You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsptri.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404
  1. *> \brief \b ZSPTRI
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZSPTRI + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsptri.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsptri.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsptri.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 AP( * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZSPTRI computes the inverse of a complex symmetric indefinite matrix
  39. *> A in packed storage using the factorization A = U*D*U**T or
  40. *> A = L*D*L**T computed by ZSPTRF.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> Specifies whether the details of the factorization are stored
  50. *> as an upper or lower triangular matrix.
  51. *> = 'U': Upper triangular, form is A = U*D*U**T;
  52. *> = 'L': Lower triangular, form is A = L*D*L**T.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The order of the matrix A. N >= 0.
  59. *> \endverbatim
  60. *>
  61. *> \param[in,out] AP
  62. *> \verbatim
  63. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  64. *> On entry, the block diagonal matrix D and the multipliers
  65. *> used to obtain the factor U or L as computed by ZSPTRF,
  66. *> stored as a packed triangular matrix.
  67. *>
  68. *> On exit, if INFO = 0, the (symmetric) inverse of the original
  69. *> matrix, stored as a packed triangular matrix. The j-th column
  70. *> of inv(A) is stored in the array AP as follows:
  71. *> if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
  72. *> if UPLO = 'L',
  73. *> AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] IPIV
  77. *> \verbatim
  78. *> IPIV is INTEGER array, dimension (N)
  79. *> Details of the interchanges and the block structure of D
  80. *> as determined by ZSPTRF.
  81. *> \endverbatim
  82. *>
  83. *> \param[out] WORK
  84. *> \verbatim
  85. *> WORK is COMPLEX*16 array, dimension (N)
  86. *> \endverbatim
  87. *>
  88. *> \param[out] INFO
  89. *> \verbatim
  90. *> INFO is INTEGER
  91. *> = 0: successful exit
  92. *> < 0: if INFO = -i, the i-th argument had an illegal value
  93. *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
  94. *> inverse could not be computed.
  95. *> \endverbatim
  96. *
  97. * Authors:
  98. * ========
  99. *
  100. *> \author Univ. of Tennessee
  101. *> \author Univ. of California Berkeley
  102. *> \author Univ. of Colorado Denver
  103. *> \author NAG Ltd.
  104. *
  105. *> \date November 2011
  106. *
  107. *> \ingroup complex16OTHERcomputational
  108. *
  109. * =====================================================================
  110. SUBROUTINE ZSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
  111. *
  112. * -- LAPACK computational routine (version 3.4.0) --
  113. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  114. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  115. * November 2011
  116. *
  117. * .. Scalar Arguments ..
  118. CHARACTER UPLO
  119. INTEGER INFO, N
  120. * ..
  121. * .. Array Arguments ..
  122. INTEGER IPIV( * )
  123. COMPLEX*16 AP( * ), WORK( * )
  124. * ..
  125. *
  126. * =====================================================================
  127. *
  128. * .. Parameters ..
  129. COMPLEX*16 ONE, ZERO
  130. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
  131. $ ZERO = ( 0.0D+0, 0.0D+0 ) )
  132. * ..
  133. * .. Local Scalars ..
  134. LOGICAL UPPER
  135. INTEGER J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
  136. COMPLEX*16 AK, AKKP1, AKP1, D, T, TEMP
  137. * ..
  138. * .. External Functions ..
  139. LOGICAL LSAME
  140. COMPLEX*16 ZDOTU
  141. EXTERNAL LSAME, ZDOTU
  142. * ..
  143. * .. External Subroutines ..
  144. EXTERNAL XERBLA, ZCOPY, ZSPMV, ZSWAP
  145. * ..
  146. * .. Intrinsic Functions ..
  147. INTRINSIC ABS
  148. * ..
  149. * .. Executable Statements ..
  150. *
  151. * Test the input parameters.
  152. *
  153. INFO = 0
  154. UPPER = LSAME( UPLO, 'U' )
  155. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  156. INFO = -1
  157. ELSE IF( N.LT.0 ) THEN
  158. INFO = -2
  159. END IF
  160. IF( INFO.NE.0 ) THEN
  161. CALL XERBLA( 'ZSPTRI', -INFO )
  162. RETURN
  163. END IF
  164. *
  165. * Quick return if possible
  166. *
  167. IF( N.EQ.0 )
  168. $ RETURN
  169. *
  170. * Check that the diagonal matrix D is nonsingular.
