You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlantr.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. *> \brief \b DLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLANTR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlantr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlantr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlantr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION DLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
  22. * WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORM, UPLO
  26. * INTEGER LDA, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION A( LDA, * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DLANTR returns the value of the one norm, or the Frobenius norm, or
  39. *> the infinity norm, or the element of largest absolute value of a
  40. *> trapezoidal or triangular matrix A.
  41. *> \endverbatim
  42. *>
  43. *> \return DLANTR
  44. *> \verbatim
  45. *>
  46. *> DLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  47. *> (
  48. *> ( norm1(A), NORM = '1', 'O' or 'o'
  49. *> (
  50. *> ( normI(A), NORM = 'I' or 'i'
  51. *> (
  52. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  53. *>
  54. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  55. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  56. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  57. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \param[in] NORM
  64. *> \verbatim
  65. *> NORM is CHARACTER*1
  66. *> Specifies the value to be returned in DLANTR as described
  67. *> above.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] UPLO
  71. *> \verbatim
  72. *> UPLO is CHARACTER*1
  73. *> Specifies whether the matrix A is upper or lower trapezoidal.
  74. *> = 'U': Upper trapezoidal
  75. *> = 'L': Lower trapezoidal
  76. *> Note that A is triangular instead of trapezoidal if M = N.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] DIAG
  80. *> \verbatim
  81. *> DIAG is CHARACTER*1
  82. *> Specifies whether or not the matrix A has unit diagonal.
  83. *> = 'N': Non-unit diagonal
  84. *> = 'U': Unit diagonal
  85. *> \endverbatim
  86. *>
  87. *> \param[in] M
  88. *> \verbatim
  89. *> M is INTEGER
  90. *> The number of rows of the matrix A. M >= 0, and if
  91. *> UPLO = 'U', M <= N. When M = 0, DLANTR is set to zero.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] N
  95. *> \verbatim
  96. *> N is INTEGER
  97. *> The number of columns of the matrix A. N >= 0, and if
  98. *> UPLO = 'L', N <= M. When N = 0, DLANTR is set to zero.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] A
  102. *> \verbatim
  103. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  104. *> The trapezoidal matrix A (A is triangular if M = N).
  105. *> If UPLO = 'U', the leading m by n upper trapezoidal part of
  106. *> the array A contains the upper trapezoidal matrix, and the
  107. *> strictly lower triangular part of A is not referenced.
  108. *> If UPLO = 'L', the leading m by n lower trapezoidal part of
  109. *> the array A contains the lower trapezoidal matrix, and the
  110. *> strictly upper triangular part of A is not referenced. Note
  111. *> that when DIAG = 'U', the diagonal elements of A are not
  112. *> referenced and are assumed to be one.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LDA
  116. *> \verbatim
  117. *> LDA is INTEGER
  118. *> The leading dimension of the array A. LDA >= max(M,1).
  119. *> \endverbatim
  120. *>
  121. *> \param[out] WORK
  122. *> \verbatim
  123. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  124. *> where LWORK >= M when NORM = 'I'; otherwise, WORK is not
  125. *> referenced.
  126. *> \endverbatim
  127. *
  128. * Authors:
  129. * ========
  130. *
  131. *> \author Univ. of Tennessee
  132. *> \author Univ. of California Berkeley
  133. *> \author Univ. of Colorado Denver
  134. *> \author NAG Ltd.
  135. *
  136. *> \ingroup doubleOTHERauxiliary
  137. *
  138. * =====================================================================
  139. DOUBLE PRECISION FUNCTION DLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
  140. $ WORK )
  141. *
  142. * -- LAPACK auxiliary routine --
  143. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  144. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  145. *
  146. * .. Scalar Arguments ..
  147. CHARACTER DIAG, NORM, UPLO
  148. INTEGER LDA, M, N
  149. * ..
  150. * .. Array Arguments ..
  151. DOUBLE PRECISION A( LDA, * ), WORK( * )
  152. * ..
  153. *
  154. * =====================================================================
  155. *
  156. * .. Parameters ..
  157. DOUBLE PRECISION ONE, ZERO
  158. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  159. * ..
  160. * .. Local Scalars ..
  161. LOGICAL UDIAG
  162. INTEGER I, J
  163. DOUBLE PRECISION SCALE, SUM, VALUE
  164. * ..
  165. * .. External Subroutines ..
  166. EXTERNAL DLASSQ
  167. * ..
  168. * .. External Functions ..
  169. LOGICAL LSAME, DISNAN
  170. EXTERNAL LSAME, DISNAN
  171. * ..
  172. * .. Intrinsic Functions ..
  173. INTRINSIC ABS, MIN, SQRT
  174. * ..
  175. * .. Executable Statements ..
  176. *
  177. IF( MIN( M, N ).EQ.0 ) THEN
  178. VALUE = ZERO
  179. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  180. *
  181. * Find max(abs(A(i,j))).
