You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dla_porfsx_extended.f 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679
  1. *> \brief \b DLA_PORFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric or Hermitian positive-definite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLA_PORFSX_EXTENDED + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_porfsx_extended.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_porfsx_extended.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_porfsx_extended.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLA_PORFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
  22. * AF, LDAF, COLEQU, C, B, LDB, Y,
  23. * LDY, BERR_OUT, N_NORMS,
  24. * ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
  25. * AYB, DY, Y_TAIL, RCOND, ITHRESH,
  26. * RTHRESH, DZ_UB, IGNORE_CWISE,
  27. * INFO )
  28. *
  29. * .. Scalar Arguments ..
  30. * INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
  31. * $ N_NORMS, ITHRESH
  32. * CHARACTER UPLO
  33. * LOGICAL COLEQU, IGNORE_CWISE
  34. * DOUBLE PRECISION RTHRESH, DZ_UB
  35. * ..
  36. * .. Array Arguments ..
  37. * DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  38. * $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  39. * DOUBLE PRECISION C( * ), AYB(*), RCOND, BERR_OUT( * ),
  40. * $ ERR_BNDS_NORM( NRHS, * ),
  41. * $ ERR_BNDS_COMP( NRHS, * )
  42. * ..
  43. *
  44. *
  45. *> \par Purpose:
  46. * =============
  47. *>
  48. *> \verbatim
  49. *>
  50. *> DLA_PORFSX_EXTENDED improves the computed solution to a system of
  51. *> linear equations by performing extra-precise iterative refinement
  52. *> and provides error bounds and backward error estimates for the solution.
  53. *> This subroutine is called by DPORFSX to perform iterative refinement.
  54. *> In addition to normwise error bound, the code provides maximum
  55. *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
  56. *> and ERR_BNDS_COMP for details of the error bounds. Note that this
  57. *> subroutine is only responsible for setting the second fields of
  58. *> ERR_BNDS_NORM and ERR_BNDS_COMP.
  59. *> \endverbatim
  60. *
  61. * Arguments:
  62. * ==========
  63. *
  64. *> \param[in] PREC_TYPE
  65. *> \verbatim
  66. *> PREC_TYPE is INTEGER
  67. *> Specifies the intermediate precision to be used in refinement.
  68. *> The value is defined by ILAPREC(P) where P is a CHARACTER and P
  69. *> = 'S': Single
  70. *> = 'D': Double
  71. *> = 'I': Indigenous
  72. *> = 'X' or 'E': Extra
  73. *> \endverbatim
  74. *>
  75. *> \param[in] UPLO
  76. *> \verbatim
  77. *> UPLO is CHARACTER*1
  78. *> = 'U': Upper triangle of A is stored;
  79. *> = 'L': Lower triangle of A is stored.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] N
  83. *> \verbatim
  84. *> N is INTEGER
  85. *> The number of linear equations, i.e., the order of the
  86. *> matrix A. N >= 0.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] NRHS
  90. *> \verbatim
  91. *> NRHS is INTEGER
  92. *> The number of right-hand-sides, i.e., the number of columns of the
  93. *> matrix B.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] A
  97. *> \verbatim
  98. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  99. *> On entry, the N-by-N matrix A.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] LDA
  103. *> \verbatim
  104. *> LDA is INTEGER
  105. *> The leading dimension of the array A. LDA >= max(1,N).
  106. *> \endverbatim
  107. *>
  108. *> \param[in] AF
  109. *> \verbatim
  110. *> AF is DOUBLE PRECISION array, dimension (LDAF,N)
  111. *> The triangular factor U or L from the Cholesky factorization
  112. *> A = U**T*U or A = L*L**T, as computed by DPOTRF.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LDAF
  116. *> \verbatim
  117. *> LDAF is INTEGER
  118. *> The leading dimension of the array AF. LDAF >= max(1,N).
  119. *> \endverbatim
  120. *>
  121. *> \param[in] COLEQU
  122. *> \verbatim
  123. *> COLEQU is LOGICAL
  124. *> If .TRUE. then column equilibration was done to A before calling
  125. *> this routine. This is needed to compute the solution and error
  126. *> bounds correctly.