  171. *
  172. IF( UPPER ) THEN
  173. *
  174. * Upper triangular storage: examine D from bottom to top
  175. *
  176. KP = N*( N+1 ) / 2
  177. DO 10 INFO = N, 1, -1
  178. IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  179. $ RETURN
  180. KP = KP - INFO
  181. 10 CONTINUE
  182. ELSE
  183. *
  184. * Lower triangular storage: examine D from top to bottom.
  185. *
  186. KP = 1
  187. DO 20 INFO = 1, N
  188. IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  189. $ RETURN
  190. KP = KP + N - INFO + 1
  191. 20 CONTINUE
  192. END IF
  193. INFO = 0
  194. *
  195. IF( UPPER ) THEN
  196. *
  197. * Compute inv(A) from the factorization A = U*D*U**T.
  198. *
  199. * K is the main loop index, increasing from 1 to N in steps of
  200. * 1 or 2, depending on the size of the diagonal blocks.
  201. *
  202. K = 1
  203. KC = 1
  204. 30 CONTINUE
  205. *
  206. * If K > N, exit from loop.
  207. *
  208. IF( K.GT.N )
  209. $ GO TO 50
  210. *
  211. KCNEXT = KC + K
  212. IF( IPIV( K ).GT.0 ) THEN
  213. *
  214. * 1 x 1 diagonal block
  215. *
  216. * Invert the diagonal block.
  217. *
  218. AP( KC+K-1 ) = ONE / AP( KC+K-1 )
  219. *
  220. * Compute column K of the inverse.
  221. *
  222. IF( K.GT.1 ) THEN
  223. CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  224. CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
  225. $ 1 )
  226. AP( KC+K-1 ) = AP( KC+K-1 ) -
  227. $ ZDOTU( K-1, WORK, 1, AP( KC ), 1 )
  228. END IF
  229. KSTEP = 1
  230. ELSE
  231. *
  232. * 2 x 2 diagonal block
  233. *
  234. * Invert the diagonal block.
  235. *
  236. T = AP( KCNEXT+K-1 )
  237. AK = AP( KC+K-1 ) / T
  238. AKP1 = AP( KCNEXT+K ) / T
  239. AKKP1 = AP( KCNEXT+K-1 ) / T
  240. D = T*( AK*AKP1-ONE )
  241. AP( KC+K-1 ) = AKP1 / D
  242. AP( KCNEXT+K ) = AK / D
  243. AP( KCNEXT+K-1 ) = -AKKP1 / D
  244. *
  245. * Compute columns K and K+1 of the inverse.
  246. *
  247. IF( K.GT.1 ) THEN
  248. CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  249. CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
  250. $ 1 )
  251. AP( KC+K-1 ) = AP( KC+K-1 ) -
  252. $ ZDOTU( K-1, WORK, 1, AP( KC ), 1 )
  253. AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
  254. $ ZDOTU( K-1, AP( KC ), 1, AP( KCNEXT ),
  255. $ 1 )
  256. CALL ZCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
  257. CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO,
  258. $ AP( KCNEXT ), 1 )
  259. AP( KCNEXT+K ) = AP( KCNEXT+K ) -
  260. $ ZDOTU( K-1, WORK, 1, AP( KCNEXT ), 1 )
  261. END IF
  262. KSTEP = 2
  263. KCNEXT = KCNEXT + K + 1
  264. END IF
  265. *
  266. KP = ABS( IPIV( K ) )
  267. IF( KP.NE.K ) THEN
  268. *
  269. * Interchange rows and columns K and KP in the leading
  270. * submatrix A(1:k+1,1:k+1)
  271. *
  272. KPC = ( KP-1 )*KP / 2 + 1
  273. CALL ZSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
  274. KX = KPC + KP - 1
  275. DO 40 J = KP + 1, K - 1
  276. KX = KX + J - 1
  277. TEMP = AP( KC+J-1 )
  278. AP( KC+J-1 ) = AP( KX )
  279. AP( KX ) = TEMP
  280. 40 CONTINUE
  281. TEMP = AP( KC+K-1 )
  282. AP( KC+K-1 ) = AP( KPC+KP-1 )
  283. AP( KPC+KP-1 ) = TEMP
  284. IF( KSTEP.EQ.2 ) THEN
  285. TEMP = AP( KC+K+K-1 )
  286. AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
  287. AP( KC+K+KP-1 ) = TEMP
  288. END IF
  289. END IF
  290. *
  291. K = K + KSTEP
  292. KC = KCNEXT
  293. GO TO 30
  294. 50 CONTINUE
  295. *
  296. ELSE
  297. *
  298. * Compute inv(A) from the factorization A = L*D*L**T.
