You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cunmtr.f 8.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310
  1. *> \brief \b CUNMTR
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CUNMTR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunmtr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunmtr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunmtr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CUNMTR( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC,
  22. * WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER SIDE, TRANS, UPLO
  26. * INTEGER INFO, LDA, LDC, LWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
  30. * $ WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CUNMTR overwrites the general complex M-by-N matrix C with
  40. *>
  41. *> SIDE = 'L' SIDE = 'R'
  42. *> TRANS = 'N': Q * C C * Q
  43. *> TRANS = 'C': Q**H * C C * Q**H
  44. *>
  45. *> where Q is a complex unitary matrix of order nq, with nq = m if
  46. *> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
  47. *> nq-1 elementary reflectors, as returned by CHETRD:
  48. *>
  49. *> if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
  50. *>
  51. *> if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] SIDE
  58. *> \verbatim
  59. *> SIDE is CHARACTER*1
  60. *> = 'L': apply Q or Q**H from the Left;
  61. *> = 'R': apply Q or Q**H from the Right.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] UPLO
  65. *> \verbatim
  66. *> UPLO is CHARACTER*1
  67. *> = 'U': Upper triangle of A contains elementary reflectors
  68. *> from CHETRD;
  69. *> = 'L': Lower triangle of A contains elementary reflectors
  70. *> from CHETRD.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] TRANS
  74. *> \verbatim
  75. *> TRANS is CHARACTER*1
  76. *> = 'N': No transpose, apply Q;
  77. *> = 'C': Conjugate transpose, apply Q**H.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] M
  81. *> \verbatim
  82. *> M is INTEGER
  83. *> The number of rows of the matrix C. M >= 0.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] N
  87. *> \verbatim
  88. *> N is INTEGER
  89. *> The number of columns of the matrix C. N >= 0.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] A
  93. *> \verbatim
  94. *> A is COMPLEX array, dimension
  95. *> (LDA,M) if SIDE = 'L'
  96. *> (LDA,N) if SIDE = 'R'
  97. *> The vectors which define the elementary reflectors, as
  98. *> returned by CHETRD.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LDA
  102. *> \verbatim
  103. *> LDA is INTEGER
  104. *> The leading dimension of the array A.
  105. *> LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] TAU
  109. *> \verbatim
  110. *> TAU is COMPLEX array, dimension
  111. *> (M-1) if SIDE = 'L'
  112. *> (N-1) if SIDE = 'R'
  113. *> TAU(i) must contain the scalar factor of the elementary
  114. *> reflector H(i), as returned by CHETRD.
  115. *> \endverbatim
  116. *>
  117. *> \param[in,out] C
  118. *> \verbatim
  119. *> C is COMPLEX array, dimension (LDC,N)
  120. *> On entry, the M-by-N matrix C.
  121. *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDC
  125. *> \verbatim
  126. *> LDC is INTEGER
  127. *> The leading dimension of the array C. LDC >= max(1,M).
  128. *> \endverbatim
  129. *>
  130. *> \param[out] WORK
  131. *> \verbatim
  132. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  133. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] LWORK
  137. *> \verbatim
  138. *> LWORK is INTEGER
  139. *> The dimension of the array WORK.
  140. *> If SIDE = 'L', LWORK >= max(1,N);
  141. *> if SIDE = 'R', LWORK >= max(1,M).
  142. *> For optimum performance LWORK >= N*NB if SIDE = 'L', and
  143. *> LWORK >=M*NB if SIDE = 'R', where NB is the optimal
  144. *> blocksize.
  145. *>
  146. *> If LWORK = -1, then a workspace query is assumed; the routine
  147. *> only calculates the optimal size of the WORK array, returns
  148. *> this value as the first entry of the WORK array, and no error
  149. *> message related to LWORK is issued by XERBLA.
  150. *> \endverbatim
  151. *>
  152. *> \param[out] INFO
  153. *> \verbatim
  154. *> INFO is INTEGER
  155. *> = 0: successful exit
  156. *> < 0: if INFO = -i, the i-th argument had an illegal value
  157. *> \endverbatim
  158. *
  159. * Authors:
  160. * ========
  161. *
  162. *> \author Univ. of Tennessee
  163. *> \author Univ. of California Berkeley
  164. *> \author Univ. of Colorado Denver
  165. *> \author NAG Ltd.
  166. *
  167. *> \ingroup unmtr
  168. *
  169. * =====================================================================
  170. SUBROUTINE CUNMTR( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC,
  171. $ WORK, LWORK, INFO )
  172. *
  173. * -- LAPACK computational routine --
  174. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  175. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  176. *
  177. * .. Scalar Arguments ..