  127. *> \endverbatim
  128. *>
  129. *> \param[in] C
  130. *> \verbatim
  131. *> C is DOUBLE PRECISION array, dimension (N)
  132. *> The column scale factors for A. If COLEQU = .FALSE., C
  133. *> is not accessed. If C is input, each element of C should be a power
  134. *> of the radix to ensure a reliable solution and error estimates.
  135. *> Scaling by powers of the radix does not cause rounding errors unless
  136. *> the result underflows or overflows. Rounding errors during scaling
  137. *> lead to refining with a matrix that is not equivalent to the
  138. *> input matrix, producing error estimates that may not be
  139. *> reliable.
  140. *> \endverbatim
  141. *>
  142. *> \param[in] B
  143. *> \verbatim
  144. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  145. *> The right-hand-side matrix B.
  146. *> \endverbatim
  147. *>
  148. *> \param[in] LDB
  149. *> \verbatim
  150. *> LDB is INTEGER
  151. *> The leading dimension of the array B. LDB >= max(1,N).
  152. *> \endverbatim
  153. *>
  154. *> \param[in,out] Y
  155. *> \verbatim
  156. *> Y is DOUBLE PRECISION array, dimension (LDY,NRHS)
  157. *> On entry, the solution matrix X, as computed by DPOTRS.
  158. *> On exit, the improved solution matrix Y.
  159. *> \endverbatim
  160. *>
  161. *> \param[in] LDY
  162. *> \verbatim
  163. *> LDY is INTEGER
  164. *> The leading dimension of the array Y. LDY >= max(1,N).
  165. *> \endverbatim
  166. *>
  167. *> \param[out] BERR_OUT
  168. *> \verbatim
  169. *> BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
  170. *> On exit, BERR_OUT(j) contains the componentwise relative backward
  171. *> error for right-hand-side j from the formula
  172. *> max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  173. *> where abs(Z) is the componentwise absolute value of the matrix
  174. *> or vector Z. This is computed by DLA_LIN_BERR.
  175. *> \endverbatim
  176. *>
  177. *> \param[in] N_NORMS
  178. *> \verbatim
  179. *> N_NORMS is INTEGER
  180. *> Determines which error bounds to return (see ERR_BNDS_NORM
  181. *> and ERR_BNDS_COMP).
  182. *> If N_NORMS >= 1 return normwise error bounds.
  183. *> If N_NORMS >= 2 return componentwise error bounds.
  184. *> \endverbatim
  185. *>
  186. *> \param[in,out] ERR_BNDS_NORM
  187. *> \verbatim
  188. *> ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  189. *> For each right-hand side, this array contains information about
  190. *> various error bounds and condition numbers corresponding to the
  191. *> normwise relative error, which is defined as follows:
  192. *>
  193. *> Normwise relative error in the ith solution vector:
  194. *> max_j (abs(XTRUE(j,i) - X(j,i)))
  195. *> ------------------------------
  196. *> max_j abs(X(j,i))
  197. *>
  198. *> The array is indexed by the type of error information as described
  199. *> below. There currently are up to three pieces of information
  200. *> returned.
  201. *>
  202. *> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  203. *> right-hand side.
  204. *>
  205. *> The second index in ERR_BNDS_NORM(:,err) contains the following
  206. *> three fields:
  207. *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
  208. *> reciprocal condition number is less than the threshold
  209. *> sqrt(n) * slamch('Epsilon').
  210. *>
  211. *> err = 2 "Guaranteed" error bound: The estimated forward error,
  212. *> almost certainly within a factor of 10 of the true error
  213. *> so long as the next entry is greater than the threshold
  214. *> sqrt(n) * slamch('Epsilon'). This error bound should only
  215. *> be trusted if the previous boolean is true.
  216. *>
  217. *> err = 3 Reciprocal condition number: Estimated normwise
  218. *> reciprocal condition number. Compared with the threshold
  219. *> sqrt(n) * slamch('Epsilon') to determine if the error
  220. *> estimate is "guaranteed". These reciprocal condition
  221. *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  222. *> appropriately scaled matrix Z.
  223. *> Let Z = S*A, where S scales each row by a power of the
  224. *> radix so all absolute row sums of Z are approximately 1.
  225. *>
  226. *> This subroutine is only responsible for setting the second field
  227. *> above.
  228. *> See Lapack Working Note 165 for further details and extra
  229. *> cautions.