  299. *
  300. * K is the main loop index, increasing from 1 to N in steps of
  301. * 1 or 2, depending on the size of the diagonal blocks.
  302. *
  303. NPP = N*( N+1 ) / 2
  304. K = N
  305. KC = NPP
  306. 60 CONTINUE
  307. *
  308. * If K < 1, exit from loop.
  309. *
  310. IF( K.LT.1 )
  311. $ GO TO 80
  312. *
  313. KCNEXT = KC - ( N-K+2 )
  314. IF( IPIV( K ).GT.0 ) THEN
  315. *
  316. * 1 x 1 diagonal block
  317. *
  318. * Invert the diagonal block.
  319. *
  320. AP( KC ) = ONE / AP( KC )
  321. *
  322. * Compute column K of the inverse.
  323. *
  324. IF( K.LT.N ) THEN
  325. CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  326. CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+N-K+1 ), WORK, 1,
  327. $ ZERO, AP( KC+1 ), 1 )
  328. AP( KC ) = AP( KC ) - ZDOTU( N-K, WORK, 1, AP( KC+1 ),
  329. $ 1 )
  330. END IF
  331. KSTEP = 1
  332. ELSE
  333. *
  334. * 2 x 2 diagonal block
  335. *
  336. * Invert the diagonal block.
  337. *
  338. T = AP( KCNEXT+1 )
  339. AK = AP( KCNEXT ) / T
  340. AKP1 = AP( KC ) / T
  341. AKKP1 = AP( KCNEXT+1 ) / T
  342. D = T*( AK*AKP1-ONE )
  343. AP( KCNEXT ) = AKP1 / D
  344. AP( KC ) = AK / D
  345. AP( KCNEXT+1 ) = -AKKP1 / D
  346. *
  347. * Compute columns K-1 and K of the inverse.
  348. *
  349. IF( K.LT.N ) THEN
  350. CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  351. CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
  352. $ ZERO, AP( KC+1 ), 1 )
  353. AP( KC ) = AP( KC ) - ZDOTU( N-K, WORK, 1, AP( KC+1 ),
  354. $ 1 )
  355. AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
  356. $ ZDOTU( N-K, AP( KC+1 ), 1,
  357. $ AP( KCNEXT+2 ), 1 )
  358. CALL ZCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
  359. CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
  360. $ ZERO, AP( KCNEXT+2 ), 1 )
  361. AP( KCNEXT ) = AP( KCNEXT ) -
  362. $ ZDOTU( N-K, WORK, 1, AP( KCNEXT+2 ), 1 )
  363. END IF
  364. KSTEP = 2
  365. KCNEXT = KCNEXT - ( N-K+3 )
  366. END IF
  367. *
  368. KP = ABS( IPIV( K ) )
  369. IF( KP.NE.K ) THEN
  370. *
  371. * Interchange rows and columns K and KP in the trailing
  372. * submatrix A(k-1:n,k-1:n)
  373. *
  374. KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
  375. IF( KP.LT.N )
  376. $ CALL ZSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
  377. KX = KC + KP - K
  378. DO 70 J = K + 1, KP - 1
  379. KX = KX + N - J + 1
  380. TEMP = AP( KC+J-K )
  381. AP( KC+J-K ) = AP( KX )
  382. AP( KX ) = TEMP
  383. 70 CONTINUE
  384. TEMP = AP( KC )
  385. AP( KC ) = AP( KPC )
  386. AP( KPC ) = TEMP
  387. IF( KSTEP.EQ.2 ) THEN
  388. TEMP = AP( KC-N+K-1 )
  389. AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
  390. AP( KC-N+KP-1 ) = TEMP
  391. END IF
  392. END IF
  393. *
  394. K = K - KSTEP
  395. KC = KCNEXT
  396. GO TO 60
  397. 80 CONTINUE
  398. END IF
  399. *
  400. RETURN
  401. *
  402. * End of ZSPTRI
  403. *
  404. END