  182. *
  183. IF( LSAME( DIAG, 'U' ) ) THEN
  184. VALUE = ONE
  185. IF( LSAME( UPLO, 'U' ) ) THEN
  186. DO 20 J = 1, N
  187. DO 10 I = 1, MIN( M, J-1 )
  188. SUM = ABS( A( I, J ) )
  189. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  190. 10 CONTINUE
  191. 20 CONTINUE
  192. ELSE
  193. DO 40 J = 1, N
  194. DO 30 I = J + 1, M
  195. SUM = ABS( A( I, J ) )
  196. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  197. 30 CONTINUE
  198. 40 CONTINUE
  199. END IF
  200. ELSE
  201. VALUE = ZERO
  202. IF( LSAME( UPLO, 'U' ) ) THEN
  203. DO 60 J = 1, N
  204. DO 50 I = 1, MIN( M, J )
  205. SUM = ABS( A( I, J ) )
  206. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  207. 50 CONTINUE
  208. 60 CONTINUE
  209. ELSE
  210. DO 80 J = 1, N
  211. DO 70 I = J, M
  212. SUM = ABS( A( I, J ) )
  213. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  214. 70 CONTINUE
  215. 80 CONTINUE
  216. END IF
  217. END IF
  218. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  219. *
  220. * Find norm1(A).
  221. *
  222. VALUE = ZERO
  223. UDIAG = LSAME( DIAG, 'U' )
  224. IF( LSAME( UPLO, 'U' ) ) THEN
  225. DO 110 J = 1, N
  226. IF( ( UDIAG ) .AND. ( J.LE.M ) ) THEN
  227. SUM = ONE
  228. DO 90 I = 1, J - 1
  229. SUM = SUM + ABS( A( I, J ) )
  230. 90 CONTINUE
  231. ELSE
  232. SUM = ZERO
  233. DO 100 I = 1, MIN( M, J )
  234. SUM = SUM + ABS( A( I, J ) )
  235. 100 CONTINUE
  236. END IF
  237. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  238. 110 CONTINUE
  239. ELSE
  240. DO 140 J = 1, N
  241. IF( UDIAG ) THEN
  242. SUM = ONE
  243. DO 120 I = J + 1, M
  244. SUM = SUM + ABS( A( I, J ) )
  245. 120 CONTINUE
  246. ELSE
  247. SUM = ZERO
  248. DO 130 I = J, M
  249. SUM = SUM + ABS( A( I, J ) )
  250. 130 CONTINUE
  251. END IF
  252. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  253. 140 CONTINUE
  254. END IF
  255. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  256. *
  257. * Find normI(A).
  258. *
  259. IF( LSAME( UPLO, 'U' ) ) THEN
  260. IF( LSAME( DIAG, 'U' ) ) THEN
  261. DO 150 I = 1, M
  262. WORK( I ) = ONE
  263. 150 CONTINUE
  264. DO 170 J = 1, N
  265. DO 160 I = 1, MIN( M, J-1 )
  266. WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  267. 160 CONTINUE
  268. 170 CONTINUE
  269. ELSE
  270. DO 180 I = 1, M
  271. WORK( I ) = ZERO
  272. 180 CONTINUE
  273. DO 200 J = 1, N
  274. DO 190 I = 1, MIN( M, J )
  275. WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  276. 190 CONTINUE
  277. 200 CONTINUE
  278. END IF
  279. ELSE
  280. IF( LSAME( DIAG, 'U' ) ) THEN
  281. DO 210 I = 1, MIN( M, N )
  282. WORK( I ) = ONE
  283. 210 CONTINUE
  284. DO 220 I = N + 1, M
  285. WORK( I ) = ZERO
  286. 220 CONTINUE
  287. DO 240 J = 1, N
  288. DO 230 I = J + 1, M
  289. WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  290. 230 CONTINUE
  291. 240 CONTINUE
  292. ELSE
  293. DO 250 I = 1, M
  294. WORK( I ) = ZERO
  295. 250 CONTINUE
  296. DO 270 J = 1, N
  297. DO 260 I = J, M
  298. WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  299. 260 CONTINUE
  300. 270 CONTINUE
  301. END IF
  302. END IF
  303. VALUE = ZERO
  304. DO 280 I = 1, M
  305. SUM = WORK( I )
  306. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  307. 280 CONTINUE
  308. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  309. *
  310. * Find normF(A).
  311. *
  312. IF( LSAME( UPLO, 'U' ) ) THEN
  313. IF( LSAME( DIAG, 'U' ) ) THEN
  314. SCALE = ONE
  315. SUM = MIN( M, N )
  316. DO 290 J = 2, N
  317. CALL DLASSQ( MIN( M, J-1 ), A( 1, J ), 1, SCALE, SUM )
  318. 290 CONTINUE
  319. ELSE
  320. SCALE = ZERO
  321. SUM = ONE
  322. DO 300 J = 1, N
  323. CALL DLASSQ( MIN( M, J ), A( 1, J ), 1, SCALE, SUM )
  324. 300 CONTINUE
  325. END IF
  326. ELSE
  327. IF( LSAME( DIAG, 'U' ) ) THEN
  328. SCALE = ONE
  329. SUM = MIN( M, N )
  330. DO 310 J = 1, N
  331. CALL DLASSQ( M-J, A( MIN( M, J+1 ), J ), 1, SCALE,
  332. $ SUM )
  333. 310 CONTINUE
  334. ELSE
  335. SCALE = ZERO
  336. SUM = ONE
  337. DO 320 J = 1, N
  338. CALL DLASSQ( M-J+1, A( J, J ), 1, SCALE, SUM )
  339. 320 CONTINUE
  340. END IF
  341. END IF
  342. VALUE = SCALE*SQRT( SUM )
  343. END IF
  344. *
  345. DLANTR = VALUE
  346. RETURN
  347. *
  348. * End of DLANTR
  349. *
  350. END