  230. *> \endverbatim
  231. *>
  232. *> \param[in,out] ERR_BNDS_COMP
  233. *> \verbatim
  234. *> ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  235. *> For each right-hand side, this array contains information about
  236. *> various error bounds and condition numbers corresponding to the
  237. *> componentwise relative error, which is defined as follows:
  238. *>
  239. *> Componentwise relative error in the ith solution vector:
  240. *> abs(XTRUE(j,i) - X(j,i))
  241. *> max_j ----------------------
  242. *> abs(X(j,i))
  243. *>
  244. *> The array is indexed by the right-hand side i (on which the
  245. *> componentwise relative error depends), and the type of error
  246. *> information as described below. There currently are up to three
  247. *> pieces of information returned for each right-hand side. If
  248. *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  249. *> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
  250. *> the first (:,N_ERR_BNDS) entries are returned.
  251. *>
  252. *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  253. *> right-hand side.
  254. *>
  255. *> The second index in ERR_BNDS_COMP(:,err) contains the following
  256. *> three fields:
  257. *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
  258. *> reciprocal condition number is less than the threshold
  259. *> sqrt(n) * slamch('Epsilon').
  260. *>
  261. *> err = 2 "Guaranteed" error bound: The estimated forward error,
  262. *> almost certainly within a factor of 10 of the true error
  263. *> so long as the next entry is greater than the threshold
  264. *> sqrt(n) * slamch('Epsilon'). This error bound should only
  265. *> be trusted if the previous boolean is true.
  266. *>
  267. *> err = 3 Reciprocal condition number: Estimated componentwise
  268. *> reciprocal condition number. Compared with the threshold
  269. *> sqrt(n) * slamch('Epsilon') to determine if the error
  270. *> estimate is "guaranteed". These reciprocal condition
  271. *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  272. *> appropriately scaled matrix Z.
  273. *> Let Z = S*(A*diag(x)), where x is the solution for the
  274. *> current right-hand side and S scales each row of
  275. *> A*diag(x) by a power of the radix so all absolute row
  276. *> sums of Z are approximately 1.
  277. *>
  278. *> This subroutine is only responsible for setting the second field
  279. *> above.
  280. *> See Lapack Working Note 165 for further details and extra
  281. *> cautions.
  282. *> \endverbatim
  283. *>
  284. *> \param[in] RES
  285. *> \verbatim
  286. *> RES is DOUBLE PRECISION array, dimension (N)
  287. *> Workspace to hold the intermediate residual.
  288. *> \endverbatim
  289. *>
  290. *> \param[in] AYB
  291. *> \verbatim
  292. *> AYB is DOUBLE PRECISION array, dimension (N)
  293. *> Workspace. This can be the same workspace passed for Y_TAIL.
  294. *> \endverbatim
  295. *>
  296. *> \param[in] DY
  297. *> \verbatim
  298. *> DY is DOUBLE PRECISION array, dimension (N)
  299. *> Workspace to hold the intermediate solution.
  300. *> \endverbatim
  301. *>
  302. *> \param[in] Y_TAIL
  303. *> \verbatim
  304. *> Y_TAIL is DOUBLE PRECISION array, dimension (N)
  305. *> Workspace to hold the trailing bits of the intermediate solution.
  306. *> \endverbatim
  307. *>
  308. *> \param[in] RCOND
  309. *> \verbatim
  310. *> RCOND is DOUBLE PRECISION
  311. *> Reciprocal scaled condition number. This is an estimate of the
  312. *> reciprocal Skeel condition number of the matrix A after
  313. *> equilibration (if done). If this is less than the machine
  314. *> precision (in particular, if it is zero), the matrix is singular
  315. *> to working precision. Note that the error may still be small even
  316. *> if this number is very small and the matrix appears ill-
  317. *> conditioned.
  318. *> \endverbatim
  319. *>
  320. *> \param[in] ITHRESH
  321. *> \verbatim
  322. *> ITHRESH is INTEGER
  323. *> The maximum number of residual computations allowed for
  324. *> refinement. The default is 10. For 'aggressive' set to 100 to
  325. *> permit convergence using approximate factorizations or
  326. *> factorizations other than LU. If the factorization uses a
  327. *> technique other than Gaussian elimination, the guarantees in
  328. *> ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
  329. *> \endverbatim
  330. *>
  331. *> \param[in] RTHRESH
  332. *> \verbatim
  333. *> RTHRESH is DOUBLE PRECISION
  334. *> Determines when to stop refinement if the error estimate stops
  335. *> decreasing. Refinement will stop when the next solution no longer
  336. *> satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  337. *> the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  338. *> default value is 0.5. For 'aggressive' set to 0.9 to permit
  339. *> convergence on extremely ill-conditioned matrices. See LAWN 165
  340. *> for more details.
