You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cla_syamv.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425
  1. *> \brief \b CLA_SYAMV computes a matrix-vector product using a symmetric indefinite matrix to calculate error bounds.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLA_SYAMV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_syamv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_syamv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_syamv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLA_SYAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
  22. * INCY )
  23. *
  24. * .. Scalar Arguments ..
  25. * REAL ALPHA, BETA
  26. * INTEGER INCX, INCY, LDA, N
  27. * INTEGER UPLO
  28. * ..
  29. * .. Array Arguments ..
  30. * COMPLEX A( LDA, * ), X( * )
  31. * REAL Y( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CLA_SYAMV performs the matrix-vector operation
  41. *>
  42. *> y := alpha*abs(A)*abs(x) + beta*abs(y),
  43. *>
  44. *> where alpha and beta are scalars, x and y are vectors and A is an
  45. *> n by n symmetric matrix.
  46. *>
  47. *> This function is primarily used in calculating error bounds.
  48. *> To protect against underflow during evaluation, components in
  49. *> the resulting vector are perturbed away from zero by (N+1)
  50. *> times the underflow threshold. To prevent unnecessarily large
  51. *> errors for block-structure embedded in general matrices,
  52. *> "symbolically" zero components are not perturbed. A zero
  53. *> entry is considered "symbolic" if all multiplications involved
  54. *> in computing that entry have at least one zero multiplicand.
  55. *> \endverbatim
  56. *
  57. * Arguments:
  58. * ==========
  59. *
  60. *> \param[in] UPLO
  61. *> \verbatim
  62. *> UPLO is INTEGER
  63. *> On entry, UPLO specifies whether the upper or lower
  64. *> triangular part of the array A is to be referenced as
  65. *> follows:
  66. *>
  67. *> UPLO = BLAS_UPPER Only the upper triangular part of A
  68. *> is to be referenced.
  69. *>
  70. *> UPLO = BLAS_LOWER Only the lower triangular part of A
  71. *> is to be referenced.
  72. *>
  73. *> Unchanged on exit.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] N
  77. *> \verbatim
  78. *> N is INTEGER
  79. *> On entry, N specifies the number of columns of the matrix A.
  80. *> N must be at least zero.
  81. *> Unchanged on exit.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] ALPHA
  85. *> \verbatim
  86. *> ALPHA is REAL .
  87. *> On entry, ALPHA specifies the scalar alpha.
  88. *> Unchanged on exit.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] A
  92. *> \verbatim
  93. *> A is COMPLEX array, dimension ( LDA, n ).
  94. *> Before entry, the leading m by n part of the array A must
  95. *> contain the matrix of coefficients.
  96. *> Unchanged on exit.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] LDA
  100. *> \verbatim
  101. *> LDA is INTEGER
  102. *> On entry, LDA specifies the first dimension of A as declared
  103. *> in the calling (sub) program. LDA must be at least
  104. *> max( 1, n ).
  105. *> Unchanged on exit.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] X
  109. *> \verbatim
  110. *> X is COMPLEX array, dimension
  111. *> ( 1 + ( n - 1 )*abs( INCX ) )
  112. *> Before entry, the incremented array X must contain the
  113. *> vector x.
  114. *> Unchanged on exit.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] INCX
  118. *> \verbatim
  119. *> INCX is INTEGER
  120. *> On entry, INCX specifies the increment for the elements of
  121. *> X. INCX must not be zero.
  122. *> Unchanged on exit.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] BETA
  126. *> \verbatim
  127. *> BETA is REAL .
  128. *> On entry, BETA specifies the scalar beta. When BETA is
  129. *> supplied as zero then Y need not be set on input.
  130. *> Unchanged on exit.
  131. *> \endverbatim
  132. *>
  133. *> \param[in,out] Y
  134. *> \verbatim
  135. *> Y is REAL array, dimension
  136. *> ( 1 + ( n - 1 )*abs( INCY ) )
  137. *> Before entry with BETA non-zero, the incremented array Y
  138. *> must contain the vector y. On exit, Y is overwritten by the
  139. *> updated vector y.
  140. *> \endverbatim
  141. *>
  142. *> \param[in] INCY
  143. *> \verbatim
  144. *> INCY is INTEGER
  145. *> On entry, INCY specifies the increment for the elements of
  146. *> Y. INCY must not be zero.
  147. *> Unchanged on exit.
