You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgtsv.f 9.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330
  1. *> \brief <b> DGTSV computes the solution to system of linear equations A * X = B for GT matrices </b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGTSV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgtsv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgtsv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgtsv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDB, N, NRHS
  25. * ..
  26. * .. Array Arguments ..
  27. * DOUBLE PRECISION B( LDB, * ), D( * ), DL( * ), DU( * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> DGTSV solves the equation
  37. *>
  38. *> A*X = B,
  39. *>
  40. *> where A is an n by n tridiagonal matrix, by Gaussian elimination with
  41. *> partial pivoting.
  42. *>
  43. *> Note that the equation A**T*X = B may be solved by interchanging the
  44. *> order of the arguments DU and DL.
  45. *> \endverbatim
  46. *
  47. * Arguments:
  48. * ==========
  49. *
  50. *> \param[in] N
  51. *> \verbatim
  52. *> N is INTEGER
  53. *> The order of the matrix A. N >= 0.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] NRHS
  57. *> \verbatim
  58. *> NRHS is INTEGER
  59. *> The number of right hand sides, i.e., the number of columns
  60. *> of the matrix B. NRHS >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in,out] DL
  64. *> \verbatim
  65. *> DL is DOUBLE PRECISION array, dimension (N-1)
  66. *> On entry, DL must contain the (n-1) sub-diagonal elements of
  67. *> A.
  68. *>
  69. *> On exit, DL is overwritten by the (n-2) elements of the
  70. *> second super-diagonal of the upper triangular matrix U from
  71. *> the LU factorization of A, in DL(1), ..., DL(n-2).
  72. *> \endverbatim
  73. *>
  74. *> \param[in,out] D
  75. *> \verbatim
  76. *> D is DOUBLE PRECISION array, dimension (N)
  77. *> On entry, D must contain the diagonal elements of A.
  78. *>
  79. *> On exit, D is overwritten by the n diagonal elements of U.
  80. *> \endverbatim
  81. *>
  82. *> \param[in,out] DU
  83. *> \verbatim
  84. *> DU is DOUBLE PRECISION array, dimension (N-1)
  85. *> On entry, DU must contain the (n-1) super-diagonal elements
  86. *> of A.
  87. *>
  88. *> On exit, DU is overwritten by the (n-1) elements of the first
  89. *> super-diagonal of U.
  90. *> \endverbatim
  91. *>
  92. *> \param[in,out] B
  93. *> \verbatim
  94. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  95. *> On entry, the N by NRHS matrix of right hand side matrix B.
  96. *> On exit, if INFO = 0, the N by NRHS solution matrix X.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] LDB
  100. *> \verbatim
  101. *> LDB is INTEGER
  102. *> The leading dimension of the array B. LDB >= max(1,N).
  103. *> \endverbatim
  104. *>
  105. *> \param[out] INFO
  106. *> \verbatim
  107. *> INFO is INTEGER
  108. *> = 0: successful exit
  109. *> < 0: if INFO = -i, the i-th argument had an illegal value
  110. *> > 0: if INFO = i, U(i,i) is exactly zero, and the solution
  111. *> has not been computed. The factorization has not been
  112. *> completed unless i = N.
  113. *> \endverbatim
  114. *
  115. * Authors:
  116. * ========
  117. *
  118. *> \author Univ. of Tennessee
  119. *> \author Univ. of California Berkeley
  120. *> \author Univ. of Colorado Denver
  121. *> \author NAG Ltd.
  122. *
  123. *> \ingroup doubleGTsolve
  124. *
  125. * =====================================================================
  126. SUBROUTINE DGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
  127. *
  128. * -- LAPACK driver routine --
  129. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  130. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  131. *
  132. * .. Scalar Arguments ..
  133. INTEGER INFO, LDB, N, NRHS
  134. * ..
  135. * .. Array Arguments ..
  136. DOUBLE PRECISION B( LDB, * ), D( * ), DL( * ), DU( * )
  137. * ..
  138. *
  139. * =====================================================================
  140. *
  141. * .. Parameters ..
  142. DOUBLE PRECISION ZERO
  143. PARAMETER ( ZERO = 0.0D+0 )
  144. * ..
  145. * .. Local Scalars ..
  146. INTEGER I, J
  147. DOUBLE PRECISION FACT, TEMP
  148. * ..
  149. * .. Intrinsic Functions ..
  150. INTRINSIC ABS, MAX
  151. * ..
  152. * .. External Subroutines ..
  153. EXTERNAL XERBLA
  154. * ..
  155. * .. Executable Statements ..