  341. *> \endverbatim
  342. *>
  343. *> \param[in] DZ_UB
  344. *> \verbatim
  345. *> DZ_UB is DOUBLE PRECISION
  346. *> Determines when to start considering componentwise convergence.
  347. *> Componentwise convergence is only considered after each component
  348. *> of the solution Y is stable, which we define as the relative
  349. *> change in each component being less than DZ_UB. The default value
  350. *> is 0.25, requiring the first bit to be stable. See LAWN 165 for
  351. *> more details.
  352. *> \endverbatim
  353. *>
  354. *> \param[in] IGNORE_CWISE
  355. *> \verbatim
  356. *> IGNORE_CWISE is LOGICAL
  357. *> If .TRUE. then ignore componentwise convergence. Default value
  358. *> is .FALSE..
  359. *> \endverbatim
  360. *>
  361. *> \param[out] INFO
  362. *> \verbatim
  363. *> INFO is INTEGER
  364. *> = 0: Successful exit.
  365. *> < 0: if INFO = -i, the ith argument to DPOTRS had an illegal
  366. *> value
  367. *> \endverbatim
  368. *
  369. * Authors:
  370. * ========
  371. *
  372. *> \author Univ. of Tennessee
  373. *> \author Univ. of California Berkeley
  374. *> \author Univ. of Colorado Denver
  375. *> \author NAG Ltd.
  376. *
  377. *> \ingroup doublePOcomputational
  378. *
  379. * =====================================================================
  380. SUBROUTINE DLA_PORFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
  381. $ AF, LDAF, COLEQU, C, B, LDB, Y,
  382. $ LDY, BERR_OUT, N_NORMS,
  383. $ ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
  384. $ AYB, DY, Y_TAIL, RCOND, ITHRESH,
  385. $ RTHRESH, DZ_UB, IGNORE_CWISE,
  386. $ INFO )
  387. *
  388. * -- LAPACK computational routine --
  389. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  390. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  391. *
  392. * .. Scalar Arguments ..
  393. INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
  394. $ N_NORMS, ITHRESH
  395. CHARACTER UPLO
  396. LOGICAL COLEQU, IGNORE_CWISE
  397. DOUBLE PRECISION RTHRESH, DZ_UB
  398. * ..
  399. * .. Array Arguments ..
  400. DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  401. $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  402. DOUBLE PRECISION C( * ), AYB(*), RCOND, BERR_OUT( * ),
  403. $ ERR_BNDS_NORM( NRHS, * ),
  404. $ ERR_BNDS_COMP( NRHS, * )
  405. * ..
  406. *
  407. * =====================================================================
  408. *
  409. * .. Local Scalars ..
  410. INTEGER UPLO2, CNT, I, J, X_STATE, Z_STATE
  411. DOUBLE PRECISION YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  412. $ DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  413. $ DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  414. $ EPS, HUGEVAL, INCR_THRESH
  415. LOGICAL INCR_PREC
  416. * ..
  417. * .. Parameters ..
  418. INTEGER UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  419. $ NOPROG_STATE, Y_PREC_STATE, BASE_RESIDUAL,
  420. $ EXTRA_RESIDUAL, EXTRA_Y
  421. PARAMETER ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  422. $ CONV_STATE = 2, NOPROG_STATE = 3 )
  423. PARAMETER ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  424. $ EXTRA_Y = 2 )
  425. INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  426. INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  427. INTEGER CMP_ERR_I, PIV_GROWTH_I
  428. PARAMETER ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  429. $ BERR_I = 3 )
  430. PARAMETER ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  431. PARAMETER ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  432. $ PIV_GROWTH_I = 9 )
  433. INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  434. $ LA_LINRX_CWISE_I
  435. PARAMETER ( LA_LINRX_ITREF_I = 1,
  436. $ LA_LINRX_ITHRESH_I = 2 )
  437. PARAMETER ( LA_LINRX_CWISE_I = 3 )
  438. INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  439. $ LA_LINRX_RCOND_I
  440. PARAMETER ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  441. PARAMETER ( LA_LINRX_RCOND_I = 3 )
  442. * ..
