You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dla_porcond.f 9.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327
  1. *> \brief \b DLA_PORCOND estimates the Skeel condition number for a symmetric positive-definite matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLA_PORCOND + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_porcond.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_porcond.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_porcond.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF,
  22. * CMODE, C, INFO, WORK,
  23. * IWORK )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER UPLO
  27. * INTEGER N, LDA, LDAF, INFO, CMODE
  28. * DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), WORK( * ),
  29. * $ C( * )
  30. * ..
  31. * .. Array Arguments ..
  32. * INTEGER IWORK( * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> DLA_PORCOND Estimates the Skeel condition number of op(A) * op2(C)
  42. *> where op2 is determined by CMODE as follows
  43. *> CMODE = 1 op2(C) = C
  44. *> CMODE = 0 op2(C) = I
  45. *> CMODE = -1 op2(C) = inv(C)
  46. *> The Skeel condition number cond(A) = norminf( |inv(A)||A| )
  47. *> is computed by computing scaling factors R such that
  48. *> diag(R)*A*op2(C) is row equilibrated and computing the standard
  49. *> infinity-norm condition number.
  50. *> \endverbatim
  51. *
  52. * Arguments:
  53. * ==========
  54. *
  55. *> \param[in] UPLO
  56. *> \verbatim
  57. *> UPLO is CHARACTER*1
  58. *> = 'U': Upper triangle of A is stored;
  59. *> = 'L': Lower triangle of A is stored.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The number of linear equations, i.e., the order of the
  66. *> matrix A. N >= 0.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] A
  70. *> \verbatim
  71. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  72. *> On entry, the N-by-N matrix A.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the array A. LDA >= max(1,N).
  79. *> \endverbatim
  80. *>
  81. *> \param[in] AF
  82. *> \verbatim
  83. *> AF is DOUBLE PRECISION array, dimension (LDAF,N)
  84. *> The triangular factor U or L from the Cholesky factorization
  85. *> A = U**T*U or A = L*L**T, as computed by DPOTRF.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] LDAF
  89. *> \verbatim
  90. *> LDAF is INTEGER
  91. *> The leading dimension of the array AF. LDAF >= max(1,N).
  92. *> \endverbatim
  93. *>
  94. *> \param[in] CMODE
  95. *> \verbatim
  96. *> CMODE is INTEGER
  97. *> Determines op2(C) in the formula op(A) * op2(C) as follows:
  98. *> CMODE = 1 op2(C) = C
  99. *> CMODE = 0 op2(C) = I
  100. *> CMODE = -1 op2(C) = inv(C)
  101. *> \endverbatim
  102. *>
  103. *> \param[in] C
  104. *> \verbatim
  105. *> C is DOUBLE PRECISION array, dimension (N)
  106. *> The vector C in the formula op(A) * op2(C).
  107. *> \endverbatim
  108. *>
  109. *> \param[out] INFO
  110. *> \verbatim
  111. *> INFO is INTEGER
  112. *> = 0: Successful exit.
  113. *> i > 0: The ith argument is invalid.
  114. *> \endverbatim
  115. *>
  116. *> \param[out] WORK
  117. *> \verbatim
  118. *> WORK is DOUBLE PRECISION array, dimension (3*N).
  119. *> Workspace.
  120. *> \endverbatim
  121. *>
  122. *> \param[out] IWORK
  123. *> \verbatim
  124. *> IWORK is INTEGER array, dimension (N).
  125. *> Workspace.
  126. *> \endverbatim
  127. *
  128. * Authors:
  129. * ========
  130. *
  131. *> \author Univ. of Tennessee
  132. *> \author Univ. of California Berkeley
  133. *> \author Univ. of Colorado Denver
  134. *> \author NAG Ltd.
  135. *
  136. *> \ingroup doublePOcomputational
  137. *
  138. * =====================================================================
  139. DOUBLE PRECISION FUNCTION DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF,
  140. $ CMODE, C, INFO, WORK,
  141. $ IWORK )
  142. *
  143. * -- LAPACK computational routine --
  144. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  145. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146. *
  147. * .. Scalar Arguments ..
  148. CHARACTER UPLO
  149. INTEGER N, LDA, LDAF, INFO, CMODE
  150. DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), WORK( * ),
  151. $ C( * )
  152. * ..
  153. * .. Array Arguments ..
  154. INTEGER IWORK( * )
  155. * ..
  156. *
  157. * =====================================================================
  158. *
  159. * .. Local Scalars ..
  160. INTEGER KASE, I, J
  161. DOUBLE PRECISION AINVNM, TMP
  162. LOGICAL UP
  163. * ..
  164. * .. Array Arguments ..
  165. INTEGER ISAVE( 3 )
  166. * ..
  167. * .. External Functions ..
  168. LOGICAL LSAME
  169. EXTERNAL LSAME
  170. * ..
  171. * .. External Subroutines ..
  172. EXTERNAL DLACN2, DPOTRS, XERBLA
  173. * ..
  174. * .. Intrinsic Functions ..
  175. INTRINSIC ABS, MAX
  176. * ..
  177. * .. Executable Statements ..