  148. *> \endverbatim
  149. *
  150. * Authors:
  151. * ========
  152. *
  153. *> \author Univ. of Tennessee
  154. *> \author Univ. of California Berkeley
  155. *> \author Univ. of Colorado Denver
  156. *> \author NAG Ltd.
  157. *
  158. *> \ingroup complexSYcomputational
  159. *
  160. *> \par Further Details:
  161. * =====================
  162. *>
  163. *> \verbatim
  164. *>
  165. *> Level 2 Blas routine.
  166. *>
  167. *> -- Written on 22-October-1986.
  168. *> Jack Dongarra, Argonne National Lab.
  169. *> Jeremy Du Croz, Nag Central Office.
  170. *> Sven Hammarling, Nag Central Office.
  171. *> Richard Hanson, Sandia National Labs.
  172. *> -- Modified for the absolute-value product, April 2006
  173. *> Jason Riedy, UC Berkeley
  174. *> \endverbatim
  175. *>
  176. * =====================================================================
  177. SUBROUTINE CLA_SYAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
  178. $ INCY )
  179. *
  180. * -- LAPACK computational routine --
  181. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  182. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  183. *
  184. * .. Scalar Arguments ..
  185. REAL ALPHA, BETA
  186. INTEGER INCX, INCY, LDA, N
  187. INTEGER UPLO
  188. * ..
  189. * .. Array Arguments ..
  190. COMPLEX A( LDA, * ), X( * )
  191. REAL Y( * )
  192. * ..
  193. *
  194. * =====================================================================
  195. *
  196. * .. Parameters ..
  197. REAL ONE, ZERO
  198. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  199. * ..
  200. * .. Local Scalars ..
  201. LOGICAL SYMB_ZERO
  202. REAL TEMP, SAFE1
  203. INTEGER I, INFO, IY, J, JX, KX, KY
  204. COMPLEX ZDUM
  205. * ..
  206. * .. External Subroutines ..
  207. EXTERNAL XERBLA, SLAMCH
  208. REAL SLAMCH
  209. * ..
  210. * .. External Functions ..
  211. EXTERNAL ILAUPLO
  212. INTEGER ILAUPLO
  213. * ..
  214. * .. Intrinsic Functions ..
  215. INTRINSIC MAX, ABS, SIGN, REAL, AIMAG
  216. * ..
  217. * .. Statement Functions ..
  218. REAL CABS1
  219. * ..
  220. * .. Statement Function Definitions ..
  221. CABS1( ZDUM ) = ABS( REAL ( ZDUM ) ) + ABS( AIMAG ( ZDUM ) )
  222. * ..
  223. * .. Executable Statements ..
  224. *
  225. * Test the input parameters.
  226. *
  227. INFO = 0
  228. IF ( UPLO.NE.ILAUPLO( 'U' ) .AND.
  229. $ UPLO.NE.ILAUPLO( 'L' ) )THEN
  230. INFO = 1
  231. ELSE IF( N.LT.0 )THEN
  232. INFO = 2
  233. ELSE IF( LDA.LT.MAX( 1, N ) )THEN
  234. INFO = 5
  235. ELSE IF( INCX.EQ.0 )THEN
  236. INFO = 7
  237. ELSE IF( INCY.EQ.0 )THEN
  238. INFO = 10
  239. END IF
  240. IF( INFO.NE.0 )THEN
  241. CALL XERBLA( 'CLA_SYAMV', INFO )
  242. RETURN
  243. END IF
  244. *
  245. * Quick return if possible.
  246. *
  247. IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  248. $ RETURN
  249. *
  250. * Set up the start points in X and Y.
  251. *
  252. IF( INCX.GT.0 )THEN
  253. KX = 1
  254. ELSE
  255. KX = 1 - ( N - 1 )*INCX
  256. END IF
  257. IF( INCY.GT.0 )THEN
  258. KY = 1
  259. ELSE
  260. KY = 1 - ( N - 1 )*INCY
  261. END IF
  262. *
  263. * Set SAFE1 essentially to be the underflow threshold times the
  264. * number of additions in each row.
  265. *
  266. SAFE1 = SLAMCH( 'Safe minimum' )
  267. SAFE1 = (N+1)*SAFE1
  268. *
  269. * Form y := alpha*abs(A)*abs(x) + beta*abs(y).
  270. *
  271. * The O(N^2) SYMB_ZERO tests could be replaced by O(N) queries to
  272. * the inexact flag. Still doesn't help change the iteration order
  273. * to per-column.