  443. * .. External Functions ..
  444. LOGICAL LSAME
  445. EXTERNAL ILAUPLO
  446. INTEGER ILAUPLO
  447. * ..
  448. * .. External Subroutines ..
  449. EXTERNAL DAXPY, DCOPY, DPOTRS, DSYMV, BLAS_DSYMV_X,
  450. $ BLAS_DSYMV2_X, DLA_SYAMV, DLA_WWADDW,
  451. $ DLA_LIN_BERR
  452. DOUBLE PRECISION DLAMCH
  453. * ..
  454. * .. Intrinsic Functions ..
  455. INTRINSIC ABS, MAX, MIN
  456. * ..
  457. * .. Executable Statements ..
  458. *
  459. IF (INFO.NE.0) RETURN
  460. EPS = DLAMCH( 'Epsilon' )
  461. HUGEVAL = DLAMCH( 'Overflow' )
  462. * Force HUGEVAL to Inf
  463. HUGEVAL = HUGEVAL * HUGEVAL
  464. * Using HUGEVAL may lead to spurious underflows.
  465. INCR_THRESH = DBLE( N ) * EPS
  466. IF ( LSAME ( UPLO, 'L' ) ) THEN
  467. UPLO2 = ILAUPLO( 'L' )
  468. ELSE
  469. UPLO2 = ILAUPLO( 'U' )
  470. ENDIF
  471. DO J = 1, NRHS
  472. Y_PREC_STATE = EXTRA_RESIDUAL
  473. IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  474. DO I = 1, N
  475. Y_TAIL( I ) = 0.0D+0
  476. END DO
  477. END IF
  478. DXRAT = 0.0D+0
  479. DXRATMAX = 0.0D+0
  480. DZRAT = 0.0D+0
  481. DZRATMAX = 0.0D+0
  482. FINAL_DX_X = HUGEVAL
  483. FINAL_DZ_Z = HUGEVAL
  484. PREVNORMDX = HUGEVAL
  485. PREV_DZ_Z = HUGEVAL
  486. DZ_Z = HUGEVAL
  487. DX_X = HUGEVAL
  488. X_STATE = WORKING_STATE
  489. Z_STATE = UNSTABLE_STATE
  490. INCR_PREC = .FALSE.
  491. DO CNT = 1, ITHRESH
  492. *
  493. * Compute residual RES = B_s - op(A_s) * Y,
  494. * op(A) = A, A**T, or A**H depending on TRANS (and type).
  495. *
  496. CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  497. IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
  498. CALL DSYMV( UPLO, N, -1.0D+0, A, LDA, Y(1,J), 1,
  499. $ 1.0D+0, RES, 1 )
  500. ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
  501. CALL BLAS_DSYMV_X( UPLO2, N, -1.0D+0, A, LDA,
  502. $ Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
  503. ELSE
  504. CALL BLAS_DSYMV2_X(UPLO2, N, -1.0D+0, A, LDA,
  505. $ Y(1, J), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE)
  506. END IF
  507. ! XXX: RES is no longer needed.
  508. CALL DCOPY( N, RES, 1, DY, 1 )
  509. CALL DPOTRS( UPLO, N, 1, AF, LDAF, DY, N, INFO )
  510. *
  511. * Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  512. *
  513. NORMX = 0.0D+0
  514. NORMY = 0.0D+0
  515. NORMDX = 0.0D+0
  516. DZ_Z = 0.0D+0
  517. YMIN = HUGEVAL
  518. DO I = 1, N
  519. YK = ABS( Y( I, J ) )
  520. DYK = ABS( DY( I ) )
  521. IF ( YK .NE. 0.0D+0 ) THEN
  522. DZ_Z = MAX( DZ_Z, DYK / YK )
  523. ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  524. DZ_Z = HUGEVAL
  525. END IF
  526. YMIN = MIN( YMIN, YK )
  527. NORMY = MAX( NORMY, YK )
  528. IF ( COLEQU ) THEN
  529. NORMX = MAX( NORMX, YK * C( I ) )
  530. NORMDX = MAX( NORMDX, DYK * C( I ) )
  531. ELSE
  532. NORMX = NORMY
  533. NORMDX = MAX( NORMDX, DYK )
  534. END IF
  535. END DO
  536. IF ( NORMX .NE. 0.0D+0 ) THEN
  537. DX_X = NORMDX / NORMX
  538. ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  539. DX_X = 0.0D+0
  540. ELSE
  541. DX_X = HUGEVAL
  542. END IF
  543. DXRAT = NORMDX / PREVNORMDX
  544. DZRAT = DZ_Z / PREV_DZ_Z
  545. *
  546. * Check termination criteria.