  178. *
  179. DLA_PORCOND = 0.0D+0
  180. *
  181. INFO = 0
  182. IF( N.LT.0 ) THEN
  183. INFO = -2
  184. END IF
  185. IF( INFO.NE.0 ) THEN
  186. CALL XERBLA( 'DLA_PORCOND', -INFO )
  187. RETURN
  188. END IF
  189. IF( N.EQ.0 ) THEN
  190. DLA_PORCOND = 1.0D+0
  191. RETURN
  192. END IF
  193. UP = .FALSE.
  194. IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
  195. *
  196. * Compute the equilibration matrix R such that
  197. * inv(R)*A*C has unit 1-norm.
  198. *
  199. IF ( UP ) THEN
  200. DO I = 1, N
  201. TMP = 0.0D+0
  202. IF ( CMODE .EQ. 1 ) THEN
  203. DO J = 1, I
  204. TMP = TMP + ABS( A( J, I ) * C( J ) )
  205. END DO
  206. DO J = I+1, N
  207. TMP = TMP + ABS( A( I, J ) * C( J ) )
  208. END DO
  209. ELSE IF ( CMODE .EQ. 0 ) THEN
  210. DO J = 1, I
  211. TMP = TMP + ABS( A( J, I ) )
  212. END DO
  213. DO J = I+1, N
  214. TMP = TMP + ABS( A( I, J ) )
  215. END DO
  216. ELSE
  217. DO J = 1, I
  218. TMP = TMP + ABS( A( J ,I ) / C( J ) )
  219. END DO
  220. DO J = I+1, N
  221. TMP = TMP + ABS( A( I, J ) / C( J ) )
  222. END DO
  223. END IF
  224. WORK( 2*N+I ) = TMP
  225. END DO
  226. ELSE
  227. DO I = 1, N
  228. TMP = 0.0D+0
  229. IF ( CMODE .EQ. 1 ) THEN
  230. DO J = 1, I
  231. TMP = TMP + ABS( A( I, J ) * C( J ) )
  232. END DO
  233. DO J = I+1, N
  234. TMP = TMP + ABS( A( J, I ) * C( J ) )
  235. END DO
  236. ELSE IF ( CMODE .EQ. 0 ) THEN
  237. DO J = 1, I
  238. TMP = TMP + ABS( A( I, J ) )
  239. END DO
  240. DO J = I+1, N
  241. TMP = TMP + ABS( A( J, I ) )
  242. END DO
  243. ELSE
  244. DO J = 1, I
  245. TMP = TMP + ABS( A( I, J ) / C( J ) )
  246. END DO
  247. DO J = I+1, N
  248. TMP = TMP + ABS( A( J, I ) / C( J ) )
  249. END DO
  250. END IF
  251. WORK( 2*N+I ) = TMP
  252. END DO
  253. ENDIF
  254. *
  255. * Estimate the norm of inv(op(A)).
  256. *
  257. AINVNM = 0.0D+0
  258. KASE = 0
  259. 10 CONTINUE
  260. CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
  261. IF( KASE.NE.0 ) THEN
  262. IF( KASE.EQ.2 ) THEN
  263. *
  264. * Multiply by R.
  265. *
  266. DO I = 1, N
  267. WORK( I ) = WORK( I ) * WORK( 2*N+I )
  268. END DO
  269. IF (UP) THEN
  270. CALL DPOTRS( 'Upper', N, 1, AF, LDAF, WORK, N, INFO )
  271. ELSE
  272. CALL DPOTRS( 'Lower', N, 1, AF, LDAF, WORK, N, INFO )
  273. ENDIF
  274. *
  275. * Multiply by inv(C).
  276. *
  277. IF ( CMODE .EQ. 1 ) THEN
  278. DO I = 1, N
  279. WORK( I ) = WORK( I ) / C( I )
  280. END DO
  281. ELSE IF ( CMODE .EQ. -1 ) THEN
  282. DO I = 1, N
  283. WORK( I ) = WORK( I ) * C( I )
  284. END DO
  285. END IF
  286. ELSE
  287. *
  288. * Multiply by inv(C**T).
  289. *
  290. IF ( CMODE .EQ. 1 ) THEN
  291. DO I = 1, N
  292. WORK( I ) = WORK( I ) / C( I )
  293. END DO
  294. ELSE IF ( CMODE .EQ. -1 ) THEN
  295. DO I = 1, N
  296. WORK( I ) = WORK( I ) * C( I )
  297. END DO
  298. END IF
  299. IF ( UP ) THEN
  300. CALL DPOTRS( 'Upper', N, 1, AF, LDAF, WORK, N, INFO )
  301. ELSE
  302. CALL DPOTRS( 'Lower', N, 1, AF, LDAF, WORK, N, INFO )
  303. ENDIF
  304. *
  305. * Multiply by R.
  306. *
  307. DO I = 1, N
  308. WORK( I ) = WORK( I ) * WORK( 2*N+I )
  309. END DO
  310. END IF
  311. GO TO 10
  312. END IF
  313. *
  314. * Compute the estimate of the reciprocal condition number.
  315. *
  316. IF( AINVNM .NE. 0.0D+0 )
  317. $ DLA_PORCOND = ( 1.0D+0 / AINVNM )
  318. *
  319. RETURN
  320. *
  321. * End of DLA_PORCOND
  322. *
  323. END