  274. *
  275. IY = KY
  276. IF ( INCX.EQ.1 ) THEN
  277. IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
  278. DO I = 1, N
  279. IF ( BETA .EQ. ZERO ) THEN
  280. SYMB_ZERO = .TRUE.
  281. Y( IY ) = 0.0
  282. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  283. SYMB_ZERO = .TRUE.
  284. ELSE
  285. SYMB_ZERO = .FALSE.
  286. Y( IY ) = BETA * ABS( Y( IY ) )
  287. END IF
  288. IF ( ALPHA .NE. ZERO ) THEN
  289. DO J = 1, I
  290. TEMP = CABS1( A( J, I ) )
  291. SYMB_ZERO = SYMB_ZERO .AND.
  292. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  293. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  294. END DO
  295. DO J = I+1, N
  296. TEMP = CABS1( A( I, J ) )
  297. SYMB_ZERO = SYMB_ZERO .AND.
  298. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  299. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  300. END DO
  301. END IF
  302. IF ( .NOT.SYMB_ZERO )
  303. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  304. IY = IY + INCY
  305. END DO
  306. ELSE
  307. DO I = 1, N
  308. IF ( BETA .EQ. ZERO ) THEN
  309. SYMB_ZERO = .TRUE.
  310. Y( IY ) = 0.0
  311. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  312. SYMB_ZERO = .TRUE.
  313. ELSE
  314. SYMB_ZERO = .FALSE.
  315. Y( IY ) = BETA * ABS( Y( IY ) )
  316. END IF
  317. IF ( ALPHA .NE. ZERO ) THEN
  318. DO J = 1, I
  319. TEMP = CABS1( A( I, J ) )
  320. SYMB_ZERO = SYMB_ZERO .AND.
  321. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  322. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  323. END DO
  324. DO J = I+1, N
  325. TEMP = CABS1( A( J, I ) )
  326. SYMB_ZERO = SYMB_ZERO .AND.
  327. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  328. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  329. END DO
  330. END IF
  331. IF ( .NOT.SYMB_ZERO )
  332. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  333. IY = IY + INCY
  334. END DO
  335. END IF
  336. ELSE
  337. IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
  338. DO I = 1, N
  339. IF ( BETA .EQ. ZERO ) THEN
  340. SYMB_ZERO = .TRUE.
  341. Y( IY ) = 0.0
  342. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  343. SYMB_ZERO = .TRUE.
  344. ELSE
  345. SYMB_ZERO = .FALSE.
  346. Y( IY ) = BETA * ABS( Y( IY ) )
  347. END IF
  348. JX = KX
  349. IF ( ALPHA .NE. ZERO ) THEN
  350. DO J = 1, I
  351. TEMP = CABS1( A( J, I ) )
  352. SYMB_ZERO = SYMB_ZERO .AND.
  353. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  354. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  355. JX = JX + INCX
  356. END DO
  357. DO J = I+1, N
  358. TEMP = CABS1( A( I, J ) )
  359. SYMB_ZERO = SYMB_ZERO .AND.
  360. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  361. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  362. JX = JX + INCX
  363. END DO
  364. END IF
  365. IF ( .NOT.SYMB_ZERO )
  366. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  367. IY = IY + INCY
  368. END DO
  369. ELSE
  370. DO I = 1, N
  371. IF ( BETA .EQ. ZERO ) THEN
  372. SYMB_ZERO = .TRUE.
  373. Y( IY ) = 0.0
  374. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  375. SYMB_ZERO = .TRUE.
  376. ELSE
  377. SYMB_ZERO = .FALSE.
  378. Y( IY ) = BETA * ABS( Y( IY ) )
  379. END IF
  380. JX = KX
  381. IF ( ALPHA .NE. ZERO ) THEN
  382. DO J = 1, I
  383. TEMP = CABS1( A( I, J ) )
  384. SYMB_ZERO = SYMB_ZERO .AND.
  385. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  386. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  387. JX = JX + INCX
  388. END DO
  389. DO J = I+1, N
  390. TEMP = CABS1( A( J, I ) )
  391. SYMB_ZERO = SYMB_ZERO .AND.
  392. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  393. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  394. JX = JX + INCX
  395. END DO
  396. END IF
  397. IF ( .NOT.SYMB_ZERO )
  398. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  399. IY = IY + INCY
  400. END DO
  401. END IF
  402. END IF
  403. *
  404. RETURN
  405. *
  406. * End of CLA_SYAMV
  407. *
  408. END