  547. *
  548. IF ( YMIN*RCOND .LT. INCR_THRESH*NORMY
  549. $ .AND. Y_PREC_STATE .LT. EXTRA_Y )
  550. $ INCR_PREC = .TRUE.
  551. IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  552. $ X_STATE = WORKING_STATE
  553. IF ( X_STATE .EQ. WORKING_STATE ) THEN
  554. IF ( DX_X .LE. EPS ) THEN
  555. X_STATE = CONV_STATE
  556. ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  557. IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  558. INCR_PREC = .TRUE.
  559. ELSE
  560. X_STATE = NOPROG_STATE
  561. END IF
  562. ELSE
  563. IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
  564. END IF
  565. IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  566. END IF
  567. IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  568. $ Z_STATE = WORKING_STATE
  569. IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  570. $ Z_STATE = WORKING_STATE
  571. IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  572. IF ( DZ_Z .LE. EPS ) THEN
  573. Z_STATE = CONV_STATE
  574. ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  575. Z_STATE = UNSTABLE_STATE
  576. DZRATMAX = 0.0D+0
  577. FINAL_DZ_Z = HUGEVAL
  578. ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  579. IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  580. INCR_PREC = .TRUE.
  581. ELSE
  582. Z_STATE = NOPROG_STATE
  583. END IF
  584. ELSE
  585. IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  586. END IF
  587. IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  588. END IF
  589. IF ( X_STATE.NE.WORKING_STATE.AND.
  590. $ ( IGNORE_CWISE.OR.Z_STATE.NE.WORKING_STATE ) )
  591. $ GOTO 666
  592. IF ( INCR_PREC ) THEN
  593. INCR_PREC = .FALSE.
  594. Y_PREC_STATE = Y_PREC_STATE + 1
  595. DO I = 1, N
  596. Y_TAIL( I ) = 0.0D+0
  597. END DO
  598. END IF
  599. PREVNORMDX = NORMDX
  600. PREV_DZ_Z = DZ_Z
  601. *
  602. * Update solution.
  603. *
  604. IF (Y_PREC_STATE .LT. EXTRA_Y) THEN
  605. CALL DAXPY( N, 1.0D+0, DY, 1, Y(1,J), 1 )
  606. ELSE
  607. CALL DLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
  608. END IF
  609. END DO
  610. * Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT.
  611. 666 CONTINUE
  612. *
  613. * Set final_* when cnt hits ithresh.
  614. *
  615. IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  616. IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  617. *
  618. * Compute error bounds.
  619. *
  620. IF ( N_NORMS .GE. 1 ) THEN
  621. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
  622. $ FINAL_DX_X / (1 - DXRATMAX)
  623. END IF
  624. IF ( N_NORMS .GE. 2 ) THEN
  625. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
  626. $ FINAL_DZ_Z / (1 - DZRATMAX)
  627. END IF
  628. *
  629. * Compute componentwise relative backward error from formula
  630. * max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  631. * where abs(Z) is the componentwise absolute value of the matrix
  632. * or vector Z.
  633. *
  634. * Compute residual RES = B_s - op(A_s) * Y,
  635. * op(A) = A, A**T, or A**H depending on TRANS (and type).
  636. *
  637. CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  638. CALL DSYMV( UPLO, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0, RES,
  639. $ 1 )
  640. DO I = 1, N
  641. AYB( I ) = ABS( B( I, J ) )
  642. END DO
  643. *
  644. * Compute abs(op(A_s))*abs(Y) + abs(B_s).
  645. *
  646. CALL DLA_SYAMV( UPLO2, N, 1.0D+0,
  647. $ A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
  648. CALL DLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
  649. *
  650. * End of loop for each RHS.
  651. *
  652. END DO
  653. *
  654. RETURN
  655. *
  656. * End of DLA_PORFSX_EXTENDED
  657. *
  658. END