank-2 update:
  303. * A := A - v * w**T - w * v**T
  304. *
  305. CALL DSYR2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
  306. $ A( I+1, I+1 ), LDA )
  307. *
  308. A( I+1, I ) = E( I )
  309. END IF
  310. D( I ) = A( I, I )
  311. TAU( I ) = TAUI
  312. 20 CONTINUE
  313. D( N ) = A( N, N )
  314. END IF
  315. *
  316. RETURN
  317. *
  318. * End of DSYTD2
  319. *
  320. END