  178. CHARACTER SIDE, TRANS, UPLO
  179. INTEGER INFO, LDA, LDC, LWORK, M, N
  180. * ..
  181. * .. Array Arguments ..
  182. COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
  183. $ WORK( * )
  184. * ..
  185. *
  186. * =====================================================================
  187. *
  188. * .. Local Scalars ..
  189. LOGICAL LEFT, LQUERY, UPPER
  190. INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
  191. * ..
  192. * .. External Functions ..
  193. LOGICAL LSAME
  194. INTEGER ILAENV
  195. REAL SROUNDUP_LWORK
  196. EXTERNAL ILAENV, LSAME, SROUNDUP_LWORK
  197. * ..
  198. * .. External Subroutines ..
  199. EXTERNAL CUNMQL, CUNMQR, XERBLA
  200. * ..
  201. * .. Intrinsic Functions ..
  202. INTRINSIC MAX
  203. * ..
  204. * .. Executable Statements ..
  205. *
  206. * Test the input arguments
  207. *
  208. INFO = 0
  209. LEFT = LSAME( SIDE, 'L' )
  210. UPPER = LSAME( UPLO, 'U' )
  211. LQUERY = ( LWORK.EQ.-1 )
  212. *
  213. * NQ is the order of Q and NW is the minimum dimension of WORK
  214. *
  215. IF( LEFT ) THEN
  216. NQ = M
  217. NW = MAX( 1, N )
  218. ELSE
  219. NQ = N
  220. NW = MAX( 1, M )
  221. END IF
  222. IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  223. INFO = -1
  224. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  225. INFO = -2
  226. ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'C' ) )
  227. $ THEN
  228. INFO = -3
  229. ELSE IF( M.LT.0 ) THEN
  230. INFO = -4
  231. ELSE IF( N.LT.0 ) THEN
  232. INFO = -5
  233. ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
  234. INFO = -7
  235. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  236. INFO = -10
  237. ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
  238. INFO = -12
  239. END IF
  240. *
  241. IF( INFO.EQ.0 ) THEN
  242. IF( UPPER ) THEN
  243. IF( LEFT ) THEN
  244. NB = ILAENV( 1, 'CUNMQL', SIDE // TRANS, M-1, N, M-1,
  245. $ -1 )
  246. ELSE
  247. NB = ILAENV( 1, 'CUNMQL', SIDE // TRANS, M, N-1, N-1,
  248. $ -1 )
  249. END IF
  250. ELSE
  251. IF( LEFT ) THEN
  252. NB = ILAENV( 1, 'CUNMQR', SIDE // TRANS, M-1, N, M-1,
  253. $ -1 )
  254. ELSE
  255. NB = ILAENV( 1, 'CUNMQR', SIDE // TRANS, M, N-1, N-1,
  256. $ -1 )
  257. END IF
  258. END IF
  259. LWKOPT = NW*NB
  260. WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
  261. END IF
  262. *
  263. IF( INFO.NE.0 ) THEN
  264. CALL XERBLA( 'CUNMTR', -INFO )
  265. RETURN
  266. ELSE IF( LQUERY ) THEN
  267. RETURN
  268. END IF
  269. *
  270. * Quick return if possible
  271. *
  272. IF( M.EQ.0 .OR. N.EQ.0 .OR. NQ.EQ.1 ) THEN
  273. WORK( 1 ) = 1
  274. RETURN
  275. END IF
  276. *
  277. IF( LEFT ) THEN
  278. MI = M - 1
  279. NI = N
  280. ELSE
  281. MI = M
  282. NI = N - 1
  283. END IF
  284. *
  285. IF( UPPER ) THEN
  286. *
  287. * Q was determined by a call to CHETRD with UPLO = 'U'
  288. *
  289. CALL CUNMQL( SIDE, TRANS, MI, NI, NQ-1, A( 1, 2 ), LDA, TAU, C,
  290. $ LDC, WORK, LWORK, IINFO )
  291. ELSE
  292. *
  293. * Q was determined by a call to CHETRD with UPLO = 'L'
  294. *
  295. IF( LEFT ) THEN
  296. I1 = 2
  297. I2 = 1
  298. ELSE
  299. I1 = 1
  300. I2 = 2
  301. END IF
  302. CALL CUNMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
  303. $ C( I1, I2 ), LDC, WORK, LWORK, IINFO )
  304. END IF
  305. WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
  306. RETURN
  307. *
  308. * End of CUNMTR
  309. *
  310. END