  156. *
  157. INFO = 0
  158. IF( N.LT.0 ) THEN
  159. INFO = -1
  160. ELSE IF( NRHS.LT.0 ) THEN
  161. INFO = -2
  162. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  163. INFO = -7
  164. END IF
  165. IF( INFO.NE.0 ) THEN
  166. CALL XERBLA( 'DGTSV ', -INFO )
  167. RETURN
  168. END IF
  169. *
  170. IF( N.EQ.0 )
  171. $ RETURN
  172. *
  173. IF( NRHS.EQ.1 ) THEN
  174. DO 10 I = 1, N - 2
  175. IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
  176. *
  177. * No row interchange required
  178. *
  179. IF( D( I ).NE.ZERO ) THEN
  180. FACT = DL( I ) / D( I )
  181. D( I+1 ) = D( I+1 ) - FACT*DU( I )
  182. B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
  183. ELSE
  184. INFO = I
  185. RETURN
  186. END IF
  187. DL( I ) = ZERO
  188. ELSE
  189. *
  190. * Interchange rows I and I+1
  191. *
  192. FACT = D( I ) / DL( I )
  193. D( I ) = DL( I )
  194. TEMP = D( I+1 )
  195. D( I+1 ) = DU( I ) - FACT*TEMP
  196. DL( I ) = DU( I+1 )
  197. DU( I+1 ) = -FACT*DL( I )
  198. DU( I ) = TEMP
  199. TEMP = B( I, 1 )
  200. B( I, 1 ) = B( I+1, 1 )
  201. B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
  202. END IF
  203. 10 CONTINUE
  204. IF( N.GT.1 ) THEN
  205. I = N - 1
  206. IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
  207. IF( D( I ).NE.ZERO ) THEN
  208. FACT = DL( I ) / D( I )
  209. D( I+1 ) = D( I+1 ) - FACT*DU( I )
  210. B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
  211. ELSE
  212. INFO = I
  213. RETURN
  214. END IF
  215. ELSE
  216. FACT = D( I ) / DL( I )
  217. D( I ) = DL( I )
  218. TEMP = D( I+1 )
  219. D( I+1 ) = DU( I ) - FACT*TEMP
  220. DU( I ) = TEMP
  221. TEMP = B( I, 1 )
  222. B( I, 1 ) = B( I+1, 1 )
  223. B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
  224. END IF
  225. END IF
  226. IF( D( N ).EQ.ZERO ) THEN
  227. INFO = N
  228. RETURN
  229. END IF
  230. ELSE
  231. DO 40 I = 1, N - 2
  232. IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
  233. *
  234. * No row interchange required
  235. *
  236. IF( D( I ).NE.ZERO ) THEN
  237. FACT = DL( I ) / D( I )
  238. D( I+1 ) = D( I+1 ) - FACT*DU( I )
  239. DO 20 J = 1, NRHS
  240. B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
  241. 20 CONTINUE
  242. ELSE
  243. INFO = I
  244. RETURN
  245. END IF
  246. DL( I ) = ZERO
  247. ELSE
  248. *
  249. * Interchange rows I and I+1
  250. *
  251. FACT = D( I ) / DL( I )
  252. D( I ) = DL( I )
  253. TEMP = D( I+1 )
  254. D( I+1 ) = DU( I ) - FACT*TEMP
  255. DL( I ) = DU( I+1 )
  256. DU( I+1 ) = -FACT*DL( I )
  257. DU( I ) = TEMP
  258. DO 30 J = 1, NRHS
  259. TEMP = B( I, J )
  260. B( I, J ) = B( I+1, J )
  261. B( I+1, J ) = TEMP - FACT*B( I+1, J )
  262. 30 CONTINUE
  263. END IF
  264. 40 CONTINUE
  265. IF( N.GT.1 ) THEN
  266. I = N - 1
  267. IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
  268. IF( D( I ).NE.ZERO ) THEN
  269. FACT = DL( I ) / D( I )
  270. D( I+1 ) = D( I+1 ) - FACT*DU( I )
  271. DO 50 J = 1, NRHS
  272. B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
  273. 50 CONTINUE
  274. ELSE
  275. INFO = I
  276. RETURN
  277. END IF
  278. ELSE
  279. FACT = D( I ) / DL( I )
  280. D( I ) = DL( I )
  281. TEMP = D( I+1 )
  282. D( I+1 ) = DU( I ) - FACT*TEMP
  283. DU( I ) = TEMP
  284. DO 60 J = 1, NRHS
  285. TEMP = B( I, J )
  286. B( I, J ) = B( I+1, J )
  287. B( I+1, J ) = TEMP - FACT*B( I+1, J )
  288. 60 CONTINUE
  289. END IF
  290. END IF
  291. IF( D( N ).EQ.ZERO ) THEN
  292. INFO = N
  293. RETURN
  294. END IF
  295. END IF
  296. *
  297. * Back solve with the matrix U from the factorization.
  298. *
  299. IF( NRHS.LE.2 ) THEN
  300. J = 1
  301. 70 CONTINUE
  302. B( N, J ) = B( N, J ) / D( N )
  303. IF( N.GT.1 )
  304. $ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / D( N-1 )
  305. DO 80 I = N - 2, 1, -1
  306. B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
  307. $ B( I+2, J ) ) / D( I )
  308. 80 CONTINUE
  309. IF( J.LT.NRHS ) THEN
  310. J = J + 1
  311. GO TO 70
  312. END IF
  313. ELSE
  314. DO 100 J = 1, NRHS
  315. B( N, J ) = B( N, J ) / D( N )
  316. IF( N.GT.1 )
  317. $ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
  318. $ D( N-1 )
  319. DO 90 I = N - 2, 1, -1
  320. B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
  321. $ B( I+2, J ) ) / D( I )
  322. 90 CONTINUE
  323. 100 CONTINUE
  324. END IF
  325. *
  326. RETURN
  327. *
  328. * End of DGTSV
  329. *
  330. END